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PROPERTIES OF EXTREMAL SEQUENCES FOR THE BELLMAN
FUNCTION OF THE DYADIC MAXIMAL OPERATOR

BY

ELEFTHERIOS N. NIKOLIDAKIS (Athens)

Abstract. We prove a necessary condition that has every extremal sequence for the
Bellman function of the dyadic maximal operator. This implies the weak-Lp uniqueness
for such a sequence.

1. Introduction. The dyadic maximal operator on Rk is defined by

(1.1) Mdφ(x) = sup

{
1

|Q|

�

Q

|φ(u)| du : x ∈ Q, Q ⊆ Rk is a dyadic cube

}
for every φ ∈ L1

loc(Rk), where | · | is the Lebesgue measure on Rk and the
dyadic cubes are those formed by the grids 2−NZk, N = 0, 1, 2, . . . .

It is well known thatMd satisfies the following weak type (1, 1) inequal-
ity:

(1.2) |{x ∈ Rk :Mdφ(x) ≥ λ}| ≤ 1

λ

�

{Mdφ≥λ}

|φ(u)| du

for every φ ∈ L1(Rk) and λ > 0.

From (1.2) it is easy to deduce the Lp-inequality

(1.3) ‖Mdφ‖p ≤
p

p− 1
‖φ‖p.

It is easy to see that (1.2) is best possible, and (1.3) is also best possible as
can be seen in [W]. (See also [B1] and [B2] for general martingales.)

A way of studying the dyadic maximal operator is to find certain re-
finements of the above inequalities. Concerning (1.2), refinements have been
studied in [MN2], [N1] and [N2], while for (1.3) the Bellman function of two
variables for p > 1 has been introduced in the following way:
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(1.4) Tp(f, F ) = sup

{
1

|Q|

�

Q

(Mdφ)p : φ ≥ 0,
1

|Q|

�

Q

φ(u) du = f,

1

|Q|

�

Q

φp(u) du = F

}
,

where Q is a fixed dyadic cube on Rk and 0 < fp ≤ F .
The function given in (1.4) has been explicitly computed. Actually, this

is done in a much more general setting of a non-atomic probability measure
space (X,µ) where the dyadic sets are now given in a family T of sets, called
a tree, which satisfies conditions similar to those that are satisfied by the
dyadic cubes on [0, 1]k.

The associated dyadic maximal operator MT is defined by

(1.5) MT φ(x) = sup

{
1

µ(I)

�

I

|φ| dµ : x ∈ I ∈ T
}
,

where φ ∈ L1(X,µ).
The Bellman function (for a given p > 1) of two variables associated to

MT is given by

(1.6) Sp(f, F ) = sup

{ �

X

(MT φ)p dµ : φ ≥ 0,
�

X

φdµ = f,
�

X

φp dµ = F

}
,

where 0 < fp ≤ F .
In [M], (1.6) has been found to be Sp(f, F ) = Fωp(f

p/F )p where ωp :
[0, 1]→ [1, p/(p−1)] is the inverse functionH−1p ofHp defined on [1, p/(p−1)]

by Hp(z) = −(p− 1)zp + pzp−1.
As a result the Bellman function is independent of the measure space

(X,µ) and the underlying tree T . Other approaches to the computation of
(1.4) can be seen in [NM] and [SSV].

In this paper we study those sequences of functions, (φn)n, that are
extremal for the Bellman function (1.6). That is, φn : (X,µ) → R+, n =
1, 2, . . . , satisfy

	
X φn dµ = f ,

	
X φ

p
n dµ = F and

(1.7) lim
n

�

X

(MT φn)p dµ = Fωp(f
p/F )p.

In Section 3 we prove the following

Theorem 1.1. Let φn : (X,µ)→ R+ be as above. Then for every I ∈ T ,

(1.8) lim
n

1

µ(I)

�

I

φn dµ = f and lim
n

1

µ(I)

�

I

φpn dµ = F.

Additionally,

lim
n

1

µ(I)

�

I

(MT φn)p dµ = Fωp(f
p/F )p,

for every I ∈ T .
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An immediate consequence is that extremal functions do not exist for
the Bellman function. Another corollary is the weak-Lp uniqueness of such a
sequence in all interesting cases. In other words if (φn)n, (ψn)n are extremal
sequences for (1.4), then limn

	
Q(φn − ψn)h dµ = 0, for every h ∈ Lp(Q),

where 1/p + 1/q = 1. We also need to mention that related results in con-
nection with Kolmogorov’s inequality have been treated in [MN1], while in
[N3] a characterization of such extremal sequences is given. More precisely it
is proved there that they actually behave approximately like eigenfunctions
of the dyadic maximal operator for a specific eigenvalue.

2. Extremal sequences. Let (X,µ) be a non-atomic probability mea-
sure space.

Definition 2.1. A set T of measurable subsets of X will be called a
tree if the following are satisfied:

(i) X ∈ T and µ(I) > 0 for every I ∈ T .
(ii) To every I ∈ T there corresponds a finite or countable subset C(I)

of T containing at least two elements such that

(a) the elements of C(I) are disjoint subsets of I,
(b) I =

⋃
C(I).

(iii) T =
⋃
m≥0 T(m), where T(0) = {X} and

T(m+1) =
⋃

I∈T(m)

C(I).

(iv) lim
m→∞

sup
I∈T(m)

µ(I) = 0.

Definition 2.2. Given a tree T we define the associated maximal op-
erator by

MT φ(x) = sup

{
1

µ(I)

�

I

|φ| dµ : x ∈ I ∈ T
}

for every φ ∈ L1(X,µ).

From [M] we obtain

Theorem 2.3.

sup
{ �

X

(MT φ)p dµ : φ ≥ 0,
�
φdµ = f,

�

X

φp dµ = F
}

= Fωp(f
p/F )p

for 0 < fp ≤ F .

Finally, we give

Definition 2.4. Let (φn)n be a sequence of non-negative measurable
functions defined on X and 0 < fp ≤ F , p > 1. Then (φn)n is called
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(p, f, F ) extremal, or simply extremal, if
�

X

φn dµ = f,
�

X

φpn dµ = F for every n = 1, 2, . . . ,

lim
n

�

X

(MT φn)pdµ = Fωp(f
p/F )p.

3. Main theorem

Theorem 3.1. Let (φn)n be an extremal sequence. Then for every I ∈ T :

(i) lim
n

1

µ(I)

�

I

φn dµ = f ,

(ii) lim
n

1

µ(I)

�

I

φpn dµ = F ,

(iii) lim
1

µ(I)

�

I

(MT φn)p dµ = Fωp(f
p/F )p.

Proof. We recall that T(0) = {X} and T =
⋃
m≥0 T(m). We prove the

assertion for I ∈ T(1). Then inductively it holds for every I ∈ T(m), m ≥ 1.

Suppose then that T(1) = {Ik : k = 1, 2, . . .} and I = I1. We now set

fn,1 =
1

µ(I1)

�

I1

φn dµ, fn,2 =
1

µ(X r I1)

�

XrI1

φn dµ,

Fn,1 =
1

µ(I1)

�

I1

φpn dµ, Fn,2 =
1

µ(X r I1)

�

XrI1

φpn dµ for n = 1, 2, . . . .(3.1)

The above sequences are obviously bounded, so passing to a subsequence
we may suppose that

lim
n
fn,i = fi and lim

n
Fn,i = Fi for i = 1, 2.

For any J ∈ T define

MJφ(t) = sup

{
1

µ(K)

�

K

|φ| dµ : t ∈ K ∈ TJ
}

for t ∈ J,

where TJ is defined by

TJ = {K ∈ T : K ⊆ J}.

Consider the measure space (J, µ(·)/µ(J)), the tree TJ and the associated
maximal operator MJ . Then using Theorem 2.3, we have

(3.2)
1

µ(J)

�

J

(MJφ)p dµ ≤ 1

µ(J)

�

J

φp dµ · ωp
(( 1

µ(J)

	
J φdµ

)p
1

µ(J)

	
J φ

p dµ

)p
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for every φ ∈ Lp(J), where ωp : [0, 1]→ [1, p/(p− 1)] is H−1p , with

Hp(z) = −(p− 1)zp + pzp−1, z ∈ [1, p/(p− 1)].

Since Hp is decreasing we conclude from (3.2) that

Hp

([	
J(MJφ)p dµ	

J φ
p dµ

]1/p)
≥ 1

µ(J)p−1
(
	
J φdµ)p	
J φ

p dµ
,

which gives

(3.3) −(p− 1)
�

J

(MJφ)p dµ+ p
( �

J

φp dµ
)1/p

·
( �

J

(MJφ)p dµ
)1−1/p

=
1

µ(J)p−1

( �

J

φdµ
)p

+ δφ,J

for some constant δφ,J ≥ 0 depending on φ and J .

For φ = φn and J = Ii, i = 1, 2, . . . , from (3.3) we obtain

(3.4) −(p− 1)
�

Ii

(MIiφn)p dµ+ p
( �

Ii

φpn dµ
)1/p

·
( �

Ii

(MIiφn)p dµ
)1−1/p

=
1

µ(Ii)p−1

( �

Ii

φn dµ
)p

+ δn,i for n, i = 1, 2, . . . .

Summing (3.4) over i ≥ 2 we obtain

(3.5)

−(p− 1)

∞∑
i=2

�

Ii

(MIiφn)p dµ+ p
∞∑
i=2

( �

Ii

φpn dµ
)1/p( �

Ii

(MIiφn)p dµ
)1−1/p

=
∞∑
i=2

1

µ(Ii)p−1

( �

Ii

φn dµ
)p

+

∞∑
i=2

δn,i.

In view now of Hölder’s inequality∑
i

aibi ≤
(∑

i

api

)1/p(∑
i

bqi

)1/q
,

for ai, bi ≥ 0 and q = p/(p− 1), (3.5) gives

(3.6) −(p− 1)A2(n) + p
( �

XrI1

φpn dµ
)1/p

· [A2(n)]1−1/p

≥
∞∑
i=2

1

µ(Ii)p−1

( �

Ii

φn dµ
)p

+

∞∑
i=2

δn,i,
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where

(3.7) A2(n) =
∞∑
i=2

�

Ii

(MIiφn)p dµ.

(In the last inequality we used the fact that X r I1 =
⋃∞
i=2 Ii.)

We now use now Hölder’s inequality in the following form:

(λ1 + · · ·+ λm)p

(σ1 + · · ·+ σm)p−1
≤ λp1
σp−11

+ · · ·+ λpm

σp−1m

,

where σi, λi ≥ 0 for all i = 1, 2, . . . , and obtain
∞∑
i=2

1

µ(Ii)p−1

( �

Ii

φn dµ
)p
≥ 1

µ(X r I1)p−1

( �

XrI1

φn dµ
)p

(3.8)

= µ(X r I1)fn,2.

We also set

(3.9) A3(n) =
�

XrI1

(MT φn)p dµ for n = 1, 2, . . . .

Then by definition of MIi we have

(3.10) A3(n) ≥ A2(n).

From the above we then deduce that

(3.11) −(p− 1)A2(n) + pµ(X r I1)
1/p(Fn,2)

1/p[A3(n)]1−1/p

= µ(X r I1)(fn,2)
p + δ(1)n ,

where δ
(1)
n ≥

∑∞
i=2 δn,i.

By passing to a subsequence we may suppose that limnA3(n) = A3.

We will now use the following lemma, the proof of which will be given
at the end of this section.

Lemma 3.2. If (φn)n is extremal then

lim
n
µ({MT φn = f}) = 0.

From this lemma and the definitions (3.7) and (3.9) we easily see that
limnA2(n) = limnA3(n) = A3, in view of the fact that Ii ∈ T(1) for i =
2, 3, . . . . Then from (3.11) we conclude that

(3.12)

−(p−1)
�

XrI1

(MT φn)p dµ+pµ(XrI1)1/p(Fn,2)1/p
( �

XrI1

(MT φn)p dµ
)1−1/p

= µ(X r Ii)(fn,2)
p + δ′′n,

where δ′′n ≥ δ′n for every n ∈ N.
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In the same way we obtain

(3.13)

−(p− 1)
�

I1

(MT φn)p dµ+ pµ(I1)
1/p(Fn,1)

1/p

( �

I1

(MT φn)p dµ

)1−1/p

= µ(I1)(fn,1)
p + ε′′n,

where ε′′n is such that ε′′n ≥ δn,1 for every n ∈ N.
Summing now (3.12) and (3.13) and using Hölder’s inequality in both

previously mentioned forms we obtain

(3.14) −(p− 1)
�

X

(MT φn)p dµ+ pF 1/p
( �

X

(MT φn)p dµ
)1−1/p

≥ µ(I1)(fn,1)
p + µ(X r I1)(fn,2)

p + δ′′n + ε′′n ≥ fp + δ′′n + ε′′n,

which gives

(3.15) −(p− 1)
�

X

(MT φ1)p dµ+ pF 1/p
( �

X

(MT φn)p dµ
)1−1/p

= fp + ϑn,

where ϑn ≥ δ′′n + ε′′n, n = 1, 2, . . . .
The hypothesis on (φn) is now that

lim
n

�

X

(MT φn)p dµ = Fωp(f
p/F )p.

This gives ϑn → 0 in (3.15) and so

δ′′n → 0, ε′′n → 0.

As a consequence,

µ(I1)(f1)
p + µ(X r I1)(f2)

p = fp

because of equality in (3.14) as n→∞.
Since now µ(I1)f1 + µ(X r I1)f2 = f and t 7→ tp is strictly convex on

(0,∞) we have f1 = f2 = f .
Additionally δ′′n → 0, so because of (3.12) and the fact that f2 = f we

immediately see that

(3.16) lim
n

1

µ(X r I1)

�

XrI1

(MT φn)p dµ = F2ωp(f
p/F2)

p.

Similarly

(3.17) lim
n

1

µ(I1)

�

I1

(MT φn)p dµ = F1ωp(f
p/F1)

p.

Since (φn)n is extremal, the last two equations give

(3.18) µ(I1) · F1ωp(f
p/F1)

p + µ(X r I1) · F2ωp(f
p/F2)

p = Fω(fp/F ).
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But as we shall prove in Lemma 3.3 below, the function t 7→ tωp(f
p/t)p,

t ∈ (fp,∞) is strictly concave. So since µ(I1)F1+µ(XrI1)F2 = F we see
from (3.18) that F1 = F2 = F . Then since (3.17) holds we conclude that

lim
n

1

µ(I)

�

I

(MT φn)p dµ = Fωp(f
p/F )p,

and Theorem 3.1 is proved.

We now prove the following

Lemma 3.3. Let G : (1,∞)→ R+ be defined by G(t) = tωp(1/t)
p. Then

G is strictly concave.

Proof. It is known from [M] that ωp satisfies

d

dx
[ωp(x)]p = − 1

p− 1

ωp(x)

ωp(x)− 1
, x ∈ [0, 1].

So we can easily see that

G′(t) = ωp(1/t)
p +

1

p− 1

1

t

ωp(1/t)

ωp(1/t)− 1
,

G′′(t) =
1

p− 1
· 1

t

(
g(t)

g(t)− 1

)′
,

where g is defined on (1,∞) by g(t) = ωp(1/t). Since g′(t) > 0 for all t > 1,
we have G′′(t) < 0 for all t > 1, and Lemma 3.3 is proved.

We continue now with

Proof of Lemma 3.2. Suppose first that all φn are T -simple functions,
that is, for every n, there exists an mn such that φn is constant on each
I ∈ T(mn). As a consequence, φn is T -good in the sense of [M], for every n.
If we look at the proof of Lemma 9 in [M, pp. 324–326] we see that in
inequalities (4.20), (4.22), (4.23), (4.24) there we should have equality in
the limit. So as a result we must have

1

(β + 1− βρnX)p−1
−

(p− 1)βρnX
(β + 1)p

→ 1

(β + 1)p−1
for β = ωp(f

p/F )− 1,

where ρnX = anX/µ(X) = anX with anX = µ({MT φn = f}). But this can
happen only if anX → 0. So the proof is complete in the case of T -simple
functions.

As for the general case, it is not difficult to see that if (φn)n is an extremal
sequence of measurable functions, then we can construct a sequence (ψn)n
of T -simple functions such that

	
X ψn dµ = f ,

	
X ψ

p
n dµ ≤ F and

lim
n

�

X

ψpn dµ = F, lim
n

�

X

(MT ψn)p dµ = Fωp(f
p/F )p.
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Additionally, we can arrange everything in such a way that {MT φn = f} ⊆
{MT ψn = f}.

The same arguments used for (ψn)n give limn µ({MT ψn = f}) = 0. So
limn µ({MT φn = f}) =0 and Lemma 3.2 is proved.

We now give some applications of the above.
First we prove

Corollary 3.4. If 0 < fp < F then there do not exist extremal func-
tions for the Bellman function Tp(f, F ) described in (1.4).

Proof. Let φ be an extremal function for (1.4). Applying Theorem 3.1
we see that

1

µ(I)

�

I

φdµ = f and
1

µ(I)

�

I

φp dµ = F,

for every dyadic subcube I of Q.
As we can see in [G], inequality (1.2) implies that the base of dyadic sets

of the tree T differentiates L1(Q). That is,

φ(x) = f a.e. and φp(x) = F a.e.

This gives fp = F , which is a contradiction.

Corollary 3.5. Let Tp(f, F ) be described by (1.4). Then if (φn)n, (ψn)n

are extremal sequences for this function, we have φn−ψn
w(Lp)−−−−→ 0 as n→∞.

Proof. Of course

lim
n

1

|I|

�

I

φn(u) du = lim
n

1

|I|

�

I

ψn(u) du = f.

So limn

	
Q(φn − ψn)ξI(u) du = 0, for every dyadic subcube I ⊆ Q.

Since linear combinations of the characteristic functions of the dyadic
subcubes of Q are dense in Lq(Q) we should have limn

	
Q(φn−ψn)h = 0 for

every h ∈ Lq(Q), where q = p/(p− 1), that is, φn−ψn
w(Lp)−−−−→ 0 as n→∞.
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