VOL. 133

2013

NO. 2

PROPERTIES OF EXTREMAL SEQUENCES FOR THE BELLMAN FUNCTION OF THE DYADIC MAXIMAL OPERATOR

 $_{\rm BY}$

ELEFTHERIOS N. NIKOLIDAKIS (Athens)

Abstract. We prove a necessary condition that has every extremal sequence for the Bellman function of the dyadic maximal operator. This implies the weak- L^p uniqueness for such a sequence.

1. Introduction. The dyadic maximal operator on \mathbb{R}^k is defined by

(1.1)
$$\mathcal{M}_d \phi(x) = \sup \left\{ \frac{1}{|Q|} \int_Q |\phi(u)| \, du : x \in Q, \, Q \subseteq \mathbb{R}^k \text{ is a dyadic cube} \right\}$$

for every $\phi \in L^1_{\text{loc}}(\mathbb{R}^k)$, where $|\cdot|$ is the Lebesgue measure on \mathbb{R}^k and the dyadic cubes are those formed by the grids $2^{-N}\mathbb{Z}^k$, $N = 0, 1, 2, \ldots$

It is well known that \mathcal{M}_d satisfies the following weak type (1, 1) inequality:

(1.2)
$$|\{x \in \mathbb{R}^k : \mathcal{M}_d \phi(x) \ge \lambda\}| \le \frac{1}{\lambda} \int_{\{\mathcal{M}_d \phi \ge \lambda\}} |\phi(u)| \, du$$

for every $\phi \in L^1(\mathbb{R}^k)$ and $\lambda > 0$.

From (1.2) it is easy to deduce the L^p -inequality

(1.3)
$$\|\mathcal{M}_d\phi\|_p \le \frac{p}{p-1} \|\phi\|_p.$$

It is easy to see that (1.2) is best possible, and (1.3) is also best possible as can be seen in [W]. (See also [B1] and [B2] for general martingales.)

A way of studying the dyadic maximal operator is to find certain refinements of the above inequalities. Concerning (1.2), refinements have been studied in [MN2], [N1] and [N2], while for (1.3) the Bellman function of two variables for p > 1 has been introduced in the following way:

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25; Secondary 42B99. Key words and phrases: Bellman, dyadic, extremal, maximal.

(1.4)
$$T_p(f,F) = \sup\left\{\frac{1}{|Q|} \int_Q (\mathcal{M}_d \phi)^p : \phi \ge 0, \ \frac{1}{|Q|} \int_Q \phi(u) \, du = f, \\ \frac{1}{|Q|} \int_Q \phi^p(u) \, du = F\right\},$$

where Q is a fixed dyadic cube on \mathbb{R}^k and $0 < f^p \leq F$.

The function given in (1.4) has been explicitly computed. Actually, this is done in a much more general setting of a non-atomic probability measure space (X, μ) where the dyadic sets are now given in a family \mathcal{T} of sets, called a tree, which satisfies conditions similar to those that are satisfied by the dyadic cubes on $[0, 1]^k$.

The associated dyadic maximal operator $\mathcal{M}_{\mathcal{T}}$ is defined by

(1.5)
$$\mathcal{M}_{\mathcal{T}}\phi(x) = \sup\left\{\frac{1}{\mu(I)}\int_{I} |\phi| \, d\mu : x \in I \in \mathcal{T}\right\},$$

where $\phi \in L^1(X, \mu)$.

The Bellman function (for a given p > 1) of two variables associated to $\mathcal{M}_{\mathcal{T}}$ is given by

(1.6)
$$S_p(f,F) = \sup\left\{\int_X (\mathcal{M}_T\phi)^p d\mu : \phi \ge 0, \int_X \phi d\mu = f, \int_X \phi^p d\mu = F\right\},$$

where $0 < f^p \le F$.

In [M], (1.6) has been found to be $S_p(f,F) = F\omega_p(f^p/F)^p$ where ω_p : [0,1] \rightarrow [1, p/(p-1)] is the inverse function H_p^{-1} of H_p defined on [1, p/(p-1)] by $H_p(z) = -(p-1)z^p + pz^{p-1}$.

As a result the Bellman function is independent of the measure space (X, μ) and the underlying tree \mathcal{T} . Other approaches to the computation of (1.4) can be seen in [NM] and [SSV].

In this paper we study those sequences of functions, $(\phi_n)_n$, that are extremal for the Bellman function (1.6). That is, $\phi_n : (X, \mu) \to \mathbb{R}^+$, $n = 1, 2, \ldots$, satisfy $\int_X \phi_n d\mu = f$, $\int_X \phi_n^p d\mu = F$ and

(1.7)
$$\lim_{n} \int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p d\mu = F \omega_p (f^p / F)^p.$$

In Section 3 we prove the following

THEOREM 1.1. Let $\phi_n : (X, \mu) \to \mathbb{R}^+$ be as above. Then for every $I \in \mathcal{T}$,

(1.8)
$$\lim_{n} \frac{1}{\mu(I)} \int_{I} \phi_n \, d\mu = f \quad and \quad \lim_{n} \frac{1}{\mu(I)} \int_{I} \phi_n^p \, d\mu = F.$$

Additionally,

$$\lim_{n} \frac{1}{\mu(I)} \int_{I} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F \omega_p (f^p / F)^p$$

for every $I \in \mathcal{T}$.

An immediate consequence is that extremal functions do not exist for the Bellman function. Another corollary is the weak- L^p uniqueness of such a sequence in all interesting cases. In other words if $(\phi_n)_n$, $(\psi_n)_n$ are extremal sequences for (1.4), then $\lim_n \int_Q (\phi_n - \psi_n) h \, d\mu = 0$, for every $h \in L^p(Q)$, where 1/p + 1/q = 1. We also need to mention that related results in connection with Kolmogorov's inequality have been treated in [MN1], while in [N3] a characterization of such extremal sequences is given. More precisely it is proved there that they actually behave approximately like eigenfunctions of the dyadic maximal operator for a specific eigenvalue.

2. Extremal sequences. Let (X, μ) be a non-atomic probability measure space.

DEFINITION 2.1. A set \mathcal{T} of measurable subsets of X will be called a *tree* if the following are satisfied:

- (i) $X \in \mathcal{T}$ and $\mu(I) > 0$ for every $I \in \mathcal{T}$.
- (ii) To every $I \in \mathcal{T}$ there corresponds a finite or countable subset C(I) of \mathcal{T} containing at least two elements such that
 - (a) the elements of C(I) are disjoint subsets of I, (b) $I = \bigcup C(I)$.

(iii)
$$\mathcal{T} = \bigcup_{m \ge 0} \mathcal{T}_{(m)}$$
, where $\mathcal{T}_{(0)} = \{X\}$ and

$$\mathcal{T}_{(m+1)} = \bigcup_{I \in \mathcal{T}_{(m)}} C(I).$$

(iv)
$$\lim_{m \to \infty} \sup_{I \in \mathcal{T}_{(m)}} \mu(I) = 0.$$

DEFINITION 2.2. Given a tree \mathcal{T} we define the associated maximal operator by

$$\mathcal{M}_{\mathcal{T}}\phi(x) = \sup\left\{\frac{1}{\mu(I)}\int\limits_{I} |\phi| \, d\mu : x \in I \in \mathcal{T}\right\}$$

for every $\phi \in L^1(X, \mu)$.

From [M] we obtain

THEOREM 2.3.

$$\sup\left\{\int_{X} (\mathcal{M}_{\mathcal{T}}\phi)^{p} d\mu : \phi \ge 0, \int \phi d\mu = f, \int_{X} \phi^{p} d\mu = F\right\} = F\omega_{p}(f^{p}/F)^{p}$$

for $0 < f^p \leq F$.

Finally, we give

DEFINITION 2.4. Let $(\phi_n)_n$ be a sequence of non-negative measurable functions defined on X and $0 < f^p \leq F$, p > 1. Then $(\phi_n)_n$ is called (p, f, F) extremal, or simply extremal, if

$$\int_{X} \phi_n \, d\mu = f, \quad \int_{X} \phi_n^p \, d\mu = F \quad \text{for every } n = 1, 2, \dots,$$
$$\lim_n \int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F \omega_p (f^p/F)^p.$$

3. Main theorem

THEOREM 3.1. Let $(\phi_n)_n$ be an extremal sequence. Then for every $I \in \mathcal{T}$:

(i)
$$\lim_{n} \frac{1}{\mu(I)} \int_{I} \phi_{n} d\mu = f,$$

(ii)
$$\lim_{n} \frac{1}{\mu(I)} \int_{I} \phi_{n}^{p} d\mu = F,$$

(iii)
$$\lim_{n} \frac{1}{\mu(I)} \int_{I} (\mathcal{M}_{\mathcal{T}} \phi_{n})^{p} d\mu = F \omega_{p} (f^{p}/F)^{p}.$$

Proof. We recall that $\mathcal{T}_{(0)} = \{X\}$ and $\mathcal{T} = \bigcup_{m \ge 0} \mathcal{T}_{(m)}$. We prove the assertion for $I \in \mathcal{T}_{(1)}$. Then inductively it holds for every $I \in \mathcal{T}_{(m)}$, $m \ge 1$.

Suppose then that $\mathcal{T}_{(1)} = \{I_k : k = 1, 2, ...\}$ and $I = I_1$. We now set

$$f_{n,1} = \frac{1}{\mu(I_1)} \int_{I_1} \phi_n \, d\mu, \quad f_{n,2} = \frac{1}{\mu(X \setminus I_1)} \int_{X \setminus I_1} \phi_n \, d\mu,$$

(3.1) $F_{n,1} = \frac{1}{\mu(I_1)} \int_{I_1} \phi_n^p \, d\mu, \quad F_{n,2} = \frac{1}{\mu(X \setminus I_1)} \int_{X \setminus I_1} \phi_n^p \, d\mu \quad \text{for } n = 1, 2, \dots.$

The above sequences are obviously bounded, so passing to a subsequence we may suppose that

$$\lim_{n} f_{n,i} = f_i \quad \text{and} \quad \lim_{n} F_{n,i} = F_i \quad \text{for } i = 1, 2.$$

For any $J \in \mathcal{T}$ define

$$\mathcal{M}_J \phi(t) = \sup \left\{ \frac{1}{\mu(K)} \int_K |\phi| \, d\mu : t \in K \in \mathcal{T}_J \right\} \quad \text{for } t \in J,$$

where \mathcal{T}_J is defined by

$$\mathcal{T}_J = \{ K \in \mathcal{T} : K \subseteq J \}.$$

Consider the measure space $(J, \mu(\cdot)/\mu(J))$, the tree \mathcal{T}_J and the associated maximal operator \mathcal{M}_J . Then using Theorem 2.3, we have

(3.2)
$$\frac{1}{\mu(J)} \int_{J} (\mathcal{M}_{J}\phi)^{p} d\mu \leq \frac{1}{\mu(J)} \int_{J} \phi^{p} d\mu \cdot \omega_{p} \left(\frac{\left(\frac{1}{\mu(J)} \int_{J} \phi \, d\mu\right)^{p}}{\frac{1}{\mu(J)} \int_{J} \phi^{p} \, d\mu} \right)^{p}$$

for every $\phi \in L^p(J)$, where $\omega_p : [0,1] \to [1, p/(p-1)]$ is H_p^{-1} , with

$$H_p(z) = -(p-1)z^p + pz^{p-1}, \quad z \in [1, p/(p-1)]$$

Since H_p is decreasing we conclude from (3.2) that

$$H_p\left(\left[\frac{\int_J (\mathcal{M}_J \phi)^p \, d\mu}{\int_J \phi^p \, d\mu}\right]^{1/p}\right) \ge \frac{1}{\mu(J)^{p-1}} \, \frac{(\int_J \phi \, d\mu)^p}{\int_J \phi^p \, d\mu},$$

which gives

(3.3)
$$-(p-1) \int_{J} (\mathcal{M}_{J}\phi)^{p} d\mu + p \Big(\int_{J} \phi^{p} d\mu \Big)^{1/p} \cdot \Big(\int_{J} (\mathcal{M}_{J}\phi)^{p} d\mu \Big)^{1-1/p}$$
$$= \frac{1}{\mu(J)^{p-1}} \Big(\int_{J} \phi d\mu \Big)^{p} + \delta_{\phi,J}$$

for some constant $\delta_{\phi,J} \ge 0$ depending on ϕ and J.

For $\phi = \phi_n$ and $J = I_i$, $i = 1, 2, \dots$, from (3.3) we obtain

(3.4)
$$-(p-1) \int_{I_i} (\mathcal{M}_{I_i} \phi_n)^p d\mu + p \Big(\int_{I_i} \phi_n^p d\mu \Big)^{1/p} \cdot \Big(\int_{I_i} (\mathcal{M}_{I_i} \phi_n)^p d\mu \Big)^{1-1/p}$$
$$= \frac{1}{\mu(I_i)^{p-1}} \Big(\int_{I_i} \phi_n d\mu \Big)^p + \delta_{n,i} \quad \text{for } n, i = 1, 2, \dots.$$

Summing (3.4) over $i \ge 2$ we obtain

$$(3.5) - (p-1) \sum_{i=2}^{\infty} \int_{I_i} (\mathcal{M}_{I_i} \phi_n)^p \, d\mu + p \sum_{i=2}^{\infty} \left(\int_{I_i} \phi_n^p \, d\mu \right)^{1/p} \left(\int_{I_i} (\mathcal{M}_{I_i} \phi_n)^p \, d\mu \right)^{1-1/p} \\ = \sum_{i=2}^{\infty} \frac{1}{\mu(I_i)^{p-1}} \left(\int_{I_i} \phi_n \, d\mu \right)^p + \sum_{i=2}^{\infty} \delta_{n,i}.$$

In view now of Hölder's inequality

$$\sum_{i} a_i b_i \le \left(\sum_{i} a_i^p\right)^{1/p} \left(\sum_{i} b_i^q\right)^{1/q},$$

for $a_i, b_i \ge 0$ and q = p/(p-1), (3.5) gives

(3.6)
$$-(p-1)A_2(n) + p\Big(\int_{X \smallsetminus I_1} \phi_n^p \, d\mu\Big)^{1/p} \cdot [A_2(n)]^{1-1/p} \\ \ge \sum_{i=2}^{\infty} \frac{1}{\mu(I_i)^{p-1}} \Big(\int_{I_i} \phi_n \, d\mu\Big)^p + \sum_{i=2}^{\infty} \delta_{n,i},$$

where

(3.7)
$$A_2(n) = \sum_{i=2}^{\infty} \int_{I_i} (\mathcal{M}_{I_i} \phi_n)^p \, d\mu.$$

(In the last inequality we used the fact that $X \setminus I_1 = \bigcup_{i=2}^{\infty} I_i$.)

We now use now Hölder's inequality in the following form:

$$\frac{(\lambda_1 + \dots + \lambda_m)^p}{(\sigma_1 + \dots + \sigma_m)^{p-1}} \le \frac{\lambda_1^p}{\sigma_1^{p-1}} + \dots + \frac{\lambda_m^p}{\sigma_m^{p-1}},$$

where $\sigma_i, \lambda_i \geq 0$ for all $i = 1, 2, \ldots$, and obtain

(3.8)
$$\sum_{i=2}^{\infty} \frac{1}{\mu(I_i)^{p-1}} \left(\int_{I_i} \phi_n \, d\mu \right)^p \ge \frac{1}{\mu(X \smallsetminus I_1)^{p-1}} \left(\int_{X \smallsetminus I_1} \phi_n \, d\mu \right)^p = \mu(X \smallsetminus I_1) f_{n,2}.$$

We also set

(3.9)
$$A_3(n) = \int_{X \smallsetminus I_1} (\mathcal{M}_T \phi_n)^p \, d\mu \quad \text{for } n = 1, 2, \dots$$

Then by definition of \mathcal{M}_{I_i} we have

(3.10)
$$A_3(n) \ge A_2(n).$$

From the above we then deduce that

(3.11)
$$-(p-1)A_2(n) + p\mu(X \smallsetminus I_1)^{1/p} (F_{n,2})^{1/p} [A_3(n)]^{1-1/p}$$
$$= \mu(X \smallsetminus I_1) (f_{n,2})^p + \delta_n^{(1)},$$

where $\delta_n^{(1)} \ge \sum_{i=2}^{\infty} \delta_{n,i}$.

By passing to a subsequence we may suppose that $\lim_n A_3(n) = A_3$.

We will now use the following lemma, the proof of which will be given at the end of this section.

LEMMA 3.2. If $(\phi_n)_n$ is extremal then

$$\lim_{n} \mu(\{\mathcal{M}_{\mathcal{T}}\phi_n = f\}) = 0.$$

From this lemma and the definitions (3.7) and (3.9) we easily see that $\lim_{n \to \infty} A_2(n) = \lim_{n \to \infty} A_3(n) = A_3$, in view of the fact that $I_i \in \mathcal{T}_{(1)}$ for $i = 2, 3, \ldots$. Then from (3.11) we conclude that

(3.12)
-(p-1)
$$\int (\mathcal{M}_{\mathcal{T}}\phi_n)^p d\mu + p\mu (X \smallsetminus I_1)^{1/p} (F_{n,2})^{1/p} \left(\int (\mathcal{M}_{\mathcal{T}}\phi_n)^p d\mu\right)^{1-1/p}$$

$$(p-1) \int_{X < I_1} (J + p\mu) (H + p\mu) (H + (I_1) - (I_{n,2}) - (J + (I_1) - (I_{n,2})) - (I_{n,2}) -$$

where $\delta_n'' \ge \delta_n'$ for every $n \in \mathbb{N}$.

In the same way we obtain

(3.13)

$$-(p-1)\int_{I_1} (\mathcal{M}_{\mathcal{T}}\phi_n)^p d\mu + p\mu(I_1)^{1/p} (F_{n,1})^{1/p} \left(\int_{I_1} (\mathcal{M}_{\mathcal{T}}\phi_n)^p d\mu\right)^{1-1/p} = \mu(I_1)(f_{n,1})^p + \varepsilon_n''$$

where ε_n'' is such that $\varepsilon_n'' \ge \delta_{n,1}$ for every $n \in \mathbb{N}$.

Summing now (3.12) and (3.13) and using Hölder's inequality in both previously mentioned forms we obtain

(3.14)
$$-(p-1) \int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p d\mu + p F^{1/p} \Big(\int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p d\mu \Big)^{1-1/p} \\ \geq \mu (I_1) (f_{n,1})^p + \mu (X \smallsetminus I_1) (f_{n,2})^p + \delta_n'' + \varepsilon_n'' \geq f^p + \delta_n'' + \varepsilon_n''$$

which gives

(3.15)
$$-(p-1) \int_{X} (\mathcal{M}_{\mathcal{T}} \phi_1)^p d\mu + p F^{1/p} \Big(\int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p d\mu \Big)^{1-1/p} = f^p + \vartheta_n,$$

where $\vartheta_n \ge \delta_n'' + \varepsilon_n''$, $n = 1, 2, \dots$

The hypothesis on (ϕ_n) is now that

$$\lim_{n} \int_{X} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F \omega_p (f^p / F)^p.$$

This gives $\vartheta_n \to 0$ in (3.15) and so

$$\delta_n'' \to 0, \quad \varepsilon_n'' \to 0.$$

As a consequence,

$$\mu(I_1)(f_1)^p + \mu(X \setminus I_1)(f_2)^p = f^p$$

because of equality in (3.14) as $n \to \infty$.

Since now $\mu(I_1)f_1 + \mu(X \setminus I_1)f_2 = f$ and $t \mapsto t^p$ is strictly convex on $(0, \infty)$ we have $f_1 = f_2 = f$.

Additionally $\delta_n'' \to 0$, so because of (3.12) and the fact that $f_2 = f$ we immediately see that

(3.16)
$$\lim_{n} \frac{1}{\mu(X \smallsetminus I_1)} \int_{X \smallsetminus I_1} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F_2 \omega_p (f^p / F_2)^p.$$

Similarly

(3.17)
$$\lim_{n} \frac{1}{\mu(I_1)} \int_{I_1} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F_1 \omega_p (f^p / F_1)^p.$$

Since $(\phi_n)_n$ is extremal, the last two equations give

(3.18)
$$\mu(I_1) \cdot F_1 \omega_p (f^p/F_1)^p + \mu(X \smallsetminus I_1) \cdot F_2 \omega_p (f^p/F_2)^p = F \omega (f^p/F).$$

But as we shall prove in Lemma 3.3 below, the function $t \mapsto t\omega_p (f^p/t)^p$, $t \in (f^p, \infty)$ is strictly concave. So since $\mu(I_1)F_1 + \mu(X \setminus I_1)F_2 = F$ we see from (3.18) that $F_1 = F_2 = F$. Then since (3.17) holds we conclude that

$$\lim_{n} \frac{1}{\mu(I)} \int_{I} (\mathcal{M}_{\mathcal{T}} \phi_n)^p \, d\mu = F \omega_p (f^p / F)^p,$$

and Theorem 3.1 is proved. \blacksquare

We now prove the following

LEMMA 3.3. Let $G: (1,\infty) \to \mathbb{R}^+$ be defined by $G(t) = t\omega_p(1/t)^p$. Then G is strictly concave.

Proof. It is known from [M] that ω_p satisfies

$$\frac{d}{dx}[\omega_p(x)]^p = -\frac{1}{p-1} \frac{\omega_p(x)}{\omega_p(x) - 1}, \quad x \in [0, 1].$$

So we can easily see that

$$G'(t) = \omega_p (1/t)^p + \frac{1}{p-1} \frac{1}{t} \frac{\omega_p (1/t)}{\omega_p (1/t) - 1},$$
$$G''(t) = \frac{1}{p-1} \cdot \frac{1}{t} \left(\frac{g(t)}{g(t) - 1} \right)',$$

where g is defined on $(1, \infty)$ by $g(t) = \omega_p(1/t)$. Since g'(t) > 0 for all t > 1, we have G''(t) < 0 for all t > 1, and Lemma 3.3 is proved.

We continue now with

Proof of Lemma 3.2. Suppose first that all ϕ_n are \mathcal{T} -simple functions, that is, for every n, there exists an m_n such that ϕ_n is constant on each $I \in \mathcal{T}_{(m_n)}$. As a consequence, ϕ_n is \mathcal{T} -good in the sense of [M], for every n. If we look at the proof of Lemma 9 in [M, pp. 324–326] we see that in inequalities (4.20), (4.22), (4.23), (4.24) there we should have equality in the limit. So as a result we must have

$$\frac{1}{(\beta+1-\beta\rho_X^n)^{p-1}} - \frac{(p-1)\beta\rho_X^n}{(\beta+1)^p} \to \frac{1}{(\beta+1)^{p-1}} \quad \text{for } \beta = \omega_p(f^p/F) - 1,$$

where $\rho_X^n = a_X^n / \mu(X) = a_X^n$ with $a_X^n = \mu(\{\mathcal{M}_T \phi_n = f\})$. But this can happen only if $a_X^n \to 0$. So the proof is complete in the case of \mathcal{T} -simple functions.

As for the general case, it is not difficult to see that if $(\phi_n)_n$ is an extremal sequence of measurable functions, then we can construct a sequence $(\psi_n)_n$ of \mathcal{T} -simple functions such that $\int_X \psi_n d\mu = f$, $\int_X \psi_n^p d\mu \leq F$ and

$$\lim_{n} \int_{X} \psi_{n}^{p} d\mu = F, \quad \lim_{n} \int_{X} (\mathcal{M}_{\mathcal{T}} \psi_{n})^{p} d\mu = F \omega_{p} (f^{p}/F)^{p}.$$

Additionally, we can arrange everything in such a way that $\{\mathcal{M}_{\mathcal{T}}\phi_n = f\} \subseteq \{\mathcal{M}_{\mathcal{T}}\psi_n = f\}.$

The same arguments used for $(\psi_n)_n$ give $\lim_n \mu(\{\mathcal{M}_T\psi_n = f\}) = 0$. So $\lim_n \mu(\{\mathcal{M}_T\phi_n = f\}) = 0$ and Lemma 3.2 is proved.

We now give some applications of the above.

First we prove

COROLLARY 3.4. If $0 < f^p < F$ then there do not exist extremal functions for the Bellman function $T_p(f, F)$ described in (1.4).

Proof. Let ϕ be an extremal function for (1.4). Applying Theorem 3.1 we see that

$$rac{1}{\mu(I)} \int\limits_{I} \phi \, d\mu = f \quad ext{and} \quad rac{1}{\mu(I)} \int\limits_{I} \phi^p \, d\mu = F,$$

for every dyadic subcube I of Q.

As we can see in [G], inequality (1.2) implies that the base of dyadic sets of the tree \mathcal{T} differentiates $L^1(Q)$. That is,

 $\phi(x) = f$ a.e. and $\phi^p(x) = F$ a.e.

This gives $f^p = F$, which is a contradiction.

COROLLARY 3.5. Let $T_p(f, F)$ be described by (1.4). Then if $(\phi_n)_n, (\psi_n)_n$ are extremal sequences for this function, we have $\phi_n - \psi_n \xrightarrow{w(L^p)} 0$ as $n \to \infty$.

Proof. Of course

$$\lim_{n} \frac{1}{|I|} \int_{I} \phi_{n}(u) \, du = \lim_{n} \frac{1}{|I|} \int_{I} \psi_{n}(u) \, du = f.$$

So $\lim_{n \to Q} (\phi_n - \psi_n) \xi_I(u) \, du = 0$, for every dyadic subcube $I \subseteq Q$.

Since linear combinations of the characteristic functions of the dyadic subcubes of Q are dense in $L^q(Q)$ we should have $\lim_n \int_Q (\phi_n - \psi_n) h = 0$ for every $h \in L^q(Q)$, where q = p/(p-1), that is, $\phi_n - \psi_n \xrightarrow{w(L^p)} 0$ as $n \to \infty$.

Acknowledgements. This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF), Aristia code: MAXBELLMAN 2760, Research code: 70/3/11913.

REFERENCES

[B1] D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in: C.I.M.E. Lectures Varenna (Como, 1985), Lecture Notes in Math. 1206, Springer, 1986, 61–108.

282	E. N. NIKOLIDAKIS
[B2]	D. L. Burkholder, <i>Explorations in martingale theory and its applications</i> , in: École d'Été de Probabilités de Saint-Flour XIX-1983, Lecture Notes in Math. 1464, Springer 1001, 1, 66
$[\mathbf{C}]$	M do Cuzmán Real Variable Methode in Fourier Analysis North Holland 1081
[0] [M]	A. D. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities. Adv. Math. 192 (2005), 310–340.
[MN1]	A. D. Melas and E. N. Nikolidakis, <i>Dyadic-like maximal operators on integrable functions and Bellman functions related to Kolmogorov's inequality</i> , Trans. Amer. Math. Soc. 362 (2010), 1571–1597.
[MN2]	A. D. Melas and E. N. Nikolidakis, On weak type inequalities for dyadic maximal functions, J. Math. Anal. Appl. 348 (2008), 404–410.
[N1]	E. N. Nikolidakis, Optimal weak type estimates for dyadic-like maximal operators, Ann. Acad. Sci. Fenn. Math. 38 (2013), 229–244.
[N2]	E. N. Nikolidakis, Sharp weak type inequalities for the dyadic maximal operator, J. Fourier Anal. Appl. 19 (2013), 115–139.
[N3]	E. N. Nikolidakis, Extremal sequences for the Bellman function of the dyadic maximal operator, arXiv:1301.2898.
[NM]	E. N. Nikolidakis and A. D. Melas, A sharp integral rearrangement inequality for the duadic maximal operator and applications, arXiv:1305.2521.
[SSV]	L. Slavin, A. Stokolos and V. Vasyunin, Monge–Ampère equations and Bellman functions, C. R. Math. Acad. Sci. Paris 346 (2008), 585–588.
[W]	G. Wang, Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion, Proc. Amer. Math. Soc. 112 (1991), 579–586.
Elefthe Depart Nationa	rios N. Nikolidakis ment of Mathematics al and Kapodistrian University of Athens
Panepistimioypolis 15784, Athens, Greece E-mail: lefteris@math.ucc.gr	
E man, fororis emaon, about	

Received 19 August 2013; revised 9 October 2013

(6007)