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THE NATURAL LINEAR OPERATORS T* ~ TT(")

BY

J. KUREK (Lublin) and W. M. MIKULSKI (Krakéw)

Abstract. For natural numbers n > 3 and r a complete description of all natural
bilinear operators T X a4, 700 s OO T() ig presented. Next for natural numbers r
and n > 3 a full classification of all natural linear operators T\*M P 7T is obtained.

Introduction. Let n and r be natural numbers. Given an n-dimensional
manifold M we have the r-tangent vector bundle T"WM = (J"(M,R)g)*
over M. Every embedding ¢ : M — N of n-manifolds induces a vector
bundle map Ty : T M — T N covering ¢ such that (T(T)ap(w),j;(m)w
= (w,j5(y0 ) for w € T&M, ji v € Ji, (N, R)o, x € M. The corre-
spondence T") : M f,, — FM is a bundle functor from the category M f,
of n-manifolds and embeddings into the category FM of fibered manifolds
and fibered maps [3].

In [4], we studied the problem of how a 1-form w € £2'(M) on an n-
manifold M can induce a 1-form A(w) € QYT M) on T") M. This prob-
lem was reflected in the concept of natural linear operators Tf}vt o T*7(r)
in the sense of Kolafr, Michor and Slovak [3]. We presented a complete de-
scription of such operators.

In the present note we start with the problem of how a 1-form w €
2'(M) and a map f : M — R on an n-manifold M can induce a map
B(w, f) : T")M — R. This problem concerns natural bilinear operators
B :T* x py, TO0 ~ TOOTT) We prove that the vector space of all such
operators is O-dimensional if n > 3 and r > 3, 3-dimensional if n > 3 and
r = 2, and 2-dimensional if n > 3 and r = 1. We construct explicit bases of
the vector spaces in question.

Next, using this classification we investigate how a 1-form w on an n-
manifold M can induce a vector field C'(w) on T(") M. This problem relates
to natural linear operators C : T"fM s TT™). We deduce that the vector

n

space of all such operators is O-dimensional if n > 3 and r > 3, 2-dimensional
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if n >3 and r = 2, and 1-dimensional if n > 3 and r = 1, and we construct
the corresponding bases.

Natural operators lifting functions, vector fields and 1-forms to some
natural bundles were used practically in all papers in which problem of
prolongations of geometric structures was studied (e.g. [6]). That is why such
natural operators have been classified by many authors (see e.g. [1]-[5]).

The usual coordinates on R” are denoted by z',...,z". On T"R"™ we
have the induced coordinates (z¢, X%),
(1) 2'(0) =xp,  X*(0) = (6, ]y, ((z — 0)")),

i=1,....n, ac(NU{OD", 1<|a|<r, OETSIR, 2p = (2, ..., al) € R™.
All manifolds are assumed to be finite-dimensional and smooth, i.e. of
class C*°. Maps between manifolds are assumed to be smooth.

1. The natural bilinear operators T* x vy, T ~ 7O T For
r = 1 we have the following examples of natural bilinear operators T x a4y,
7(0,0) o 7(0,0) (1)

EXAMPLE 1. For a l1-form w € 2'(M) and a map f : M — R on an
n-manifold M we define BY (w, f) : TWM — R by

B(l)(w,f)n:<wzo,77>f(l‘o), nETa%)MgTzoMa Zo GM-
Then B : T* x pqp, T ~s TONTA) ig a natural bilinear operator.

EXAMPLE 2. For w € 2'(M) and f : M — R we define BV (w, f) :
TOM — R by

BY(w, f)y = (wrosm)(dao fr0), 1 € TL)M, xo € M.
Then B! : T* X, TOO) s TONDTD) i 4 natural bilinear operator.

Now, let r = 2. In [4], we proved that there exists a linear (first order)
natural operator D : Ty, ~ T2* such that D(fdg) = j2 ((f + f(z0))(g —
g(zop))) for f,g: M — R, x9 € M, M € obj(Mf,). Using D we now present
three examples of natural bilinear operators T X ay, 700 s TO0T )

EXAMPLE 3. For w € 2'(M) and f : M — R we define B® (w, f) :
TAM — R by

B®(w, f)y = (D(W)ag, m) f(w0), 1€ TZM = (T3 M)*, 2o € M.
Then B® : T* X M f 700 s TO0T?) ig 4 natural bilinear operator.

EXAMPLE 4. For w € 2'(M) and f : M — R we define B¥(w, f) :
TAM — R by

Bm(wvf)’r] = <D(w)$ovn><]zo(f - f(xO))an>a ne ngi)Mv To € M.

Then B2 : T* X Mfn 700 s 7O0T?) ig a natural bilinear operator.
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EXAMPLE 5. For w € QY(M) and f : M — R we define B? (w, f) :

TAM — R by
B<2>(w7f)77 = <D((f - f(xo))w)x0777>7 ne ng?M7 To € M.

Then B? : T* X Mfn 700 s TO0T®) ig a natural bilinear operator.

In the induced coordinates on T("R" we have

B(Q)(:L'Qd:(}l, 23) = XL10,0) 33 4 94248 x(1,0,0..,0)

Bl (z2dz!, %) = X (10) x(0,0,1,0,0:1,0) 4 9.2 x(1,0,..,0) X (0,0,1,0,...,0)

B<2>(932d931, 23) = :CQX(I,O,I,O,...,O)7

B(l)(:v2d:v1, %) = 223 X (1:0::::,0)

Bl (z2dz!, %) = 22X (1,0,...,0) x(0,0,1,0,...,0)
Hence, the operators B(Y) and B! are linearly independent, and so are B(?),
B and B®@.

The first main result of this note is the following theorem.

THEOREM 1. Let n > 3 be a natural number.

(i) Every natural bilinear operator T* x pqys, T ~s TOOTM) G5 g
linear combination of B and B with real coefficients.
(ii) Every natural bilinear operator T* x apqs, T s TOOTR) s ¢
linear combination of B, B2 and B? with real coefficients.
(iii) If r > 3 then every natural bilinear operator T* x py, T(00) ~»
TONT) s zero.

The proof of Theorem 1 will occupy Sections 3—6.

2. The natural linear operators T* ~» TT("). Every natural linear
operator C' : T"fM P TT) of vertical type induces a natural bilinear

operator B(©) . T* X M, T7(0.9) s TOOT() defined by
B (w, f)n = <];0(f — f(=0)),pry 0 C(W)n>

for w e QYM), f: M — R, neTM, 29 € M, M € obj(MFf,), where
pro : VI M =2 T M x5, T M — T M is the projection on the second
factor. Of course, B(“)(-,1) = 0.

Conversely, any natural bilinear operator B : T x p s, T(%0) ~s 70 T()
such that B(-,1) = 0 induces a natural linear operator C'Z) : Ty, ~
TT™) of vertical type such that (pr, o 07(73)7j§0(f — f(z0))) = B(w, f), for
we QY (M), f: M —R, neT¥ M, zg € M, M € obj(Mf,).

LEMMA 1. The above correspondences are mutually inverse.

Proof. Clear. m
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So we have the following examples of natural linear operators T\jw o
TT) of vertical type.

ExampLE 6. C(1) = 0(B™) . Tivg, ~ TT®M is a natural linear operator
of vertical type. Here B! is defined in Example 2.

ExampLE 7. O = ¢(B®) . le\/lfn ~» TT®) ig a natural linear operator
of vertical type. Here B2 is defined in Example 4.

EXAMPLE 8. O = ¢(B®) . Ty, ~ TT® is a natural linear opera-
tor of vertical type. Here B{? is defined in Example 5.
The second main result is

THEOREM 2. Let n > 3 and r be natural numbers. Then every natural
linear operator T"fon ~ TT™) s of vertical type. Namely:

(i) Every natural linear operator T"fon ~TTW 4s proportional to CV.

ii) Every natural linear operator T} ~ TT®) is q linear combination
|Mfn

of CB and C? with real coefficients.
(iii) If r > 3 then every natural linear operator T\j\/lfn ~ TT™) s zero.

The proof of Theorem 2 will occupy Section 7.

3. A reducibility lemma. We begin the proof of Theorem 1 with the
following lemma.

LEmMA 2 (Reducibility Lemma). Let n > 3. Let B : T* x pqy, T(%0) ~
TOOTT) be g natural bilinear operator such that B(x?dx',z3) = 0. Then
B =0.

Proof. Let f,g:R™ — R and y € R™. There is a dense subset of (71, 72)
in R? such that ., ,, = (2!, f + 2%, g+ w2, 2%, .. 2") : R* - R" is a
local diffeomorphism near y. Using the naturality of B with respect to ¢, -,
and the assumption we get

(2) B((f+71:1:2)d:z:1,g—i—7'2963)77 =0

for every n € T, ;T)R”. The left hand side of (2) is a polynomial in 71, 79 for
fixed 7. Considering the constant term we derive that B(fdz!,g), = 0.

So, B(fdz',g) = 0 for every f,g: R™ — R. Now, by the invariance of B
under coordinate permutations we get B(fdx?, g) = 0. Then the bilinearity
and naturality of B imply that B =0. =

4. A form of B(z%dz',z?). By the reducibility lemma every natural
bilinear operator B : T™* Xy, T7(0.0) s TONT) is uniquely determined
by B(z2dz', 2?).
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LEMMA 3. Let B : T Xy, 700 s TOOTE) be o natural bilinear
operator with n > 3.
(i) If r =1 then
T ,x 223 4 x
(3) B(2?dx', ) = py X po X ¢ X 2 g3
+ s X X% 4y X X2 X6
for some p1, ..., us € R, where e; is the ith standard unit vector in R™.
(ii) If r =2 then
(4) B(z?dx', 2) = 11 X 2?2 + po X X203 + pg X1 X %322
+ N4X€1X€2X€3 + ,U,5X(1’0’1’0"”’0)152
g X BL0s0) 8 1 x(10.1,0,.0.,0) yrea
+ /LgX(Ll’O’m’O)XeS + MQX(O,I,I,O,...,O)X61
for some p1, ..., ug € R.
(iii) If r > 3 then
(5) B(z?dat, 2%) = uy X 2?2® 4+ pp X X223
+ s X X2 4y X X2 X%
4 s XL0L0:00 2 1y x(1,10,..,0) 3
+ N7X(1,0,1,0,...,0)X62 + MsX(l,l,O,...,O)Xe;g
§ g X OL10.0) yer 4oy (1110,...,0)

for some p1, ..., u10 € R.

Proof. We can write B(z2dz', z%) = f(2%, X®), where f is of class C*°.
By the invariance of B with respect to translations of the first coordinate
we deduce that f is independent of 2. By the invariance of B with respect
to the homotheties (t‘z%) : R™ — R™ for (t') € R" we get the homogeneity
condition

23 f(2h, X ) = f(tla' 12 X @),
This type of homogeneity implies that f is a linear combination of monomials
in ' and X having the homogeneity type t't?t3. These facts yield the
result. m

5. Transformation rules. We have a local diffeomorphism
1 2
(6) GZ <$1—§($1)2,$7$3,...7$n>
defined in some neighbourhood U of 0 € R™. This diffeomorphism pre-

serves the germ of (z2dxz!,23) at 0. Therefore we will study the invariance
of B(z%dx', x®) with respect to G. We need some transformation rules.
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LEMMA 3. Let n > 3 and G and U be as above.
(i) If r =1 then

(7) X oTWGE = (1 -zt Xxe,
2
(8) XeoTWG= % xeq L xe
(1—2x1)2 1—a! ’
(9) X oTW(E = X8
over U.
(ii) If r =2 then
(10) XoTWG = (1-2h)Xxe - %X(Q’O ----- o
(11) X oT®q T xe gL xe
[e) =
(1—at)? 1—z!
+ a? X (2:0.,0) 4 1 X (1,1,0,...,0)
(1—21)3 (1—x1)2 ’
(12) X oT®qG = X,

(1,1,0,..,0) o (2) (¥ — z? (2,0,...,0) (1,1,0,...,0)
(13) X ™G T 1X + X ,

— T
(14) X(I,O,I,O,..‘,O) o T(Z)G — (1 o LEI)X(I’O’LO’“"O),

(15) X (0,1,1,0,..0) o () 7 — 33_2X(1,o,1,o,...,o) I ;X(O,Ll,o,...,O)
1—at 1—a!
over U.
(iii) If r =3 then
1
(16) XoT®G = (12X — 5 X 2000
(17) X oT®G = X,
2
(18) X (1,1,0,..0) o p@®) g — . X (20,50) 4 x(1,1,0,...,0)
1-2z
1 a2 1 1
- X(?’yovvo) - X(QJ.,O,,O)
+2(1—a:2)2 toT ’
(19) X(170717O7"'70) O T(S)G — (1 [— xl)X(17071707"'70) p— lX(270?170""?0)
2 )

2
(20)  XxWLL0-0) o ()G = x (1,11,0,1:.0) 4 x_l X (2,1,0,...,0)
11—z

over U.

Proof. This is an extension of Lemma 4.1 in [4].
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For example, we prove (7). Let xg = (z,...,25) € U and © € T;;)R".
Comparing the respective jet coordinates (by computing derivatives) we
obtain j; (G' — G'(x0)) = (1 — x3)ji, (¢! — x). Therefore

(TWG(O), e (ay) (2" — G (20)))
= (0,44, (G = G'(20)))
=(1 = 29)(0, Ja, (a" — x0))
= (1—2)X*(0) = (1 - 2")X*)(O).

The proofs of the other formulas are similar. m

X oTWG(0) =

6. Proof of Theorem 1. Consider a natural bilinear operator B :
T* X pmy, 7O v TOOTE) > 3. We know that it is sufficient to study
B(x?dzt, 23). The form of B(x?dz, x?) is given in Lemma 3.

(i) The local diffeomorphism G preserves (z?dz', 2%) on U. Thus it pre-
serves B(z?dzl,z3) over U. Hence it preserves the right hand side of (3).
The transformation rules (7)—(9) yield

X223 4+ e X X203 4 s X X2 4 py X X2 X

2 1
= X922 +,u2(1—x1)X61<x7X61+ Xe"’)x?’

(1 —al)? 1 -2t
2
1—zh)xe xes——
1 z?
1-— Xl —— X« Xe2 ) Xxes
+ 4 ) ((1—3:1)2 + 1—x1 )
over U. Thus
2 2
pa(X°)? 27+ g (X)) —— X =0

1—a! 1-—

So, pe = pg = 0 in (3). Consequently, the vector space of all bilinear nat-
ural operators T* x pqf, T(O0) s TOOTM) is at most 2-dimensional. On
the other hand, the operators B and B! are linearly independent. This

proves (i).

(ii) We have the natural inclusion i : T — T2 which is dual to the
jet projection J2(-,R)g — J(-,R)g. So, by pull-back we have the bilinear
natural operator i* B : T* x pq7, T ~s TOOTW Hence py = g = 0 in
(4) by (i).

In this case the local diffeomorphism G preserves the right hand side of
(4) with pe = pg = 0, and the transformation rules (10)—(15) yield
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i X 22 4 g X X302 u5X(1’0’1’0""’0)x2 I MGX(l,l,O,...,O)xZ’;
_|_ M7X(1707170ﬁ"'70)X52 + MSX(17170a'~'70)X63 + HQX(07171707“'?0)X61

2
fd Hl (1 _ $1)X81 _ lX(Q,O,...,O) X xB
2 1 — o1
22
tps (1= ahyxer = 2 x 00 ) xes 2
2 1 — 2t
2

+ ps (1 — 21 X (10:10,0) _ L
1—2z!

+,U6<1 _2 X (20,20 4 x(110,... )>x3

2
+ pr(1 = ) X000 (796 X

Xxe2
(1—a21)2 1—21

(1—a1)3 (1—a1)2

4 1g <1 — X(2 0,...,0) + X(l,l,o,...,o))Xe?,

+ 5“72 X(2.0..0) 4 1 X(l,l,o,...,0)>

x2 1
+ 1o X(l 0,1,0,....0) . x(0,1,1,0,...,0)
1 -2t 1—=x

1
X ((1 — ml)Xel -3 X(2,07...,0))_

Analysing the coeﬂicients of X0.1,1,0,.,0) x(2,0,-.0) iy the above equality
we get 0 = po(— )1 —. 50, pg = 0. Then c0n51der1ng the coeflicients of

X 1,0.1,0,..,0) X (2,0,--.0) e obtain 0 = W7 gy x1)2 So, u7 = 0. Comparing
2
the coefficients of X200 X we deduce 0 = pug - ml + ,u3( 1)1zx1
Consequently, j3 = 2us. Finally looking at X (2:9::9) we have 0 = g 17361 +
2.3
p(—3) Er, e pn = 2p6.
Therefore the vector space of all natural bilinear operators T Xy,

700 s 70972 i at most 3-dimensional. On the other hand, the oper-
ators B, B and B¢? are linearly independent, which proves (ii).

(iil) First, let » = 3. We have the natural inclusion i : T?) — T®) which
is dual to the jet projection J3(-,R)g — J2(-,R)o. So, by pull-back we have
the natural bilinear operator i*B : T™ X rqf, 700 s 70T Hence in
(5) we have pip = pg = pg = pur = 0, pz = 2pug and py = 2p6 by (ii).
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Now the local diffeomorphism G preserves the right hand side of (5) with
the above conditions, and the transformation rules (16)—(20) yield

Xﬁlx $ + M3X€1X63x2 + +M5X(1’0’1’O""’0)CE2
+M6X(1’1’0""’0)~’U3 +M8X(1,1,0,...,0)X63 +M10X(1’1’1’0""’0)

— (1 - 2h)xe - L X200 LA
! 2 1— a2l
1 2
1 _ Xe1 - X(2’0""’0) xes
+ ”3< v 2 1=z
+ us g!) X (1:0:1.0....0) _ lX(z,o,l,o,...,o) ?
2 1—2!

22
+H6<1 — X(20.,0) 4 x(1,1,0,...,0)

1 2 11
- —X(B,O,...,O) - X(Z,I,O ) 3
HPRTEE T v

+M8<1_2 X (2.0..,0) 4 x(1,1,0,...,0)

1 x? 1 1
i 7 (30,.,0 (2,1,0,...,0) \ ve
+2(1—x1)2X +21—x1X >X3
+/‘L10 X(17171707"'70) + X(27170 ) .
1-— xl

Analysing the coefficients of X050 in the above equality we get 0 =
2
MG%(I_“;T)QQU?’. So, pe=0. Then considering the coefficients of X (3:0:--:0) xes

we obtain 0 = Mg%%. So, ug = 0. Comparing the coefficients of
X 21,0.-:0) we deduce 0 = 1 1’”11 Consequently, w10 = 0. Finally, looking
at X 20:1.0-0) we have 0 = ps(— 1)1 —, i.e. pus = 0.

Therefore p; = ... = p19 =0, i.e. B=0.

Let now r > 4. We have the natural inclusion i : T®) — T() which is
dual to the jet projection J"(-,R)g — J3(-,R)g. So, by pull-back we have
the bilinear natural operator i*B : T* x aqz, T00 ~ TOODTG) Hence in
(6) we have p3 = ... = p19 = 0 by the case r = 3. Thus B=0. m

7. Proof of Theorem 2. Let C': T}, ~ TT) be a natural linear

operator, n > 3. It induces a natural bilinear operator BIC! : T* x \, fn
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T7(0.0) o TOOT() by
(21) B w, f)y = (Tr(C(w)y), dz f),

we QM), f: M =R, neT"M, e M, M € obj(Mf,). Here
7: T M — M is the bundle projection.

We first prove (iii). By Theorem 1, BI) = 0. Thus C is of vertical type.
Then by Section 2, C' induces the bilinear operator B(®) which is 0 in view
of Theorem 1. Hence C' = 0.

We now show (ii). Since BIC! is of order 1 with respect to f and BICI(-,1)
= 0, it follows that B} = aB{? for some a € R by Theorem 1. Then
B[C](le,xl)(]’g((ml)Q))* = a, where (j2z®)* € TéQ)R” is the basis dual to
jex®. Therefore

o C
(22) O(dl‘l,l‘l)(jz“xl)z))* = CL<—> +V
' 071/ G (ary2y)-

S
= \97 ) (j2((a1)2))-

for some vertical vector V € ‘/'(jg((m1)z))*T(2)R" and a; € R, where ()¢ is

the complete lifting of a vector field to T(2).

Consider the diffeomorphism ¢ = (2!, 2% + (21)3,23,... 2") : R* — R"™.
It preserves z!, dz! and (j2((z1)?))* because j3¢ = id. Thus it preserves
the left hand side of (22). On the other hand it preserves 9/0z! for i =
2,...,n, (j2((x1)?))* and V because jip = id, and sends 9/dx! to §/0z! +
3(21)%20/0x?. Therefore

o \¢ o \¢ o \¢
L7 (3 ((a1)2))> T2 (3 ((x1)2))> L (J2((z1)2))*

So, a = 0 because (((331)28/8x2)c)(]-3(($1)2))* # 0. Hence C is of vertical
type.

Now, by Lemma 1, C = C®) for some bilinear natural operator B :
T* x pmy, TOO) s TOOTR) with B(-,1) = 0. Applying Theorem 1 ends the
proof of (ii).

Finally, we prove (i). Since BI°l(-, 1) = 0, we have B¢l = ¢ B! for some
a € R by Theorem 1. Thus BI¢! (d$17ﬂjl)(jg((wl)2))* = a. Hence

) C n o C
(23) C(d$1,$1)(]1(m1))* = a<—1> +V+ZCLZ (—1>
’ 0%/ (i@ =\ i)
for some vertical vector V € V(jé(xl))*T(l)]R” and a; € R.
Consider the diffeomorphism ¢ = (z!, 2%+ (z1)%,23,...,2") : R® — R™.

It preserves x!, dz! and (j§(x!))* because jl¢ = id. Thus it preserves the
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left hand side of (23). On the other hand it preserves 9/dz for i = 2,...,n,
(54 (x1))* and V because ji¢ = id and sends 9/dz" into 8/dzt + 2210 /0.
Therefore

(o), =) vonl() )
a —1 =aQa —1 a X —2 .
9zt J (1 (a1))- 9z! / (j2 (1)) Oz (3 (x1)

So, a = 0 because ((x18/8$2)c)(j6(x1))* # 0. Hence C'is of vertical type.

Now, by Lemma 1, C = C®) for some bilinear natural operator B :
T xmy, TOO ~ TOOTO) with B(-,1) = 0, and it remains to apply
Theorem 1. =
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