# COLLOQUIUM MATHEMATICUM 

## COHEN-MACAULAYNESS OF <br> MULTIPLICATION RINGS AND MODULES

ву<br>R. NAGHIPOUR (Tabriz), H. ZAKERI (Tehran)<br>and N. ZAMANI (Tehran)


#### Abstract

Let $R$ be a commutative multiplication ring and let $N$ be a non-zero finitely generated multiplication $R$-module. We characterize certain prime submodules of $N$. Also, we show that $N$ is Cohen-Macaulay whenever $R$ is Noetherian.


Introduction. Throughout this paper, all rings considered will be commutative and will have non-zero identity elements. Such a ring will be denoted by $R$ and a typical ideal of $R$ will be denoted by $\mathfrak{a}$. There is a lot of current interest in the theory of multiplication rings and modules. Multiplication rings were introduced by W. Krull in 1926 as a generalization of Dedekind domains, and the modern concept of a multiplication module is due to Barnard. This concept has been studied in [1], [2], [3], [10] and has led to some interesting results. Let $N$ be an $R$-module. Then $N$ is said to be a multiplication module if every submodule of $N$ is of the form $\mathfrak{a} N$ for some ideal $\mathfrak{a}$ of $R$. A multiplication ring is a ring in which every ideal is a multiplication module. A proper submodule $P$ of $N$ is said to be prime if whenever $r x \in P$ for $r \in R, x \in N$, then $x \in P$ or $r \in\left(P:_{R} N\right)$. (For more information about prime submodules, see [5], [11].)

Let $\mathfrak{p} \in \operatorname{Supp}(N)$. Then the $N$-height of $\mathfrak{p}$, denoted by ht ${ }_{N} \mathfrak{p}$, is defined to be the supremum of the lengths of chains of prime ideals of $\operatorname{Supp}(N)$ terminating with $\mathfrak{p}$. We shall say that an ideal $\mathfrak{a}$ of $R$ is $N$-proper if $N \neq \mathfrak{a} N$, and when this is the case and $R$ is Noetherian, we define the $N$-height of $\mathfrak{a}$ (written ht ${ }_{N} \mathfrak{a}$ ) to be

$$
\inf \left\{\operatorname{ht}_{N} \mathfrak{p}: \mathfrak{p} \in \operatorname{Supp}(N / \mathfrak{a} N)\right\} \quad\left(=\inf \left\{\operatorname{ht}_{N} \mathfrak{p}: \mathfrak{p} \in \operatorname{Ass}_{R}(N / \mathfrak{a} N)\right\}\right)
$$

Let $R$ be a Noetherian ring and let $N$ be a non-zero finitely generated $R$ module. For any $N$-proper ideal $\mathfrak{a}$ of $R$, denote by grade $(\mathfrak{a}, N)$ the maximum length of all $N$-sequences contained in $\mathfrak{a}$. Suppose for the moment that

[^0]$(R, \mathfrak{m})$ is local. Then it follows from Nakayama's Lemma that every proper ideal of $R$ is $N$-proper. We say that $N$ is a Cohen-Macaulay module if $\operatorname{grade}(\mathfrak{m}, N)=\mathrm{ht}_{N} \mathfrak{m}$.

More generally, $N$ is said to be a Cohen-Macaulay module if $N_{\mathfrak{m}}$ is a Cohen-Macaulay $R_{\mathfrak{m}}$-module in the above sense for each maximal ideal $\mathfrak{m} \in \operatorname{Supp}(N)$. We refer to [6] for the basic results about Cohen-Macaulay modules. For any $R$-module $L$, we denote by $\mathrm{mAss}_{R} L$ the set of minimal prime ideals of $\mathrm{Ass}_{R} L$.

This paper is divided into two sections. In the first section we characterize certain prime submodules of a multiplication module over a (commutative) multiplication ring. In the second section we relate the notions of Cohen-Macaulay modules and multiplication modules. Indeed, we show that whenever $R$ is a Noetherian multiplication ring and $N$ is a non-zero finitely generated multiplication module, then $N$ is Cohen-Macaulay.

Throughout, we shall assume that $R$ is a multiplication ring and $N$ is a multiplication $R$-module.

1. Prime submodules of a multiplication module. The main result of this section is Theorem 1.4 which provides a characterization of certain prime submodules of a multiplication module. The following lemma plays a key role in this section.

Lemma 1.1. Suppose that $\mathfrak{m}$ is a maximal ideal of $R$. Then, for each integer $n$, the factor module $\mathfrak{m}^{n} N / \mathfrak{m}^{n+1} N$ is simple.

Proof. Let $M$ be a submodule of $N$ such that $\mathfrak{m}^{n+1} N \varsubsetneqq M \subseteq \mathfrak{m}^{n} N$. We show that $M=\mathfrak{m}^{n} N$. In view of [1, Corollary 1.4], there exists an ideal $\mathfrak{a}$ of $R$ such that $M=\mathfrak{a m}^{n} N$. Because $\mathfrak{m}^{n+1} N \nsubseteq M$, we have $\mathfrak{a} \nsubseteq \mathfrak{m}$, and so $\mathfrak{a}+\mathfrak{m}=R$. Consequently, $\mathfrak{m}^{n} N=\mathfrak{m}^{n}(\mathfrak{a}+\mathfrak{m}) N=\mathfrak{m}^{n} \mathfrak{a} N+\mathfrak{m}^{n+1} N$. Therefore $M=\mathfrak{m}^{n} N$, as desired.

Proposition 1.2. Suppose that $\mathfrak{m}$ is a maximal ideal of $R$. Then, for every positive integer $n$, the factor module $\mathfrak{m} N / \mathfrak{m}^{n+1} N$ has a unique composition series

$$
\mathfrak{m} N / \mathfrak{m}^{n+1} N \subseteq \mathfrak{m}^{2} N / \mathfrak{m}^{n+1} N \subseteq \ldots \subseteq \mathfrak{m}^{n} N / \mathfrak{m}^{n+1} N
$$

Proof. Let $n$ be an arbitrary positive integer. We may assume that $\mathfrak{m}^{2} N \neq \mathfrak{m} N$. Then there are $a \in \mathfrak{m}$ and $y \in N$ such that ay $\notin \mathfrak{m}^{2} N$. By Lemma 1.1, $a N+\mathfrak{m}^{2} N=\mathfrak{m} N$. Now, it is easily seen that $a N+\mathfrak{m}^{n} N=\mathfrak{m} N$. Accordingly, for all positive integers $k$ with $k \leq n$, we have

$$
\begin{equation*}
a^{k} N+\mathfrak{m}^{n} N=\mathfrak{m}^{k} N \tag{*}
\end{equation*}
$$

Now, to prove the assertion, let $M$ be a submodule of $N$ such that $\mathfrak{m}^{n+1} N \subseteq M \subseteq \mathfrak{m} N$. Let $i$ be the greatest positive integer such that $M \subseteq$ $\mathfrak{m}^{i} N$. If $i=n$, the result follows from Lemma 1.1.

Hence let $i<n$. Suppose that $x \in M \backslash \mathfrak{m}^{i+1} N$. Then $x \notin \mathfrak{m}^{n+1} N$. From (*) we have $\mathfrak{m}^{i} N=a^{i} N+\mathfrak{m}^{n+1} N$, so there exist $y \in N$ and $z \in \mathfrak{m}^{n+1} N$ such that $x=a^{i} y+z$. Accordingly $a^{i} y \notin \mathfrak{m}^{i+1} N$, which implies that $a y \in$ $\mathfrak{m} N \backslash \mathfrak{m}^{2} N$. Consequently, by Lemma 1.1, $\mathfrak{m} N=\mathfrak{m}^{2} N+$ Ray. Also, we have $\mathfrak{m}^{i-1} N=\mathfrak{m}^{n} N+a^{i-1} N$. Therefore

$$
\begin{aligned}
\mathfrak{m}^{i} N & =\mathfrak{m}\left(\mathfrak{m}^{n} N+a^{i-1} N\right)=\mathfrak{m}^{n+1} N+a^{i-1} \mathfrak{m} N \\
& =\mathfrak{m}^{n+1} N+a^{i-1}\left(\mathfrak{m}^{2} N+\text { Ray }\right) \subseteq \mathfrak{m}^{i+1} N+R a^{i} y \subseteq \mathfrak{m}^{i} N .
\end{aligned}
$$

Hence, we have

$$
\mathfrak{m}^{i}\left(N / R\left(a^{i} y\right)\right)=\mathfrak{m}^{i+1}\left(N / R\left(a^{i} y\right)\right) .
$$

This implies that

$$
\mathfrak{m}^{i}\left(N / R\left(a^{i} y\right)\right)=\mathfrak{m}^{i+1}\left(N / R\left(a^{i} y\right)\right)=\ldots=\mathfrak{m}^{n+1}\left(N / R\left(a^{i} y\right)\right) .
$$

So

$$
\mathfrak{m}^{i} N=\mathfrak{m}^{n+1} N+R\left(a^{i} y\right)=\mathfrak{m}^{n+1} N+R x \subseteq M,
$$

and the result follows.
Proposition 1.3. Suppose that $\mathfrak{m}$ is a maximal ideal of $R$ such that $\mathfrak{m}^{n} N \neq \mathfrak{m}^{n+1} N$ for all $n \in \mathbb{N}$. Then $P:=\bigcap_{n \geq 1} \mathfrak{m}^{n} N$ is a prime submodule of $N$.

Proof. Suppose that, on the contrary, $r x \in P$ for some $x \in N \backslash P$ and $r \in R \backslash\left(P:_{R} N\right)$ (note that $\left.P \neq N\right)$. Then there is an integer $i \geq 0$ such that $x \in \mathfrak{m}^{i} N \backslash \mathfrak{m}^{i+1} N$. On the other hand, as $r \notin\left(P:_{R} N\right)=\bigcap_{n \geq 1}\left(\mathfrak{m}^{n} N:_{R} N\right)$, there exists an integer $j \geq 0$ such that $r \in\left(\mathfrak{m}^{j} N:_{R} N\right) \backslash\left(\mathfrak{m}^{j+1} N:_{R} N\right)$. So, there exists $y \in N$ such that $r y \in \mathfrak{m}^{j} N \backslash \mathfrak{m}^{j+1} N$. Hence by Lemma 1.1, $\mathfrak{m}^{i} N=\mathfrak{m}^{i+1} N+R x$ and $\mathfrak{m}^{j} N=\mathfrak{m}^{j+1} N+R(r y)$. So, we will have

$$
\begin{aligned}
\mathfrak{m}^{i+j} N & =\mathfrak{m}^{i}\left(\mathfrak{m}^{j+1} N+R(r y)\right)=\mathfrak{m}^{i+j+1} N+\mathfrak{m}^{i}(r y) \\
& \subseteq \mathfrak{m}^{i+j+1} N+r \mathfrak{m}^{i+1} N+R(r x) \subseteq \mathfrak{m}^{i+j+1} N+R(r x) .
\end{aligned}
$$

Using this, together with $\mathfrak{m}^{i+j} N \nsubseteq \mathfrak{m}^{i+j+1} N$, we deduce that $r x \notin \mathfrak{m}^{i+j+1} N$. Consequently, $r x \notin P$, which is a contradiction.

We are now ready to state and prove the main result of this section, which is a characterization of prime submodules of $N$.

Theorem 1.4. Suppose that $\mathfrak{m}$ is a maximal ideal of $R$. Consider the following conditions:
(i) $\mathfrak{m}^{n} N \neq \mathfrak{m}^{n+1} N$ for all $n \in \mathbb{N}$;
(ii) The submodule $\mathfrak{m} N$ is prime and it contains properly only one prime submodule of $N$.

Then (i) always implies (ii), and the converse holds whenever $N$ is finitely generated.

Proof. (i) $\Rightarrow$ (ii). It follows from [4, Lemma 1] that $\mathfrak{m} N$ is a prime submodule. Now let $Q$ be a prime submodule of $N$ which is contained properly in $\mathfrak{m} N$. Note that, by 1.3 , there exists such a prime submodule. Since $\mathfrak{m} N$ is a multiplication module, by [1, Corollary 1.4], there exists an ideal $\mathfrak{a}$ of $R$ such that $Q=\mathfrak{a m} N$. On the other hand, because $\mathfrak{m} \nsubseteq\left(Q:_{R} N\right)$ and $Q$ is a prime submodule, we have $\mathfrak{a} N \subseteq Q$ and so $Q \subseteq \mathfrak{m} Q$. Now it is easily seen that $Q \subseteq \bigcap_{n \geq 1} \mathfrak{m}^{n} N$.

Now, to complete the proof, we have to show that $Q=\bigcap_{n \geq 1} \mathfrak{m}^{n} N$. Since $R /\left(Q:_{R} N\right)$ is a multiplication domain, it is easy to see that every non-zero ideal of $R /\left(Q:_{R} N\right)$ is invertible. Hence $R /\left(Q:_{R} N\right)$ is a Dedekind domain and therefore, by [6, Theorems 8.10 and 11.6], it follows that $\bigcap_{n \geq 1}\left(\mathfrak{m} /\left(Q:_{R} N\right)\right)^{n}=0$. We can now use $[1$, Theorem 1.6 (i)] to deduce that $\bigcap_{n>1} \mathfrak{m}^{n}(N / Q)=0$. This completes the proof of (ii).

Finally, assume that $N$ is finitely generated and that (ii) holds. We show that (i) is true. Let $Q$ be the (unique) prime submodule of $N$ which is contained properly in $\mathfrak{m} N$. Suppose the contrary, i.e. there exists $n \in \mathbb{N}$ such that $\mathfrak{m}^{n} N=\mathfrak{m}^{n+1} N$. Then the ideal $\left(Q:_{R} N\right)$ is properly contained in $\mathfrak{m}$ and $\left(\mathfrak{m} /\left(Q:_{R} N\right)\right)^{n} N / Q=\left(\mathfrak{m} /\left(Q:_{R} N\right)\right)^{n+1} N / Q$. Now, Nakayama's Lemma (see [6, Theorem 2.2]) and the fact that $R /\left(Q:_{R} N\right)$ is a Noetherian domain provide a contradiction.

Corollary 1.5. Suppose that $\mathfrak{m}$ is a maximal ideal of $R$ such that $\mathfrak{m}^{n} N \neq \mathfrak{m}^{n+1} N$ for all $n \in \mathbb{N}$. Let $P$ be a prime submodule of $N$ such that $P \varsubsetneqq \mathfrak{m} N$. Then $P=\bigcap_{n \geq 1} \mathfrak{m}^{n} N$ and $P=\mathfrak{m} P$.

Proof. The only non-obvious point is to prove that $\mathfrak{m} P=P$. By $[1$, Corollary 1.4] there exists an ideal $\mathfrak{a}$ of $R$ such that $P=\mathfrak{a m} N$. Now, because $\mathfrak{m} \nsubseteq\left(P:_{R} N\right)$, it follows that $\mathfrak{a} N \subseteq P$. Consequently, $P \subseteq \mathfrak{m} P$, as desired.

Corollary 1.6. Suppose, in addition, that $R$ is Noetherian and $N$ is finitely generated. Let $\mathfrak{m}$ be a maximal ideal of $R$, and let $P$ be a prime submodule of $N$ with $P \nsubseteq \mathfrak{m} N$. Then $P=\bigcap_{n \geq 1} \mathfrak{m}^{n} N$ and $P=\mathfrak{m} P$.

Proof. By [7, Result 2], we have $\mathfrak{m}^{n} N \neq \mathfrak{m}^{n+1} N$ for all $n \in \mathbb{N}$. The claim therefore follows from Corollary 1.5.

Corollary 1.7. Let $(R, \mathfrak{m})$ be a Noetherian local ring and $N$ a finitely generated $R$-module with $\mathrm{ht}_{N} \mathfrak{m} \geq 1$. Then the zero submodule of $N$ is prime.

Proof. Since ht ${ }_{N} \mathfrak{m} \geq 1$, by Nakayama's Lemma, we have $\mathfrak{m}^{n} N \neq \mathfrak{m}^{n+1} N$ for all $n \in \mathbb{N}$. Now the result follows from Corollary 1.5 and Krull's Intersection Theorem.
2. Multiplication and Cohen-Macaulay modules. Before stating the next proposition which plays a key role in the proof of the main result of this section, we fix a notation, employed by P. Schenzel in [9] in the case $N=R$.

REmARK 2.1. Let $S$ be a multiplicatively closed subset of $R$. For a submodule $M$ of $N$, we use $S(M)$ to denote the submodule $\bigcup_{s \in S}\left(M:_{N} s\right)$. Note that, whenever $R$ is Noetherian ring and $N$ is finitely generated, the primary decomposition of $S(M)$ consists of the intersection of all primary components of $M$ whose associated prime ideals do not meet $S$. In other words

$$
\operatorname{Ass}_{R}(N / S(M))=\left\{\mathfrak{p} \in \operatorname{Ass}_{R}(N / M): \mathfrak{p} \cap S=\emptyset\right\}
$$

Proposition 2.2. Suppose $N$ is finitely generated and $M$ is a submodule of $N$. Then $S(M)=M$, where $S=R \backslash \bigcup\{\mathfrak{p} \in \operatorname{Spec} R: \mathfrak{p}$ is minimal over $\left.\operatorname{Ann}_{R}(N / M)\right\}$.

Proof. By passing to $N / M$ we may assume that $M=0$. We will show that $S(0)=0$. Suppose that $S(0) \neq 0$ and look for a contradiction. Let $x$ be a non-zero element of $S(0)$. Let $\mathfrak{m}$ be a minimal prime ideal over $\operatorname{Ann}_{R}(x)$. Then there exists a minimal prime ideal $\mathfrak{p}$ over $\operatorname{Ann}_{R}(N)$ such that $\mathfrak{p} \subseteq \mathfrak{m}$. Clearly $\mathfrak{p} \neq \mathfrak{m}$. As in the proof of Theorem 1.4, one can see that $R / \mathfrak{p}$ is a Dedekind (Noetherian) domain, and so $\operatorname{dim} R / \mathfrak{p} \leq 1$. Hence $\mathfrak{m}$ must be a maximal ideal. On the other hand, in view of [7, Result 2], $\mathfrak{p} N \neq \mathfrak{m} N$. Consequently, in view of [7, Lemma 3] and Corollary 1.5, we see that $\mathfrak{p} N=\bigcap_{n \geq 1} \mathfrak{m}^{n} N$ and $\mathfrak{p} N=\mathfrak{m p} N$. Moreover, because $\operatorname{Ann}_{R}(x) \subseteq \mathfrak{m}$, there is an ideal $\mathfrak{a}$ of $R$ such that $\operatorname{Ann}_{R}(x)=\mathfrak{a m}$.

First, we treat the case where $\mathfrak{a} \subseteq \operatorname{Ann}_{R}(x)$. Then $\operatorname{Ann}_{R}(x)=\mathfrak{m} \operatorname{Ann}_{R}(x)$. It follows that $\operatorname{Ann}_{R}(x) N \subseteq \bigcap_{n>1} \mathfrak{m}^{n} N$, and therefore $\operatorname{Ann}_{R}(x) N \subseteq \mathfrak{p} N$. Consequently, $\operatorname{Ann}_{R}(x) \subseteq \mathfrak{p}$ by [7, Result 2]; this contradicts the fact that $\mathfrak{m}$ is minimal over $\operatorname{Ann}_{R}(x)$.

Next, we treat the case in which $\mathfrak{a} \nsubseteq \operatorname{Ann}_{R}(x)$. Since $\mathfrak{p} N$ is a $\mathfrak{p}$-prime submodule of $N$ (see [7, Lemma 3]), it is easy to see that $\mathfrak{a} x \subseteq \mathfrak{p} N$. Consequently, there is an ideal $\mathfrak{b}$ of $R$ such that $\mathfrak{a} x=\mathfrak{b p} N$. Hence $\mathfrak{a} x=\mathfrak{b p} N=$ $\mathfrak{b p m} N=\mathfrak{m a x}=\operatorname{Ann}_{R}(x) x=0$, a contradiction. Therefore $S(0)=0$.

Corollary 2.3. Suppose that $R$ is Noetherian and $N$ is finitely generated. Then for any submodule $M$ of $N, \operatorname{Ass}_{R}(N / M)=\operatorname{mAss}_{R}(N / M)$.

Proof. This follows immediately from Proposition 2.2 and Remark 2.1.
We are now ready to state the main result of this section.
Theorem 2.4. Suppose that $R$ is Noetherian and $N$ is a non-zero finitely generated $R$-module. Then $N$ is a Cohen-Macaulay module. In particular, every multiplication Noetherian ring is Cohen-Macaulay.

Proof. This follows from Corollary 2.3 and [8, Proposition 2.2].
Acknowledgments. The authors are deeply grateful to the referee for his careful reading of the manuscript and helpful suggestions. Also, we would like to thank Dr. K. Divaani-Aazar for careful reading of the first draft.

## REFERENCES

[1] Z. Abd El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), 755-779.
[2] A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178.
[3] V. Erdogdu, Multiplication modules which are distributive, J. Pure Appl. Algebra 54 (1988), 209-213.
[4] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-3602.
[5] A. Marcelo and J. M. Masque, Prime submodules, the Desent invariant, and modules of finite length, J. Algebra 189 (1997), 273-293.
[6] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
[7] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), 37-39.
[8] R. Naghipour, Locally unmixed modules and ideal topologies, J. Algebra 236 (2001), 768-777.
[9] P. Schenzel, On the use of local cohomology in algebra and geometry, in: Six Lectures on Commutative Algebra (Bellaterra, 1996), Progr. Math. 166, Birkhäuser, 1998, 241-292.
[10] P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), 223-235.
[11] Y. Tiras, A. Harmanci and P. F. Smith, A characterization of prime submodules, J. Algebra 212 (1999), 743-752.
R. Naghipour

Department of Mathematics
Tabriz University
Tabriz, Iran
E-mail: naghipour@tabrizu.ac.ir
N. Zamani

School of Sciences
Tarbiat Modarres University
P.O. Box 14155-4838

Tehran, Iran
H. Zakeri

Institute of Mathematics
University for Teacher Education 599 Taleghani Avenue

Tehran 15614, Iran


[^0]:    2000 Mathematics Subject Classification: 13C14, 13E05.
    Research of R. Naghipour has been supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.

