PROPERTIES OF EXTREMAL SEQUENCES FOR THE BELLMAN FUNCTION OF THE DYADIC MAXIMAL OPERATOR

By

ELEFTHERIOS N. NIKOLIDAKIS (Athens)

Abstract

We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak- L^{p} uniqueness for such a sequence.

1. Introduction. The dyadic maximal operator on \mathbb{R}^{k} is defined by

$$
\begin{equation*}
\mathcal{M}_{d} \phi(x)=\sup \left\{\frac{1}{|Q|} \int_{Q}|\phi(u)| d u: x \in Q, Q \subseteq \mathbb{R}^{k} \text { is a dyadic cube }\right\} \tag{1.1}
\end{equation*}
$$

for every $\phi \in L_{\text {loc }}^{1}\left(\mathbb{R}^{k}\right)$, where $|\cdot|$ is the Lebesgue measure on \mathbb{R}^{k} and the dyadic cubes are those formed by the grids $2^{-N} \mathbb{Z}^{k}, N=0,1,2, \ldots$

It is well known that \mathcal{M}_{d} satisfies the following weak type $(1,1)$ inequality:

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{k}: \mathcal{M}_{d} \phi(x) \geq \lambda\right\}\right| \leq \frac{1}{\lambda} \int_{\left\{\mathcal{M}_{d} \phi \geq \lambda\right\}}|\phi(u)| d u \tag{1.2}
\end{equation*}
$$

for every $\phi \in L^{1}\left(\mathbb{R}^{k}\right)$ and $\lambda>0$.
From (1.2) it is easy to deduce the L^{p}-inequality

$$
\begin{equation*}
\left\|\mathcal{M}_{d} \phi\right\|_{p} \leq \frac{p}{p-1}\|\phi\|_{p} \tag{1.3}
\end{equation*}
$$

It is easy to see that (1.2) is best possible, and $\sqrt{1.3}$ is also best possible as can be seen in [W]. (See also [B1] and [B2] for general martingales.)

A way of studying the dyadic maximal operator is to find certain refinements of the above inequalities. Concerning (1.2), refinements have been studied in MN2, [N1] and [N2], while for (1.3) the Bellman function of two variables for $p>1$ has been introduced in the following way:

[^0]\[

$$
\begin{align*}
& T_{p}(f, F)=\sup \left\{\frac{1}{|Q|} \int_{Q}\left(\mathcal{M}_{d} \phi\right)^{p}: \phi \geq 0, \frac{1}{|Q|} \int_{Q} \phi(u) d u=f\right. \tag{1.4}\\
&\left.\frac{1}{|Q|} \int_{Q} \phi^{p}(u) d u=F\right\}
\end{align*}
$$
\]

where Q is a fixed dyadic cube on \mathbb{R}^{k} and $0<f^{p} \leq F$.
The function given in (1.4) has been explicitly computed. Actually, this is done in a much more general setting of a non-atomic probability measure space (X, μ) where the dyadic sets are now given in a family \mathcal{T} of sets, called a tree, which satisfies conditions similar to those that are satisfied by the dyadic cubes on $[0,1]^{k}$.

The associated dyadic maximal operator $\mathcal{M}_{\mathcal{T}}$ is defined by

$$
\begin{equation*}
\mathcal{M}_{\mathcal{T}} \phi(x)=\sup \left\{\frac{1}{\mu(I)} \int_{I}|\phi| d \mu: x \in I \in \mathcal{T}\right\} \tag{1.5}
\end{equation*}
$$

where $\phi \in L^{1}(X, \mu)$.
The Bellman function (for a given $p>1$) of two variables associated to $\mathcal{M}_{\mathcal{T}}$ is given by

$$
\begin{equation*}
S_{p}(f, F)=\sup \left\{\int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi\right)^{p} d \mu: \phi \geq 0, \int_{X} \phi d \mu=f, \int_{X} \phi^{p} d \mu=F\right\} \tag{1.6}
\end{equation*}
$$

where $0<f^{p} \leq F$.
In (M, 1.6) has been found to be $S_{p}(f, F)=F \omega_{p}\left(f^{p} / F\right)^{p}$ where ω_{p} : $[0,1] \rightarrow[1, p /(p-1)]$ is the inverse function H_{p}^{-1} of H_{p} defined on $[1, p /(p-1)]$ by $H_{p}(z)=-(p-1) z^{p}+p z^{p-1}$.

As a result the Bellman function is independent of the measure space (X, μ) and the underlying tree \mathcal{T}. Other approaches to the computation of (1.4) can be seen in [NM] and [SSV].

In this paper we study those sequences of functions, $\left(\phi_{n}\right)_{n}$, that are extremal for the Bellman function (1.6). That is, $\phi_{n}:(X, \mu) \rightarrow \mathbb{R}^{+}, n=$ $1,2, \ldots$, satisfy $\int_{X} \phi_{n} d \mu=f, \int_{X} \phi_{n}^{p} d \mu=F$ and

$$
\begin{equation*}
\lim _{n} \int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p} \tag{1.7}
\end{equation*}
$$

In Section 3 we prove the following
TheOrem 1.1. Let $\phi_{n}:(X, \mu) \rightarrow \mathbb{R}^{+}$be as above. Then for every $I \in \mathcal{T}$,

$$
\begin{equation*}
\lim _{n} \frac{1}{\mu(I)} \int_{I} \phi_{n} d \mu=f \quad \text { and } \quad \lim _{n} \frac{1}{\mu(I)} \int_{I} \phi_{n}^{p} d \mu=F . \tag{1.8}
\end{equation*}
$$

Additionally,

$$
\lim _{n} \frac{1}{\mu(I)} \int_{I}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p}
$$

for every $I \in \mathcal{T}$.

An immediate consequence is that extremal functions do not exist for the Bellman function. Another corollary is the weak- L^{p} uniqueness of such a sequence in all interesting cases. In other words if $\left(\phi_{n}\right)_{n},\left(\psi_{n}\right)_{n}$ are extremal sequences for (1.4), then $\lim _{n} \int_{Q}\left(\phi_{n}-\psi_{n}\right) h d \mu=0$, for every $h \in L^{p}(Q)$, where $1 / p+1 / q=1$. We also need to mention that related results in connection with Kolmogorov's inequality have been treated in MN1, while in [N3] a characterization of such extremal sequences is given. More precisely it is proved there that they actually behave approximately like eigenfunctions of the dyadic maximal operator for a specific eigenvalue.
2. Extremal sequences. Let (X, μ) be a non-atomic probability measure space.

Definition 2.1. A set \mathcal{T} of measurable subsets of X will be called a tree if the following are satisfied:
(i) $X \in \mathcal{T}$ and $\mu(I)>0$ for every $I \in \mathcal{T}$.
(ii) To every $I \in \mathcal{T}$ there corresponds a finite or countable subset $C(I)$ of \mathcal{T} containing at least two elements such that
(a) the elements of $C(I)$ are disjoint subsets of I,
(b) $I=\bigcup C(I)$.
(iii) $\mathcal{T}=\bigcup_{m \geq 0} \mathcal{T}_{(m)}$, where $\mathcal{T}_{(0)}=\{X\}$ and

$$
\mathcal{T}_{(m+1)}=\bigcup_{I \in \mathcal{T}_{(m)}} C(I)
$$

(iv) $\lim _{m \rightarrow \infty} \sup _{I \in \mathcal{T}_{(m)}} \mu(I)=0$.

Definition 2.2. Given a tree \mathcal{T} we define the associated maximal operator by

$$
\mathcal{M}_{\mathcal{T}} \phi(x)=\sup \left\{\frac{1}{\mu(I)} \int_{I}|\phi| d \mu: x \in I \in \mathcal{T}\right\}
$$

for every $\phi \in L^{1}(X, \mu)$.
From [M] we obtain
Theorem 2.3.

$$
\sup \left\{\int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi\right)^{p} d \mu: \phi \geq 0, \int \phi d \mu=f, \int_{X} \phi^{p} d \mu=F\right\}=F \omega_{p}\left(f^{p} / F\right)^{p}
$$

for $0<f^{p} \leq F$.
Finally, we give
Definition 2.4. Let $\left(\phi_{n}\right)_{n}$ be a sequence of non-negative measurable functions defined on X and $0<f^{p} \leq F, p>1$. Then $\left(\phi_{n}\right)_{n}$ is called
(p, f, F) extremal, or simply extremal, if

$$
\begin{gathered}
\int_{X} \phi_{n} d \mu=f, \quad \int_{X} \phi_{n}^{p} d \mu=F \quad \text { for every } n=1,2, \ldots, \\
\lim _{n} \int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p}
\end{gathered}
$$

3. Main theorem

THEOREM 3.1. Let $\left(\phi_{n}\right)_{n}$ be an extremal sequence. Then for every $I \in \mathcal{T}$:
(i) $\lim _{n} \frac{1}{\mu(I)} \int_{I} \phi_{n} d \mu=f$,
(ii) $\lim _{n} \frac{1}{\mu(I)} \int_{I} \phi_{n}^{p} d \mu=F$,
(iii) $\lim \frac{1}{\mu(I)} \int_{I}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p}$.

Proof. We recall that $\mathcal{T}_{(0)}=\{X\}$ and $\mathcal{T}=\bigcup_{m \geq 0} \mathcal{T}_{(m)}$. We prove the assertion for $I \in \mathcal{T}_{(1)}$. Then inductively it holds for every $I \in \mathcal{T}_{(m)}, m \geq 1$.

Suppose then that $\mathcal{T}_{(1)}=\left\{I_{k}: k=1,2, \ldots\right\}$ and $I=I_{1}$. We now set

$$
\begin{gather*}
f_{n, 1}=\frac{1}{\mu\left(I_{1}\right)} \int_{I_{1}} \phi_{n} d \mu, \quad f_{n, 2}=\frac{1}{\mu\left(X \backslash I_{1}\right)} \int_{X \backslash I_{1}} \phi_{n} d \mu \\
F_{n, 1}=\frac{1}{\mu\left(I_{1}\right)} \int_{I_{1}} \phi_{n}^{p} d \mu, \quad F_{n, 2}=\frac{1}{\mu\left(X \backslash I_{1}\right)} \int_{X \backslash I_{1}} \phi_{n}^{p} d \mu \quad \text { for } n=1,2, \ldots \tag{3.1}
\end{gather*}
$$

The above sequences are obviously bounded, so passing to a subsequence we may suppose that

$$
\lim _{n} f_{n, i}=f_{i} \quad \text { and } \quad \lim _{n} F_{n, i}=F_{i} \quad \text { for } i=1,2
$$

For any $J \in \mathcal{T}$ define

$$
\mathcal{M}_{J} \phi(t)=\sup \left\{\frac{1}{\mu(K)} \int_{K}|\phi| d \mu: t \in K \in \mathcal{T}_{J}\right\} \quad \text { for } t \in J
$$

where \mathcal{T}_{J} is defined by

$$
\mathcal{T}_{J}=\{K \in \mathcal{T}: K \subseteq J\}
$$

Consider the measure space $(J, \mu(\cdot) / \mu(J))$, the tree \mathcal{T}_{J} and the associated maximal operator \mathcal{M}_{J}. Then using Theorem 2.3, we have

$$
\begin{equation*}
\frac{1}{\mu(J)} \int_{J}\left(\mathcal{M}_{J} \phi\right)^{p} d \mu \leq \frac{1}{\mu(J)} \int_{J} \phi^{p} d \mu \cdot \omega_{p}\left(\frac{\left(\frac{1}{\mu(J)} \int_{J} \phi d \mu\right)^{p}}{\frac{1}{\mu(J)} \int_{J} \phi^{p} d \mu}\right)^{p} \tag{3.2}
\end{equation*}
$$

for every $\phi \in L^{p}(J)$, where $\omega_{p}:[0,1] \rightarrow[1, p /(p-1)]$ is H_{p}^{-1}, with

$$
H_{p}(z)=-(p-1) z^{p}+p z^{p-1}, \quad z \in[1, p /(p-1)] .
$$

Since H_{p} is decreasing we conclude from (3.2) that

$$
H_{p}\left(\left[\frac{\int_{J}\left(\mathcal{M}_{J} \phi\right)^{p} d \mu}{\int_{J} \phi^{p} d \mu}\right]^{1 / p}\right) \geq \frac{1}{\mu(J)^{p-1}} \frac{\left(\int_{J} \phi d \mu\right)^{p}}{\int_{J} \phi^{p} d \mu},
$$

which gives

$$
\begin{align*}
-(p-1) \int_{J}\left(\mathcal{M}_{J} \phi\right)^{p} d \mu+p\left(\int_{J} \phi^{p} d \mu\right)^{1 / p} & \cdot\left(\int_{J}\left(\mathcal{M}_{J} \phi\right)^{p} d \mu\right)^{1-1 / p} \tag{3.3}\\
& =\frac{1}{\mu(J)^{p-1}}\left(\int_{J} \phi d \mu\right)^{p}+\delta_{\phi, J}
\end{align*}
$$

for some constant $\delta_{\phi, J} \geq 0$ depending on ϕ and J.
For $\phi=\phi_{n}$ and $J=I_{i}, i=1,2, \ldots$, from (3.3) we obtain

$$
\begin{array}{r}
-(p-1) \int_{I_{i}}\left(\mathcal{M}_{I_{i}} \phi_{n}\right)^{p} d \mu+p\left(\int_{I_{i}} \phi_{n}^{p} d \mu\right)^{1 / p} \cdot\left(\int_{I_{i}}\left(\mathcal{M}_{I_{i}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p} \tag{3.4}\\
=\frac{1}{\mu\left(I_{i}\right)^{p-1}}\left(\int_{I_{i}} \phi_{n} d \mu\right)^{p}+\delta_{n, i} \quad \text { for } n, i=1,2, \ldots
\end{array}
$$

Summing (3.4) over $i \geq 2$ we obtain

$$
\begin{align*}
&-(p-1) \sum_{i=2}^{\infty} \int\left(\mathcal{M}_{I_{i}} \phi_{n}\right)^{p} d \mu+p \sum_{i=2}^{\infty}\left(\int_{I_{i}} \phi_{n}^{p} d \mu\right)^{1 / p}\left(\int_{I_{i}}\left(\mathcal{M}_{I_{i}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p} \tag{3.5}\\
&= \sum_{i=2}^{\infty} \frac{1}{\mu\left(I_{i}\right)^{p-1}}\left(\int_{I_{i}} \phi_{n} d \mu\right)^{p}+\sum_{i=2}^{\infty} \delta_{n, i} .
\end{align*}
$$

In view now of Hölder's inequality

$$
\sum_{i} a_{i} b_{i} \leq\left(\sum_{i} a_{i}^{p}\right)^{1 / p}\left(\sum_{i} b_{i}^{q}\right)^{1 / q}
$$

for $a_{i}, b_{i} \geq 0$ and $q=p /(p-1)$, 3.5) gives

$$
\begin{align*}
&-(p-1) A_{2}(n)+p\left(\int_{X \backslash I_{1}} \phi_{n}^{p} d \mu\right)^{1 / p} \cdot\left[A_{2}(n)\right]^{1-1 / p} \tag{3.6}\\
& \geq \sum_{i=2}^{\infty} \frac{1}{\mu\left(I_{i}\right)^{p-1}}\left(\int_{I_{i}} \phi_{n} d \mu\right)^{p}+\sum_{i=2}^{\infty} \delta_{n, i},
\end{align*}
$$

where

$$
\begin{equation*}
A_{2}(n)=\sum_{i=2}^{\infty} \int_{I_{i}}\left(\mathcal{M}_{I_{i}} \phi_{n}\right)^{p} d \mu \tag{3.7}
\end{equation*}
$$

(In the last inequality we used the fact that $X \backslash I_{1}=\bigcup_{i=2}^{\infty} I_{i}$.)
We now use now Hölder's inequality in the following form:

$$
\frac{\left(\lambda_{1}+\cdots+\lambda_{m}\right)^{p}}{\left(\sigma_{1}+\cdots+\sigma_{m}\right)^{p-1}} \leq \frac{\lambda_{1}^{p}}{\sigma_{1}^{p-1}}+\cdots+\frac{\lambda_{m}^{p}}{\sigma_{m}^{p-1}}
$$

where $\sigma_{i}, \lambda_{i} \geq 0$ for all $i=1,2, \ldots$, and obtain

$$
\begin{align*}
\sum_{i=2}^{\infty} \frac{1}{\mu\left(I_{i}\right)^{p-1}}\left(\int_{I_{i}} \phi_{n} d \mu\right)^{p} & \geq \frac{1}{\mu\left(X \backslash I_{1}\right)^{p-1}}\left(\int_{X \backslash I_{1}} \phi_{n} d \mu\right)^{p} \tag{3.8}\\
& =\mu\left(X \backslash I_{1}\right) f_{n, 2}
\end{align*}
$$

We also set

$$
\begin{equation*}
A_{3}(n)=\int_{X \backslash I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu \quad \text { for } n=1,2, \ldots \tag{3.9}
\end{equation*}
$$

Then by definition of $\mathcal{M}_{I_{i}}$ we have

$$
\begin{equation*}
A_{3}(n) \geq A_{2}(n) \tag{3.10}
\end{equation*}
$$

From the above we then deduce that

$$
\begin{align*}
-(p-1) A_{2}(n)+p \mu\left(X \backslash I_{1}\right)^{1 / p}\left(F_{n, 2}\right)^{1 / p} & {\left[A_{3}(n)\right]^{1-1 / p} } \tag{3.11}\\
& =\mu\left(X \backslash I_{1}\right)\left(f_{n, 2}\right)^{p}+\delta_{n}^{(1)}
\end{align*}
$$

where $\delta_{n}^{(1)} \geq \sum_{i=2}^{\infty} \delta_{n, i}$.
By passing to a subsequence we may suppose that $\lim _{n} A_{3}(n)=A_{3}$.
We will now use the following lemma, the proof of which will be given at the end of this section.

Lemma 3.2. If $\left(\phi_{n}\right)_{n}$ is extremal then

$$
\lim _{n} \mu\left(\left\{\mathcal{M}_{\mathcal{T}} \phi_{n}=f\right\}\right)=0
$$

From this lemma and the definitions (3.7) and (3.9) we easily see that $\lim _{n} A_{2}(n)=\lim _{n} A_{3}(n)=A_{3}$, in view of the fact that $I_{i} \in \mathcal{T}_{(1)}$ for $i=$ $2,3, \ldots$ Then from (3.11) we conclude that

$$
\begin{align*}
-(p-1) \int_{X \backslash I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu+p \mu\left(X \backslash I_{1}\right)^{1 / p}\left(F_{n, 2}\right)^{1 / p} & \left(\int_{X \backslash I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p} \tag{3.12}\\
& =\mu\left(X \backslash I_{i}\right)\left(f_{n, 2}\right)^{p}+\delta_{n}^{\prime \prime}
\end{align*}
$$

where $\delta_{n}^{\prime \prime} \geq \delta_{n}^{\prime}$ for every $n \in \mathbb{N}$.

In the same way we obtain

$$
\begin{align*}
& -(p-1) \int_{I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu+p \mu\left(I_{1}\right)^{1 / p}\left(F_{n, 1}\right)^{1 / p}\left(\int_{I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p} \tag{3.13}\\
& =\mu\left(I_{1}\right)\left(f_{n, 1}\right)^{p}+\varepsilon_{n}^{\prime \prime}
\end{align*}
$$

where $\varepsilon_{n}^{\prime \prime}$ is such that $\varepsilon_{n}^{\prime \prime} \geq \delta_{n, 1}$ for every $n \in \mathbb{N}$.
Summing now (3.12) and (3.13) and using Hölder's inequality in both previously mentioned forms we obtain

$$
\begin{align*}
& -(p-1) \int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu+p F^{1 / p}\left(\int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p} \tag{3.14}\\
& \quad \geq \mu\left(I_{1}\right)\left(f_{n, 1}\right)^{p}+\mu\left(X \backslash I_{1}\right)\left(f_{n, 2}\right)^{p}+\delta_{n}^{\prime \prime}+\varepsilon_{n}^{\prime \prime} \geq f^{p}+\delta_{n}^{\prime \prime}+\varepsilon_{n}^{\prime \prime}
\end{align*}
$$

which gives

$$
\begin{equation*}
-(p-1) \int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{1}\right)^{p} d \mu+p F^{1 / p}\left(\int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu\right)^{1-1 / p}=f^{p}+\vartheta_{n} \tag{3.15}
\end{equation*}
$$

where $\vartheta_{n} \geq \delta_{n}^{\prime \prime}+\varepsilon_{n}^{\prime \prime}, n=1,2, \ldots$
The hypothesis on $\left(\phi_{n}\right)$ is now that

$$
\lim _{n} \int_{X}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p}
$$

This gives $\vartheta_{n} \rightarrow 0$ in 3.15 and so

$$
\delta_{n}^{\prime \prime} \rightarrow 0, \quad \varepsilon_{n}^{\prime \prime} \rightarrow 0
$$

As a consequence,

$$
\mu\left(I_{1}\right)\left(f_{1}\right)^{p}+\mu\left(X \backslash I_{1}\right)\left(f_{2}\right)^{p}=f^{p}
$$

because of equality in (3.14) as $n \rightarrow \infty$.
Since now $\mu\left(I_{1}\right) f_{1}+\mu\left(X \backslash I_{1}\right) f_{2}=f$ and $t \mapsto t^{p}$ is strictly convex on $(0, \infty)$ we have $f_{1}=f_{2}=f$.

Additionally $\delta_{n}^{\prime \prime} \rightarrow 0$, so because of $\left(3.12\right.$ and the fact that $f_{2}=f$ we immediately see that

$$
\begin{equation*}
\lim _{n} \frac{1}{\mu\left(X \backslash I_{1}\right)} \int_{X \backslash I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F_{2} \omega_{p}\left(f^{p} / F_{2}\right)^{p} \tag{3.16}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\lim _{n} \frac{1}{\mu\left(I_{1}\right)} \int_{I_{1}}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F_{1} \omega_{p}\left(f^{p} / F_{1}\right)^{p} \tag{3.17}
\end{equation*}
$$

Since $\left(\phi_{n}\right)_{n}$ is extremal, the last two equations give

$$
\begin{equation*}
\mu\left(I_{1}\right) \cdot F_{1} \omega_{p}\left(f^{p} / F_{1}\right)^{p}+\mu\left(X \backslash I_{1}\right) \cdot F_{2} \omega_{p}\left(f^{p} / F_{2}\right)^{p}=F \omega\left(f^{p} / F\right) \tag{3.18}
\end{equation*}
$$

But as we shall prove in Lemma 3.3 below, the function $t \mapsto t \omega_{p}\left(f^{p} / t\right)^{p}$, $t \in\left(f^{p}, \infty\right)$ is strictly concave. So since $\mu\left(I_{1}\right) F_{1}+\mu\left(X \backslash I_{1}\right) F_{2}=F$ we see from (3.18) that $F_{1}=F_{2}=F$. Then since (3.17) holds we conclude that

$$
\lim _{n} \frac{1}{\mu(I)} \int_{I}\left(\mathcal{M}_{\mathcal{T}} \phi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p},
$$

and Theorem 3.1 is proved.
We now prove the following
Lemma 3.3. Let $G:(1, \infty) \rightarrow \mathbb{R}^{+}$be defined by $G(t)=t \omega_{p}(1 / t)^{p}$. Then G is strictly concave.

Proof. It is known from [M] that ω_{p} satisfies

$$
\frac{d}{d x}\left[\omega_{p}(x)\right]^{p}=-\frac{1}{p-1} \frac{\omega_{p}(x)}{\omega_{p}(x)-1}, \quad x \in[0,1] .
$$

So we can easily see that

$$
\begin{aligned}
G^{\prime}(t) & =\omega_{p}(1 / t)^{p}+\frac{1}{p-1} \frac{1}{t} \frac{\omega_{p}(1 / t)}{\omega_{p}(1 / t)-1}, \\
G^{\prime \prime}(t) & =\frac{1}{p-1} \cdot \frac{1}{t}\left(\frac{g(t)}{g(t)-1}\right)^{\prime},
\end{aligned}
$$

where g is defined on $(1, \infty)$ by $g(t)=\omega_{p}(1 / t)$. Since $g^{\prime}(t)>0$ for all $t>1$, we have $G^{\prime \prime}(t)<0$ for all $t>1$, and Lemma 3.3 is proved.

We continue now with
Proof of Lemma 3.2. Suppose first that all ϕ_{n} are \mathcal{T}-simple functions, that is, for every n, there exists an m_{n} such that ϕ_{n} is constant on each $I \in \mathcal{T}_{\left(m_{n}\right)}$. As a consequence, ϕ_{n} is \mathcal{T}-good in the sense of [M], for every n. If we look at the proof of Lemma 9 in [M, pp. 324-326] we see that in inequalities (4.20), (4.22), (4.23), (4.24) there we should have equality in the limit. So as a result we must have

$$
\frac{1}{\left(\beta+1-\beta \rho_{X}^{n}\right)^{p-1}}-\frac{(p-1) \beta \rho_{X}^{n}}{(\beta+1)^{p}} \rightarrow \frac{1}{(\beta+1)^{p-1}} \quad \text { for } \beta=\omega_{p}\left(f^{p} / F\right)-1,
$$

where $\rho_{X}^{n}=a_{X}^{n} / \mu(X)=a_{X}^{n}$ with $a_{X}^{n}=\mu\left(\left\{\mathcal{M}_{\mathcal{T}} \phi_{n}=f\right\}\right)$. But this can happen only if $a_{X}^{n} \rightarrow 0$. So the proof is complete in the case of \mathcal{T}-simple functions.

As for the general case, it is not difficult to see that if $\left(\phi_{n}\right)_{n}$ is an extremal sequence of measurable functions, then we can construct a sequence $\left(\psi_{n}\right)_{n}$ of \mathcal{T}-simple functions such that $\int_{X} \psi_{n} d \mu=f, \int_{X} \psi_{n}^{p} d \mu \leq F$ and

$$
\lim _{n} \int_{X} \psi_{n}^{p} d \mu=F, \quad \lim _{n} \int_{X}\left(\mathcal{M}_{\mathcal{T}} \psi_{n}\right)^{p} d \mu=F \omega_{p}\left(f^{p} / F\right)^{p} .
$$

Additionally, we can arrange everything in such a way that $\left\{\mathcal{M}_{\mathcal{T}} \phi_{n}=f\right\} \subseteq$ $\left\{\mathcal{M}_{\mathcal{T}} \psi_{n}=f\right\}$.

The same arguments used for $\left(\psi_{n}\right)_{n}$ give $\lim _{n} \mu\left(\left\{\mathcal{M}_{\mathcal{T}} \psi_{n}=f\right\}\right)=0$. So $\lim _{n} \mu\left(\left\{\mathcal{M}_{\mathcal{T}} \phi_{n}=f\right\}\right)=0$ and Lemma 3.2 is proved.

We now give some applications of the above.
First we prove
Corollary 3.4. If $0<f^{p}<F$ then there do not exist extremal functions for the Bellman function $T_{p}(f, F)$ described in 1.4.

Proof. Let ϕ be an extremal function for (1.4). Applying Theorem 3.1 we see that

$$
\frac{1}{\mu(I)} \int_{I} \phi d \mu=f \quad \text { and } \quad \frac{1}{\mu(I)} \int_{I} \phi^{p} d \mu=F
$$

for every dyadic subcube I of Q.
As we can see in [G], inequality (1.2) implies that the base of dyadic sets of the tree \mathcal{T} differentiates $L^{1}(Q)$. That is,

$$
\phi(x)=f \quad \text { a.e. } \quad \text { and } \quad \phi^{p}(x)=F \quad \text { a.e. }
$$

This gives $f^{p}=F$, which is a contradiction.
Corollary 3.5. $\operatorname{Let} T_{p}(f, F)$ be described by (1.4). Then if $\left(\phi_{n}\right)_{n},\left(\psi_{n}\right)_{n}$ are extremal sequences for this function, we have $\phi_{n}-\psi_{n} \xrightarrow{w\left(L^{p}\right)} 0$ as $n \rightarrow \infty$.

Proof. Of course

$$
\lim _{n} \frac{1}{|I|} \int_{I} \phi_{n}(u) d u=\lim _{n} \frac{1}{|I|} \int_{I} \psi_{n}(u) d u=f
$$

So $\lim _{n} \int_{Q}\left(\phi_{n}-\psi_{n}\right) \xi_{I}(u) d u=0$, for every dyadic subcube $I \subseteq Q$.
Since linear combinations of the characteristic functions of the dyadic subcubes of Q are dense in $L^{q}(Q)$ we should have $\lim _{n} \int_{Q}\left(\phi_{n}-\psi_{n}\right) h=0$ for every $h \in L^{q}(Q)$, where $q=p /(p-1)$, that is, $\phi_{n}-\psi_{n} \xrightarrow{w\left(L^{p}\right)} 0$ as $n \rightarrow \infty$.

Acknowledgements. This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), Aristia code: MAXBELLMAN 2760, Research code: 70/3/11913.

REFERENCES

[B1] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: C.I.M.E. Lectures Varenna (Como, 1985), Lecture Notes in Math. 1206, Springer, 1986, 61-108.
[B2] D. L. Burkholder, Explorations in martingale theory and its applications, in: École d'Été de Probabilités de Saint-Flour XIX-1983, Lecture Notes in Math. 1464, Springer, 1991, 1-66.
[G] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland, 1981.
[M] A. D. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities, Adv. Math. 192 (2005), 310-340.
[MN1] A. D. Melas and E. N. Nikolidakis, Dyadic-like maximal operators on integrable functions and Bellman functions related to Kolmogorov's inequality, Trans. Amer. Math. Soc. 362 (2010), 1571-1597.
[MN2] A. D. Melas and E. N. Nikolidakis, On weak type inequalities for dyadic maximal functions, J. Math. Anal. Appl. 348 (2008), 404-410.
[N1] E. N. Nikolidakis, Optimal weak type estimates for dyadic-like maximal operators, Ann. Acad. Sci. Fenn. Math. 38 (2013), 229-244.
[N2] E. N. Nikolidakis, Sharp weak type inequalities for the dyadic maximal operator, J. Fourier Anal. Appl. 19 (2013), 115-139.
[N3] E. N. Nikolidakis, Extremal sequences for the Bellman function of the dyadic maximal operator, arXiv:1301.2898.
[NM] E. N. Nikolidakis and A. D. Melas, A sharp integral rearrangement inequality for the dyadic maximal operator and applications, arXiv:1305.2521
[SSV] L. Slavin, A. Stokolos and V. Vasyunin, Monge-Ampère equations and Bellman functions, C. R. Math. Acad. Sci. Paris 346 (2008), 585-588.
[W] G. Wang, Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion, Proc. Amer. Math. Soc. 112 (1991), 579-586.

Eleftherios N. Nikolidakis
Department of Mathematics
National and Kapodistrian University of Athens
Panepistimioypolis 15784, Athens, Greece
E-mail: lefteris@math.uoc.gr

Received 19 August 2013;
revised 9 October 2013

[^0]: 2010 Mathematics Subject Classification: Primary 42B25; Secondary 42B99.
 Key words and phrases: Bellman, dyadic, extremal, maximal.

