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Abstract. Let R be a commutative multiplication ring and let N be a non-zero
finitely generated multiplication R-module. We characterize certain prime submodules
of N . Also, we show that N is Cohen–Macaulay whenever R is Noetherian.

Introduction. Throughout this paper, all rings considered will be com-
mutative and will have non-zero identity elements. Such a ring will be de-
noted by R and a typical ideal of R will be denoted by a. There is a lot of
current interest in the theory of multiplication rings and modules. Multi-
plication rings were introduced by W. Krull in 1926 as a generalization of
Dedekind domains, and the modern concept of a multiplication module is
due to Barnard. This concept has been studied in [1], [2], [3], [10] and has
led to some interesting results. Let N be an R-module. Then N is said to
be a multiplication module if every submodule of N is of the form aN for
some ideal a of R. A multiplication ring is a ring in which every ideal is a
multiplication module. A proper submodule P of N is said to be prime if
whenever rx ∈ P for r ∈ R, x ∈ N , then x ∈ P or r ∈ (P :R N). (For more
information about prime submodules, see [5], [11].)

Let p ∈ Supp(N). Then the N -height of p, denoted by htN p, is defined
to be the supremum of the lengths of chains of prime ideals of Supp(N)
terminating with p. We shall say that an ideal a of R is N -proper if N 6= aN ,
and when this is the case and R is Noetherian, we define the N -height of a
(written htN a) to be

inf{htN p : p ∈ Supp(N/aN)} (= inf{htN p : p ∈ AssR(N/aN)}).

Let R be a Noetherian ring and let N be a non-zero finitely generated R-
module. For any N -proper ideal a of R, denote by grade(a, N) the maximum
length of all N -sequences contained in a. Suppose for the moment that
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(R,m) is local. Then it follows from Nakayama’s Lemma that every proper
ideal of R is N -proper. We say that N is a Cohen–Macaulay module if
grade(m, N) = htN m.

More generally, N is said to be a Cohen–Macaulay module if Nm is a
Cohen–Macaulay Rm-module in the above sense for each maximal ideal
m ∈ Supp(N). We refer to [6] for the basic results about Cohen–Macaulay
modules. For any R-module L, we denote by mAssR L the set of minimal
prime ideals of AssR L.

This paper is divided into two sections. In the first section we charac-
terize certain prime submodules of a multiplication module over a (com-
mutative) multiplication ring. In the second section we relate the notions
of Cohen–Macaulay modules and multiplication modules. Indeed, we show
that whenever R is a Noetherian multiplication ring and N is a non-zero
finitely generated multiplication module, then N is Cohen–Macaulay.

Throughout, we shall assume that R is a multiplication ring and N is a
multiplication R-module.

1. Prime submodules of a multiplication module. The main result
of this section is Theorem 1.4 which provides a characterization of certain
prime submodules of a multiplication module. The following lemma plays a
key role in this section.

Lemma 1.1. Suppose that m is a maximal ideal of R. Then, for each
integer n, the factor module mnN/mn+1N is simple.

Proof. Let M be a submodule of N such that mn+1N  M ⊆ mnN . We
show that M = mnN . In view of [1, Corollary 1.4], there exists an ideal a
of R such that M = amnN . Because mn+1N  M , we have a 6⊆ m, and so
a+m = R. Consequently, mnN = mn(a+m)N = mnaN+mn+1N . Therefore
M = mnN , as desired.

Proposition 1.2. Suppose that m is a maximal ideal of R. Then, for
every positive integer n, the factor module mN/mn+1N has a unique com-
position series

mN/mn+1N ⊆ m2N/mn+1N ⊆ . . . ⊆ mnN/mn+1N.

Proof. Let n be an arbitrary positive integer. We may assume that
m2N 6= mN . Then there are a ∈ m and y ∈ N such that ay 6∈ m2N . By
Lemma 1.1, aN+m2N = mN . Now, it is easily seen that aN +mnN = mN .
Accordingly, for all positive integers k with k ≤ n, we have

(∗) akN + mnN = mkN.
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Now, to prove the assertion, let M be a submodule of N such that
mn+1N ⊆ M ⊆ mN . Let i be the greatest positive integer such that M ⊆
miN . If i = n, the result follows from Lemma 1.1.

Hence let i < n. Suppose that x ∈ M\mi+1N . Then x 6∈ mn+1N . From
(∗) we have miN = aiN + mn+1N , so there exist y ∈ N and z ∈ mn+1N
such that x = aiy + z. Accordingly aiy 6∈ mi+1N , which implies that ay ∈
mN\m2N . Consequently, by Lemma 1.1, mN = m2N +Ray. Also, we have
mi−1N = mnN + ai−1N . Therefore

miN = m(mnN + ai−1N) = mn+1N + ai−1mN

= mn+1N + ai−1(m2N +Ray) ⊆ mi+1N +Raiy ⊆ miN.

Hence, we have
mi(N/R(aiy)) = mi+1(N/R(aiy)).

This implies that

mi(N/R(aiy)) = mi+1(N/R(aiy)) = . . . = mn+1(N/R(aiy)).

So
miN = mn+1N +R(aiy) = mn+1N +Rx ⊆M,

and the result follows.

Proposition 1.3. Suppose that m is a maximal ideal of R such that
mnN 6= mn+1N for all n ∈ N. Then P :=

⋂
n≥1m

nN is a prime submodule
of N .

Proof. Suppose that, on the contrary, rx ∈ P for some x ∈ N\P and
r ∈ R\(P :R N) (note that P 6= N). Then there is an integer i ≥ 0 such that
x ∈ miN\mi+1N . On the other hand, as r 6∈ (P :R N) =

⋂
n≥1(mnN :R N),

there exists an integer j ≥ 0 such that r ∈ (mjN :R N)\(mj+1N :R N).
So, there exists y ∈ N such that ry ∈ mjN\mj+1N . Hence by Lemma 1.1,
miN = mi+1N +Rx and mjN = mj+1N +R(ry). So, we will have

mi+jN = mi(mj+1N +R(ry)) = mi+j+1N + mi(ry)

⊆ mi+j+1N + rmi+1N +R(rx) ⊆ mi+j+1N +R(rx).

Using this, together with mi+jN 6⊆ mi+j+1N , we deduce that rx 6∈ mi+j+1N .
Consequently, rx 6∈ P , which is a contradiction.

We are now ready to state and prove the main result of this section,
which is a characterization of prime submodules of N .

Theorem 1.4. Suppose that m is a maximal ideal of R. Consider the
following conditions:

(i) mnN 6= mn+1N for all n ∈ N;
(ii) The submodule mN is prime and it contains properly only one prime

submodule of N .
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Then (i) always implies (ii), and the converse holds whenever N is finitely
generated.

Proof. (i)⇒(ii). It follows from [4, Lemma 1] that mN is a prime sub-
module. Now let Q be a prime submodule of N which is contained properly
in mN . Note that, by 1.3, there exists such a prime submodule. Since mN
is a multiplication module, by [1, Corollary 1.4], there exists an ideal a of R
such that Q = amN . On the other hand, because m 6⊆ (Q :R N) and Q is a
prime submodule, we have aN ⊆ Q and so Q ⊆ mQ. Now it is easily seen
that Q ⊆ ⋂n≥1 mnN .

Now, to complete the proof, we have to show that Q =
⋂
n≥1 mnN .

Since R/(Q :R N) is a multiplication domain, it is easy to see that ev-
ery non-zero ideal of R/(Q :R N) is invertible. Hence R/(Q :R N) is a
Dedekind domain and therefore, by [6, Theorems 8.10 and 11.6], it follows
that

⋂
n≥1(m/(Q :R N))n = 0. We can now use [1, Theorem 1.6 (i)] to deduce

that
⋂
n≥1m

n(N/Q) = 0. This completes the proof of (ii).
Finally, assume that N is finitely generated and that (ii) holds. We show

that (i) is true. Let Q be the (unique) prime submodule of N which is
contained properly in mN . Suppose the contrary, i.e. there exists n ∈ N
such that mnN = mn+1N . Then the ideal (Q :R N) is properly contained
in m and (m/(Q :R N))nN/Q = (m/(Q :R N))n+1N/Q. Now, Nakayama’s
Lemma (see [6, Theorem 2.2]) and the fact that R/(Q :R N) is a Noetherian
domain provide a contradiction.

Corollary 1.5. Suppose that m is a maximal ideal of R such that
mnN 6= mn+1N for all n ∈ N. Let P be a prime submodule of N such that
P  mN . Then P =

⋂
n≥1m

nN and P = mP .

Proof. The only non-obvious point is to prove that mP = P . By [1,
Corollary 1.4] there exists an ideal a of R such that P = amN . Now, because
m 6⊆ (P :R N), it follows that aN ⊆ P . Consequently, P ⊆ mP , as desired.

Corollary 1.6. Suppose, in addition, that R is Noetherian and N is
finitely generated. Let m be a maximal ideal of R, and let P be a prime
submodule of N with P  mN . Then P =

⋂
n≥1m

nN and P = mP .

Proof. By [7, Result 2], we have mnN 6= mn+1N for all n ∈ N. The claim
therefore follows from Corollary 1.5.

Corollary 1.7. Let (R,m) be a Noetherian local ring and N a finitely
generated R-module with htN m ≥ 1. Then the zero submodule of N is prime.

Proof. Since htN m ≥ 1, by Nakayama’s Lemma, we have mnN 6= mn+1N
for all n ∈ N. Now the result follows from Corollary 1.5 and Krull’s Inter-
section Theorem.
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2. Multiplication and Cohen–Macaulay modules. Before stating
the next proposition which plays a key role in the proof of the main result
of this section, we fix a notation, employed by P. Schenzel in [9] in the case
N = R.

Remark 2.1. Let S be a multiplicatively closed subset of R. For a
submodule M of N , we use S(M) to denote the submodule

⋃
s∈S(M :N s).

Note that, whenever R is Noetherian ring and N is finitely generated, the
primary decomposition of S(M) consists of the intersection of all primary
components of M whose associated prime ideals do not meet S. In other
words

AssR(N/S(M)) = {p ∈ AssR(N/M) : p ∩ S = ∅}.
Proposition 2.2. Suppose N is finitely generated and M is a submod-

ule of N . Then S(M) = M, where S = R\⋃{p ∈ SpecR : p is minimal
over AnnR(N/M)}.

Proof. By passing to N/M we may assume that M = 0. We will show
that S(0) = 0. Suppose that S(0) 6= 0 and look for a contradiction. Let
x be a non-zero element of S(0). Let m be a minimal prime ideal over
AnnR(x). Then there exists a minimal prime ideal p over AnnR(N) such
that p ⊆ m. Clearly p 6= m. As in the proof of Theorem 1.4, one can see
that R/p is a Dedekind (Noetherian) domain, and so dimR/p ≤ 1. Hence
m must be a maximal ideal. On the other hand, in view of [7, Result 2],
pN 6= mN . Consequently, in view of [7, Lemma 3] and Corollary 1.5, we see
that pN =

⋂
n≥1m

nN and pN = mpN . Moreover, because AnnR(x) ⊆ m,
there is an ideal a of R such that AnnR(x) = am.

First, we treat the case where a⊆AnnR(x). Then AnnR(x)=m AnnR(x).
It follows that AnnR(x)N ⊆ ⋂n≥1m

nN , and therefore AnnR(x)N ⊆ pN .
Consequently, AnnR(x) ⊆ p by [7, Result 2]; this contradicts the fact that
m is minimal over AnnR(x).

Next, we treat the case in which a 6⊆ AnnR(x). Since pN is a p-prime
submodule of N (see [7, Lemma 3]), it is easy to see that ax ⊆ pN . Conse-
quently, there is an ideal b of R such that ax = bpN . Hence ax = bpN =
bpmN = max = AnnR(x)x = 0, a contradiction. Therefore S(0) = 0.

Corollary 2.3. Suppose that R is Noetherian and N is finitely gener-
ated. Then for any submodule M of N, AssR(N/M) = mAssR(N/M).

Proof. This follows immediately from Proposition 2.2 and Remark 2.1.

We are now ready to state the main result of this section.

Theorem 2.4. Suppose that R is Noetherian and N is a non-zero fini-
tely generated R-module. Then N is a Cohen–Macaulay module. In particu-
lar, every multiplication Noetherian ring is Cohen–Macaulay.
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Proof. This follows from Corollary 2.3 and [8, Proposition 2.2].
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