COLLOQ UIUM MATHEMATICUM

A NOTE ON RARE MAXIMAL FUNCTIONS

BY
PAUL ALTON HAGELSTEIN (Princeton, NJ)

Abstract

A necessary and sufficient condition is given on the basis of a rare maximal function M_{l} such that $M_{l} f \in L^{1}([0,1])$ implies $f \in L \log L([0,1])$.

For a locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$, the Hardy-Littlewood maximal function $M_{\mathrm{HL}} f$ is defined by

$$
M_{\mathrm{HL}} f(x)=\sup _{x \in I} \frac{1}{|I|} \int_{I}|f(y)| d y
$$

where the supremum is taken over all bounded intervals I containing x.
In 1969, E. M. Stein proved in [2] that if f is supported on the unit interval $\mathbb{I}=[0,1]$, then $M_{\mathrm{HL}} f \in L^{1}(\mathbb{I})$ if and only if $f \in L \log L(\mathbb{I})$. The proof of this result is based on classical weak-type inequalities for M_{HL}, which in turn strongly depend on the covering properties associated to the set of intervals in \mathbb{R}.

In [1], K. Hare and A. Stokolos investigated whether or not Stein's result still holds when the Hardy-Littlewood maximal operator is replaced by a rare maximal operator, an operator similar to M_{HL} but where the supremum is taken only over a given subset of the set of intervals on \mathbb{R}. For the sake of specificity, we here define a rare maximal operator M_{l} as follows:

Definition 1. Let $l=\left\{l_{k}\right\}$, where the $l_{k} \leq 1, l_{k} \downarrow 0$, and let

$$
\mathcal{I}=\{\text { intervals } I \subset \mathbb{R}:|I| \in l\}
$$

We define the rare maximal function $M_{l} f$ by

$$
M_{l} f(x)=\sup _{I \in \mathcal{I}, x \in I} \frac{1}{|I|} \int_{I}|f(y)| d y
$$

In [1], Hare and Stokolos showed that there exists a sequence l and a locally integrable function f supported on \mathbb{I} such that $f \notin L \log L(\mathbb{I})$, but $M_{l} f \in L^{1}(\mathbb{I})$. Moreover, they found that if $\left\{m_{k}\right\} \subset \mathbb{N}$ is a strictly increasing
sequence satisfying

$$
\begin{equation*}
\sup _{k \in \mathbb{N}} \frac{m_{k}}{k}=\infty \tag{1}
\end{equation*}
$$

and $l=\left\{2^{-m_{k}}\right\}$, then there necessarily exists a locally integrable function f supported in \mathbb{I} such that $f \notin L \log L(\mathbb{I})$, but $\int_{0}^{1} M_{l} f<\infty$. Having found these results, Hare and Stokolos indicated the question whether or not the condition (1) above is sharp, i.e. if $l=\left\{2^{-m_{k}}\right\}$ and if there exists a locally integrable function f supported in \mathbb{I} such that $f \notin L \log L(\mathbb{I})$ but $\int_{0}^{1} M_{l} f<\infty$, must then $\sup _{k \in \mathbb{N}} m_{k} / k=\infty$?

In this paper we indicate the negative answer to the above question, as well as provide a necessary and sufficient condition on $\left\{m_{k}\right\}$ such that there exists $f \notin L \log L(\mathbb{I})$ such that $M_{l} f \in L^{1}(\mathbb{I})$.

Theorem 1. Let $l=\left\{2^{-m_{k}}\right\}$, where $\left\{m_{k}\right\}$ is an increasing sequence of nonnegative integers.
(i) Suppose that for any positive integer m, there exists $k \in \mathbb{N}$ such that none of the m_{j} lie in $A_{k, m}=\{k, k+1, \ldots, k+m\} \subset \mathbb{N}$. Then there exists a locally integrable function f supported in \mathbb{I} such that $f \notin L \log L(\mathbb{I})$, but $M_{l} f \in L^{1}(\mathbb{I})$.
(ii) Suppose there exists a positive integer m such that any set $A_{k, m}$ necessarily contains an element of the sequence $\left\{m_{k}\right\}$. Then if f is a locally integrable function such that $M_{l} f \in L^{1}(\mathbb{I})$, f must be in $L \log L(\mathbb{I})$.

Before we begin the proof, we remark that part (i) of the theorem provides a negative answer to the question of Hare and Stokolos, given the existence of increasing sequences of positive integers $\left\{m_{k}\right\}$ that satisfy the condition in (i) but also such that $\sup _{k \in \mathbb{N}} m_{k} / k<\infty$.

Proof. (i) We construct a function f such that $M_{l} f \in L^{1}(\mathbb{I})$ but $f \notin$ $L \log L(\mathbb{I})$ as follows:

Let $m \in \mathbb{N}$. There exists $k \in \mathbb{N}$ such that none of the m_{j} lie in $A_{k, m}$. Let E_{m} be the subset of \mathbb{I} defined by

$$
E_{m}=\left[0,2^{-k-m}\right] \cup\left[2^{-k}, 2^{-k}+2^{-k-m}\right] \cup \ldots \cup\left[1-2^{-k}, 1-2^{-k}+2^{-k-m}\right] .
$$

Let

$$
l_{m, 1}=\left\{2^{-m_{j}}: m_{j} \leq k\right\}, \quad l_{m, 2}=\left\{2^{-m_{j}}: m_{j}>k+m\right\}
$$

Note that for any locally integrable function g,

$$
M_{l} g(x) \leq M_{l_{m, 1}} g(x)+M_{l_{m, 2}} g(x)
$$

Now, $M_{l_{m, 1}} \chi_{E_{m}}(x) \leq 2 \cdot 2^{-m}$ pointwise, and

$$
M_{l_{m, 2}} \chi_{E_{m}}(x) \leq \chi_{E_{m}}(x)+\chi_{E_{m}}\left(x-2^{-k-m}\right)+\chi_{E_{m}}\left(x+2^{-k-m}\right)
$$

$$
\int_{\mathbb{I}} M_{l_{m, 1}} \chi_{E_{m}} \leq 2 \cdot 2^{-m}, \quad \int_{\mathbb{I}} M_{l_{m, 2}} \chi_{E_{m}} \leq 3 \cdot\left|E_{m}\right|=3 \cdot 2^{-m} .
$$

Therefore

$$
\int_{\mathbb{I}} M_{l} \chi_{E_{m}} \leq 5 \cdot 2^{-m}
$$

Note that by direct computation one sees that $\left\|\chi_{E_{m}}\right\|_{L \log L(\mathbb{I})} \sim m \cdot 2^{-m}$, as $\left\|\chi_{E_{m}}\right\|_{L \log L(\mathbb{I})} \sim\left\|M_{\mathrm{HLL}} \chi_{E_{m}}\right\|_{L^{1}(\mathbb{I})}$ by Stein's $L \log L$ result [2].

Let now

$$
f=\sum_{j=1}^{\infty} 2^{-j} 2^{2^{2 j}} \chi_{E_{2^{2 j}}} .
$$

Clearly

$$
\begin{aligned}
\|f\|_{L \log L(\mathbb{I})} & \geq \lim _{j \rightarrow \infty} 2^{-j} 2^{2^{2 j}}\left\|\chi_{E_{2} 2 j}\right\|_{L \log L(\mathbb{I})}=\lim _{j \rightarrow \infty} 2^{-j} \cdot 2^{2^{2 j}} \cdot 2^{2 j} \cdot 2^{-2^{2 j}} \\
& =\lim _{j \rightarrow \infty} 2^{j}=\infty .
\end{aligned}
$$

However,

$$
\int_{\mathbb{I}} M_{l} f \leq \sum_{j=1}^{\infty} 2^{-j} 2^{2^{2 j}} \int_{\mathbb{I}} M_{l} \chi_{E_{2^{2 j}}} \leq 5 \sum_{j=1}^{\infty} 2^{-j} 2^{2^{2 j}} 2^{-2^{2 j}}=5 \sum_{j=1}^{\infty} 2^{-j}=5 .
$$

So $M_{l} f \in L^{1}(\mathbb{I})$, but $\|f\|_{L \log L(\mathbb{I})}=\infty$.
(ii) We assume without loss of generality that $1 \in l$. Let I be an interval in \mathbb{I}. Let $j \in \mathbb{N}$ be such that $2^{-j} \leq|I| \leq 2^{-j+1}$.

If $j \leq m$, then $|\mathbb{I}| \leq 2^{m}|I|$. If $j>m$, then the sequence

$$
\{j-m, j-m+1, \ldots, j-1, j\}
$$

contains an element of the sequence $\left\{m_{k}\right\}$. These two cases imply that there exists an interval I^{\prime} such that $\left|I^{\prime}\right| \in l, I \subset I^{\prime}$, and $\left|I^{\prime}\right| \leq 2^{m+2}|I|$. So

$$
M_{\mathrm{HL}} f \leq 2^{m+2} M_{l} f
$$

Hence, if $M_{l} f \in L^{1}(\mathbb{I})$, then $M_{\mathrm{HL}} f \in L^{1}(\mathbb{I})$, and thus $f \in L \log L(\mathbb{I})$.

REFERENCES

[1] K. Hare and A. Stokolos, On weak type inequalities for rare maximal functions, Colloq. Math. 83 (2000), 173-182.
[2] E. M. Stein, Note on the class L $\log L$, Studia Math. 32 (1969), 305-310.

Department of Mathematics
Princeton University
Princeton, NJ 08540, U.S.A.
E-mail: phagelst@math.princeton.edu

