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Abstract. In his classical paper [Ann. of Math. 45 (1944)] P. R. Halmos shows that
weak mixing is generic in the measure preserving transformations. Later, in his book,
Lectures on Ergodic Theory, he gave a more streamlined proof of this fact based on a
fundamental lemma due to V. A. Rokhlin. For this reason the name of Rokhlin has been
attached to a variety of results, old and new, relating to the density of conjugacy classes in
topological groups. In this paper we will survey some of the new developments in this area.
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In the classical paper of P. R. Halmos [28] in which he shows that weak
mixing is generic in the measure preserving transformations he writes in the
opening paragraph:

The principal new and quite surprising fact used in the proof is
that for any almost nowhere periodic measure preserving trans-
formation T (and a fortiori for any mixing T ) the set of all con-
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jugates of T (i.e. the set of all STS−1) is everywhere dense. It is
this possibility of a dense conjugate class in a comparatively well
behaved topological group (a rather natural generalization of the
finite symmetric groups) that is contrary to naive intuition.

In his book [29] Halmos gave a more streamlined proof of this new fact
based on a fundamental lemma due to V. A. Rokhlin, and for this reason
the name of Rokhlin has been attached to a variety of results, old and new,
relating to the density of conjugacy classes in topological groups. In this
paper we will survey some of the new developments in this area.

As this subject touches upon aspects of group theory, topology, ergodic
theory and many other branches of mathematics, a survey can easily grow to
a book size. This was not our intention and we have therefore concentrated
on a few leading themes that were mainly determined by aspects of the
theory that we were involved with.

We will begin with a brief discussion of the purely algebraic aspects of the
question which pertain to countable groups in which any two elements that
differ from the identity are conjugate. Next we take up the first topological
version of the question and refer the readers to [25], where an example
of a locally compact group in which there are dense conjugacy classes is
exhibited. In general we will say that a topological group has the Rokhlin
property (RP) if it has a dense conjugacy class and the strong Rokhlin
(SRP) property if it has a comeager conjugacy class.

Passing from locally compact to Polish groups we begin with the moti-
vating example of Aut(X,X, µ), the group of measure preserving transfor-
mations of a standard Lebesgue space. We will present here a new proof
due to G. Hjorth of the fact that this group does not have the SRP, i.e. all
conjugacy classes in Aut(X,X, µ) are meager.

In the more abstract ergodic theory one considers actions of groups Γ
more general than Z but retains the notion of conjugacy by elements of
G = Aut(X,X, µ). We say that two Γ -actions S and T are isomorphic if
there is R ∈ G such that Tγ = RSγR

−1 for every γ ∈ Γ . In other words,
if and only if S and T belong to the same orbit of the natural action of
the Polish group G on the Polish space of actions, AΓ , by conjugation. We
say that the group Γ has the weak Rokhlin property (WRP) if this action
of G on AΓ is topologically transitive, i.e. for any two nonempty open sets
U and V in AΓ there is some R ∈ G such that RUR−1 ∩ V 6= ∅. It turns
out that every countable group Γ has the weak Rokhlin property (see [24])
and so the associated AΓ contains dense conjugacy classes. On the other
hand, for there to exist a free ergodic action with a dense conjugacy class in
AΓ a necessary and sufficient condition is that the group Γ does not have
Kazhdan’s property T.
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The next brief section takes up the group of unitary operators on a sepa-
rable Hilbert space. Here the fact that it has the RP was established in [15].
We will show that it does not have the SRP and then make use of this under-
standing of the unitary group to extend the above results from Aut(X,X, µ)
to the group NS(X,X, µ) of nonsingular automorphisms of Lebesgue space.

The next sections deal with groups of homeomorphisms of compact
spaces ranging from the Cantor set to manifolds to the Hilbert cube. We
also describe some of the recent results of [9] on the nature of generic hom-
eomorphisms of compact manifolds.

In Sections 8 to 10 we discuss the strong Rokhlin property. Perhaps
the simplest group that has the SRP is the group of all permutations of
a countable set with the topology of pointwise convergence. In fact it is
easy to describe the generic permutation, its cycle decomposition contains
only finite cycles and for each natural number n there are infinitely many
cycles of that length. The group of homeomorphisms of the Cantor set also
has the SRP [42], but now the description of the generic element is more
complicated [8]. However, it can still be made explicit and we do so in the
following section.

The fact that the group of homeomorphisms of the Cantor set has the
SRP was established by Kechris and Rosendal using model theory [42]. We
describe their work in Section 11. In Section 12 we present a proof, due
to Kechris, of the fact that the group of isometries of the Urysohn space
does not have the SRP. This proof is based on the idea of Hjorth mentioned
above. We thank them both for the permission to publish here these results.
The last two sections deal with the notion of ample generics (see [42]) and
other related recent developments.

While working on this survey we received from A. Kechris a draft of a
book [41], titled “Global Aspects of Ergodic Group Actions and Equivalence
Relations”, which he is in the process of writing. Of course it covers in great
depth many of the subjects which are treated in our survey. We thank Ethan
Akin for a careful reading of the paper and for providing helpful suggestions.

1. Countable groups with two conjugacy classes. Is there a
group G with just two conjugacy classes, {e} and G \ {e} (e of course is
the identity element of G)? Certainly the group with two elements is such
a group. Is there any other such finite group? The answer is no, as a begin-
ner in group theory can prove as an exercise. How about countable groups?
Here is a natural construction of a countable group with exactly two con-
jugacy classes due to G. Higman, B. H. Neumann and H. Neumann [30]
(see also [53, Exercise 12.63]). The main tool is the HNN extension theo-
rem.
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1.1. Theorem. Let G be a torsion free group. There is a torsion free

group H such that G < H and all pairs of nonidentity elements g1, g2 in G
are conjugate in H.

Now start with an infinite cyclic group G0 = {an : n ∈ Z} and by
induction construct a chain of torsion free groups G0 < G1 < G2 < · · · such
that for any n any nonidentity elements g1, g2 in Gn are conjugate in Gn+1.
Clearly G =

⋃

n∈N
Gn is a countable group with just two conjugacy classes.

The really difficult question is: are there infinite, finitely generated groups
with exactly two conjugacy classes? The surprising and resoundingly positive
answer is due to Osin [49].

1.2. Theorem. Any countable group G can be embedded into a 2-gen-

erated group C such that any two elements in C of the same order are

conjugate in C. In particular if G is torsion free it can be embedded into a

2-generated group C which has exactly two conjugacy classes.

In fact Osin shows that there are uncountably many pairwise noniso-
morphic torsion free 2-generated groups with exactly two conjugacy classes.

2. Locally compact groups with a dense conjugacy class. Is there
a topological analogue to these kind of problems? In a recent work [8] the
authors provide the following results.

2.1. Theorem.

1. There exists a locally compact σ-compact topological group G with a

dense conjugacy class.

2. Let G be a locally compact σ-compact topological group. Then every

conjugacy class of G is either meager or open. If , in addition, G has

a dense conjugacy class then either every conjugacy class is of first

category or there is a unique open conjugacy class which is dense.

In particular , if there is a dense comeager conjugacy class then this

conjugacy class is open.

These results naturally lead to the following problems.

2.2. Problems. 1. Is there a locally compact topological group with a
comeager conjugacy class?

2. Is there a nondiscrete, locally compact, topological group with exactly
two conjugacy classes?

3. The group Aut(X,X, µ). Let us consider next the non-locally-com-
pact Polish topological group G = Aut(X,X, µ), where (X,X, µ) is an atom-
less Lebesgue space; say, X = [0, 1], X the σ-algebra of Borel sets, and µ
Lebesgue measure. A countable algebra {Ak}

∞
k=1 of sets which separates
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points of X gives rise to a complete metric which induces the weak topology

on G,

d(S, T ) =
∞

∑

k=1

2−k(µ(SAk △ TAk) + µ(S−1Ak △ T−1Ak)).

With this metric G is a Polish topological group. The Koopman represen-

tation κ : T 7→ UT , where UT (f) = f ◦ T−1, f ∈ L2(µ), is a topological
isomorphism of G onto its image in the unitary group U(L2(µ)), where
the latter is equipped with its strong operator topology. Either directly or
via Lavrent’ev’s theorem we deduce that the image of G is a Gδ subset in
U(L2(µ)) and therefore closed. (In general a Gδ subgroup of a Polish group
is closed. For the theorems of Aleksandrov and Lavrent’ev see e.g. [50, Sec-
tion 12], or [40, p. 16].) Of course the conjugacy classes in G are typically
much smaller than the conjugacy classes under the bigger group U(L2(µ)).
The first is the isomorphism type of a transformation T , the latter its uni-
tary equivalence class. Thus, for example, by a theorem of Kolmogorov all
the K-automorphisms in G are unitarily equivalent (see e.g. [22, p. 120]). A
crucial step in the development of modern ergodic theory was the introduc-
tion by Kolmogorov of the notion of entropy of an automorphism of (X,µ)
as an invariant that can distinguish between two nonisomorphic automor-
phisms whose Koopman operators are unitarily equivalent. Subsequently one
of the great achievements of ergodic theory was Ornstein’s theorem which
asserts that in the class of Bernoulli automorphisms (a subclass of the class
of K-automorphisms) entropy is a complete invariant [46]. In a later work
Ornstein and Shields [47], show the existence of an uncountable family of
pairwise nonisomorphic non-Bernoulli K-automorphisms.

A well known theorem of Halmos [28] asserts that the conjugacy class of
each aperiodic transformation is dense in G. The standard proof (see [29,
pp. 69–74]) relies on a Rokhlin type lemma and this is the motivation for
our nomenclature.

3.1. Theorem (Rokhlin’s lemma). Let (X,X, µ, T ) be an aperiodic sys-

tem (i.e., for all n, µ{x ∈ X : Tnx = x} = 0), N a positive integer and

ε > 0. Then there exists a subset B ∈X such that the sets B, TB, . . . , TN−1B
are pairwise disjoint and µ(

⋃N−1
j=0 T jB) > 1 − ε.

By Rokhlin’s lemma any two aperiodic transformations, T and S, have
arbitrarily large congruent Rokhlin stacks. Thus some isomorphic copy
RTR−1 is close to S, and so the set of such isomorphic copies of T is dense
in the aperiodic transformations. The argument is finished by showing the
aperiodics to be dense in G.

Halmos’s book studies generic (i.e. residual) properties in the weak topol-
ogy on G. For instance, it is shown there that “weak mixing” is generic (due
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to Halmos), whereas “mixing” is meager (due to Rokhlin) [29, pp. 77, 78].
The exploration of this notion of genericity became an active research area;
see [16], [15] for results and extensive bibliographies.

The dichotomy of “generic” versus “meager” stems from the following
general “zero-one law” (see e.g. [50], [40] or [23]). Recall that the action of
a group G on a topological space X is topologically transitive if for any two
nonempty open sets U, V ⊂ X there is g ∈ G with gU ∩ V 6= ∅. When the
space X is Polish this is equivalent to the existence of a point x0 ∈ X with
a dense orbit: Gx0 = X. And if such a transitive point x0 exists then the
set X0 ⊂ X of transitive points is a dense Gδ (hence comeager) subset of X.
A subset A of a Polish space X has the Baire property if it has the form
A = U △M with U open and M meager. The collection of subsets of X
with the Baire property is a σ-algebra which contains the analytic sets (see
e.g. [40]). (Note that, following several different traditions, we use the words
“comeager”, “generic” and “residual” to denote one and the same notion. Of
course, generic in this sense is not the same as Halmos’ notion of genericity
which is measure-theoretical.)

3.2. Theorem (Zero-one law). Let X be a Polish space and G a group

of homeomorphisms of X. Suppose the action of G on X is topologically

transitive. Then every G-invariant subset of X with the Baire property is

either meager or comeager.

3.3. Definition. A topological group has the Rokhlin property (RP) if
it has a dense conjugacy class. For a Polish G this is equivalent to the topo-
logical transitivity of the action of G on itself by conjugation. A topological
group has the strong Rokhlin property (SRP) if it has a comeager conjugacy
class.

Thus, by Halmos’ theorem the group G = Aut(X,X, µ) has the Rokhlin
property. Does it have the strong Rokhlin property? Certainly not.

One way to see this is via a theorem of del Junco [37], according to which,
the set T⊥ of automorphisms in G = Aut(X,µ) which are disjoint from a
given element T is residual in G. It is easy to see that T⊥ is also conjugation
invariant. Thus if T has a comeager conjugacy class it should be disjoint
from itself. Recall that, as defined by Furstenberg [21], two automorphisms
S, T ∈ G are disjoint if the only joining they admit is the product measure.
(A probability measure λ on X ×X is a joining of S and T if it is S × T -
invariant and projects onto µ in both coordinates.) Since for any T ∈ G the
image of µ under the embedding x 7→ (x, x) of X into X × X is always a
self-joining, an automorphism is never disjoint from itself.

Observe that (1 ×R)∗λ is a joining between S and RTR−1, from which
it follows that S⊥ is conjugacy invariant.
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Recently G. Hjorth gave a proof of the fact that every conjugacy class
in G is meager (see [41]) that is more direct and does not involve as much
ergodic theory as the above proof. On the other hand, he uses two nontrivial
but standard results from descriptive set theory. We will next present Hjorth’
proof and will start by proving the first of these descriptive set theory results
which is a version of the Jankov–von Neumann theorem [40, Theorem 29.9].
For an analytic set E, Σ1

1 = Σ1
1(E) denotes the collection of analytic subsets

of E, and σ(Σ1
1) is the σ-algebra generated by Σ1

1.

3.4. Theorem. Let X and Y be Polish spaces and φ : X → Y a

continuous map with E := φ(X). Then there is a σ(Σ1
1)-measurable map

ψ : E → X with φ ◦ ψ = idE.

Proof. Let us first observe that we can assume that X = NN is the Baire
space. In fact, since X is Polish there is a continuous surjection η : NN → X.

Let φ1 = φ ◦ η : NN → Y and observe that if ψ1 : E → NN is σ(Σ1
1)-

measurable with φ◦ψ1 = idE , then ψ = η ◦ψ1 is also σ(Σ1
1)-measurable and

φ ◦ ψ = idE . So we now assume that X = NN and apply the usual notation
for cylinder sets:

[i1, . . . , ik] = {x ∈ X : x1 = i1, . . . , xk = ik}.

For a closed subset F ⊂ X we define α(F ) = (a1, a2, . . . ) ∈ F as follows:

a1 = min{i ∈ N : [i] ∩ F 6= ∅},

a2 = min{i ∈ N : [a1, i] ∩ F 6= ∅}, . . . ,

ak = min{i ∈ N : [a1, a2, . . . , ak−1, i] ∩ F 6= ∅}, . . . .

Now, for y ∈ E, set ψ(y) = α(φ−1(y)). Clearly φ(ψ(y)) = y for every y ∈ E
and it remains to show that ψ is σ(Σ1

1)-measurable.
For this, it suffices to show that for each ν = (i1, . . . , ik) ∈

⋃∞
j=1 Nj , the

set ψ−1([ν]) is in σ(Σ1
1). Now a moment’s reflection will show that, with the

lexicographic order on each Nk, we have

ψ−1([i1, . . . , ik])

= φ([i1, . . . , ik]) \
⋃

{φ([ν ′]) : ν ′ = (i′1, . . . , i
′
k) < (i1, . . . , ik)}.

Since φ([ν]) is analytic for each ν, our proof is now complete.

Recall that a subset A of a topological space X has the Baire property

if it has the form A = U △M with U open and M meager. It is well known
that when X is a Baire space (e.g. when it is Polish) the collection B of
sets with the Baire property is a σ-algebra. The second result we need from
descriptive set theory is a theorem of Lusin and Sierpiński which asserts
that in a Polish space every analytic subset has the Baire property, so that
σ(Σ1

1) ⊂ B [40, Theorem 21.6]. From this theorem we now deduce that the

map ψ : E → X in Theorem 3.4 is also Baire measurable.
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3.5. Theorem. Every conjugacy class in G = Aut(X,µ) is meager.

Proof (Hjorth). We will take X = [0, 1] and µ as normalized Lebesgue
measure. Assume that T0 ∈ G has a comeager conjugacy class. Applying
Theorem 3.4 to the map φ : G → G, φ(R) = RT0R

−1, we obtain a σ(Σ1
1)-

measurable right inverse ψ : C(T0) = {RT0R
−1 : R ∈ G} → G, so that

φ ◦ ψ = idC(T0). By the theorem of Lusin and Sierpiński, we know that ψ is

also Baire measurable. Note that T = ψ(T )T0ψ(T )−1 and therefore also

(1) ψ(T )TN = TN
0 ψ(T )

for every T ∈ C(T0) and N ∈ Z.

Next consider the Polish space B1/2 of all measurable subsets of [0, 1]
with measure 1/2, where the complete metric is given by d(A,B)=µ(A△B).
It will be convenient to choose a distinguished element, say D0 = [0, 1/2],
of B1/2. Choose a countable collection of sets {Di}

∞
i=1 ⊂ B1/2 such that the

corresponding collection of sets Di = {D ∈ B1/2 : µ(D △ Di) < 1/200} is
an open cover of B1/2. Then the collection {Ei}

∞
i=1, where

Ei = {T ∈ C(T0) : µ(ψ(T )D0 △Di) < 1/200},

is a countable cover of the comeager analytic subset C(T0) of G consisting
of sets with the Baire property. If for each i, Ei = Ui △ Mi is a Baire
representation with Ui open and Mi meager then, by the Baire category
theorem, there is at least one i with Ui 6= ∅. Choose one such i and set
Ui = U and U0 = U ∩ Ei. For T1, T2 ∈ U0 we have

(2) µ(ψ(T1)D0 △ ψ(T2)D0) < 1/100.

Since the collection of ergodic transformations is a dense Gδ subset of G
we can choose an ergodic T1 ∈ U0. By ergodicity

lim
N→∞

1

N

N−1
∑

j=0

µ(T j
1D0 ∩D0) = 1/4,

hence there is a sequence Ni ր ∞ with

(3) µ(TNi

1 D0 ∩D0) < 1/3.

Now for a fixed Ni the set

Ai = {T ∈ G : µ(TNiD0 △D0) < 1/100}

is open and dense. It is clearly open and its density is a direct consequence
of Rokhlin’s lemma, Theorem 3.1. Given any aperiodic T ∈ G and ε > 0 let
B, TB, . . . , TNi−1B with µ(

⋃Ni−1
j=0 T jB) > 1 − ε be a Rokhlin tower for T .

Then the transformation S defined by S = T on
⋃Ni−2

j=0 T jB, S = TNi−1

on TNi−1B, and S = id elsewhere, is a periodic approximation to T with
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period Ni. Thus A =
⋂

m>1

⋃∞
i=mAi is a dense Gδ subset of G and we now

pick an element T2 ∈ A ∩ U0.
Since T2 is in A there is an N = Ni with µ(TN

2 D0 △ D0) < 1/100.
Since ψ(T2) is measure preserving we also have µ(ψ(T2)T

N
2 D0 △ ψ(T2)D0)

< 1/100, and by (1),

(4) µ(TN
0 ψ(T2)D0 △ ψ(T2)D0) < 1/100.

Also by (3),
µ(TN

1 D0 ∩D0) < 1/3,

hence
µ(ψ(T1)T

N
1 D0 ∩ ψ(T1)D0) < 1/3,

and by (1),

(5) µ(TN
0 ψ(T1)D0 ∩ ψ(T1)D0) < 1/3.

However, by (2), ψ(T1)D0 and ψ(T2)D0 differ by less than 1/100 so that (4)
and (5) are in conflict. This contradiction shows that no conjugacy class in G
is comeager and our proof is completed by the zero-one law, Theorem 3.2.

4. The weak RP. The “weak Rokhlin property” was introduced in [23].
Let Γ be a discrete countable infinite group. We denote by AΓ the collec-
tion of measure preserving Γ -actions on X. Thus an element T ∈ AΓ is a
representation T : Γ → G, γ 7→ Tγ , where G = Aut(X,X, µ).

As we have seen above (Section 3), a countable algebra {Ak}
∞
k=1 of sets

which separates points of X, gives rise to a metric on G. We now define a
metric on the space AΓ of Γ -actions as follows. Set

D(S,T) =

∞
∑

i=1

2−id(Sγi
,Tγi

),

where {γi : i = 1, 2, . . . } is some enumeration of Γ and d is the complete
metric defined above for G. Again with this metric AΓ is a Polish space.

We say that two Γ -actions S and T are isomorphic if there is R ∈ G such
that Tγ = RSγR

−1 for every γ ∈ Γ ; in other words, if and only if S and
T belong to the same orbit of the natural action of the Polish group G on
the Polish space AΓ by conjugation. We say that the group Γ has the weak

Rokhlin property (WRP) if this action of G on AΓ is topologically transitive,
i.e. for any two nonempty open sets U and V in AΓ there is some R ∈ G such
that RUR−1 ∩ V 6= ∅. An equivalent condition is that there is a dense Gδ

subset A0 of AΓ such that for every T ∈ A0 the G-orbit {RTR−1 : R ∈ G}
is dense in AΓ . It was shown in [23] that every amenable Γ has the WRP.
Now the results of [23] apply to groups having the weak Rokhlin property
and the question as to which groups have that property was left open. In
the recent work [24] the authors show that in fact every discrete countable



60 E. GLASNER AND B. WEISS

group has the WRP. (Hjorth (unpublished) had also independently proved
that every countable discrete group has the WRP; see 10.7 and the preceding
paragraph in [41].)

4.1. Theorem. Every infinite countable group Γ has the weak Rokhlin

property.

Combining this result with an earlier work [26] they obtain the following
characterization.

4.2. Theorem. The infinite countable group Γ admits an ergodic action

T∈AΓ whose G-orbit {RTR−1 : R∈G} is dense in AΓ if and only if Γ does

not have the Kazhdan property. Thus for a non-Kazhdan group the set of

ergodic actions T ∈ AΓ with a dense G-orbit is a dense Gδ, while for a Kazh-

dan group Γ , the set of ergodic actions forms a meager subset of AΓ and for

every ergodic T ∈ AΓ , cls{RTR−1 : R ∈ G} has an empty interior in AΓ .

Actually the set of ergodic actions of a Kazhdan group is a closed set
with empty interior in the space of actions (see, e.g., 12.2(i) in [41]).

In a recent work, Kerr and Pichot [43] show that a result similar to the
above theorem holds even for weak mixing. They prove that if G is a locally
compact σ-compact group which does not have property T (in particular a
countable amenable group) then the weakly mixing actions are a dense Gδ in
the space of all actions. It then follows (see [26, especially 3.3]) that there ex-
ist weakly mixing actions whose orbit is dense. They also show that when G
has property T the set of weakly mixing actions is closed with empty interior.

The results of [24] already found some applications in a recent work of
Ageev [2], [3] where he proves that every finite or countable group Γ has
spectral rigidity , i.e. for every γ ∈ Γ , on a residual subset of AΓ the set of
essential values of the multiplicity function M(T̂γ) : T → N∪∞, associated

with the unitary Koopman operator T̂γ , is a constant (see also [1]).
For amenable groups Foreman and Weiss show that the action of G on

the free ergodic actions in AΓ is turbulent in the sense of Hjorth [19]. In
particular this means that every free ergodic action has a dense conjugacy
class which is meager. In Kechris’ forthcoming book [41, Proposition 13.2],
he shows that conversely if every free ergodic action has a dense conjugacy
class in AΓ then the group Γ must be amenable.

4.3. Theorem. The following conditions on an infinite countable group

Γ are equivalent :

1. Γ is amenable.

2. The conjugacy class of the “shift” Γ -action sΓ on the product space

X = {0, 1}Γ equipped with the {1/2, 1/2} product measure is dense

in AΓ .

3. Every free ergodic action in AΓ has a dense conjugacy class in AΓ .
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For more details on Hjorth’ notion of turbulence see [31], [32]. Also see
the forthcoming work of Foreman, Rudolph and Weiss [18], where it is shown
that the conjugacy relation on the set Gerg of ergodic measure preserving
automorphisms is not a Borel subset of Gerg ×Gerg.

4.4. Remark. In connection with Theorem 4.3 three further conditions
come to mind (we let A

erg
Γ denote the subset of ergodic actions in AΓ ):

4. Every free ergodic action in AΓ has a dense conjugacy class in A
erg
Γ .

5. The conjugacy class of sΓ is dense in A
erg
Γ .

6. There exists a free ergodic action with a dense conjugacy class in A
erg
Γ .

We do not know whether condition 4 or 5 can be added to the list of equiv-
alent conditions in Theorem 4.3. On the other hand, by considering the
ergodic decomposition of the measure λ constructed in the proof of Theo-
rem 1.1 in [24], one can use essentially the same proof to see that, like the
WRP, condition 6 holds for every Γ . See also the remark following Proposi-
tion 13.2 in [41].

5. The unitary group U(H). The Koopman representation κ :
T 7→ UT embeds Aut(X,X, µ) in the unitary group U(L2(µ)), equipped
with the strong operator topology. With this topology U(L2(µ)) is itself a
Polish topological group and it is known that this group has the RP. In
fact every U ∈ U(L2(µ)) with maximal spectral measure with full support
has a dense conjugacy class [15]. However, as we will next show, it does
not have the SRP. We will work in the abstract setup where G = U(H)
is the unitary group of a separable infinite-dimensional Hilbert space H.
With U ∈ G we associate its maximal spectral measure which is of course
only a measure class. However, choosing an orthonormal basis for H, say
{xn : n = 1, 2, . . . }, we define the map

Spec : U 7→ σU :=
∞

∑

n=1

2−nσU,xn

—where σ̂U,xn
(k) = 〈Ukxn, xn〉—which picks a concrete representative for

the maximal spectral type of U . It is not hard to check that the map U 7→ σU

is continuous from G into the space M(T) of probability measures on the
circle T = R/Z = [0, 1] (mod1) with its weak∗ topology. Following [38] we
have:

5.1. Lemma. For a fixed µ ∈M(T) the set

µ⊥ := {ν ∈M1(T) : ν ⊥ µ}

is a Gδ subset of M(T).
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Proof. Here of course ⊥ means mutually singular. Let fi ∈ C(T) be a
norm dense sequence in the set {f ∈ C(T) : 0 ≤ f ≤ 1} and as in [38] one
shows that

{ν ∈M(T) : ν ⊥ µ} =

∞
⋂

n=1

∞
⋃

i=1

{ν : ν(fi) < 1/n, µ(1 − fi) < 1/n}.

We conclude that for any fixed U ∈ G the set

U⊥ := {V ∈ G : σV ⊥ σU} = Spec−1(σU
⊥)

is a Gδ subset of G. We will say that the elements of U⊥ are spectrally

disjoint from U .
Next we show that U⊥ is dense in G. Any V ∈ G can be approximated,

in the strong operator topology, by operators which are the identity on the
orthogonal complement of a finite-dimensional subspace of H. Of course
the spectral measure of such operators is a finite subset of the unit circle
which includes 1. If we replace the identity operator on this complement by
an operator which moves every nonzero vector slightly, also the eigenvalue
1 can be avoided while preserving a good approximation. Thus we have
complete freedom in the choice of the countable purely discrete spectrum of
the approximating operator. These considerations prove the density of U⊥.

To complete the proof that G does not have the SRP we now assume that
U ∈ G has a residual conjugacy class UG, and then observe that any V in
the residual, hence nonempty, intersection UG ∩U⊥ has a spectral measure
which is singular to itself. Of course this conflict completes the proof.

The following theorem is well known, although a proof is hard to find
(see e.g. [22, p. 366]). It shows that the group NS(X,X, µ) of nonsingular
automorphisms of Lebesgue space embeds naturally into U(L2(µ)) as the
subgroup of positive unitary operators. In particular NS(X,X, µ) is a closed
subgroup of U(L2(µ)).

5.2. Theorem. Let (T, λ) be the circle equipped with Lebesgue’s measure

and V : L2(λ) → L2(λ) a unitary operator which is also positive (i.e. V f ≥ 0
for f ≥ 0). Then V has the form

V f(t) =

√

dTλ

dλ
(t) f(Tt),

where T : T → T is an invertible measurable nonsingular map.

The group NS(X,X, µ) has the Rokhlin property. E.g., using the method
of [29], Friedman shows that every aperiodic transformation in NS(X,X, µ)
has a dense orbit (see [20, Theorem 7.13]). Again it is not hard to see that
NS(X,X, µ) does not have the SRP. In fact as above, for each nonsingular
T ∈ NS(X,X, µ) the collection T † of spectrally disjoint S ∈ NS(X,X, µ), i.e.
those S ∈ NS(X,X, µ) for which VS is spectrally disjoint from VT , is again a
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Gδ subset of NS(X,X, µ). Its density can be proved by choosing an irrational
rotation Rα of the circle whose (discrete) spectral measure is disjoint from
the spectral measure of T and then using the fact that the conjugacy class
of Rα is dense in NS(X,X, µ).

Note that the same proof also works for Aut(X,X, µ). Since spectral
disjointness implies disjointness (see e.g. [22, Theorem 6.28]) we have T † ⊂
T⊥, so that residuality of T † implies the residuality of T⊥. This provides a
strengthening of del Junco’s theorem (see Section 3 above).

6. Groups of homeomorphisms with the RP. Recall that a Pol-
ish topological group G has the topological Rokhlin property when it acts
topologically transitively on itself by conjugation. Let us say that a com-
pact topological space X has the Rokhlin property when G = H(X)—the
topological group of homeomorphisms of X equipped with the topology of
uniform convergence—has the Rokhlin property, i.e., H(X) is the closure of
a single conjugacy class. For some connected spaces like spheres the existence
of orientation of a homeomorphism, which is clearly preserved under conju-
gation, means that H(Sd) cannot have the Rokhlin property; therefore we
say that a sphere satisfies the Rokhlin property when the groupH0(S

d)—the
connected component of the identity in H(Sd)—has the Rokhlin property.
With these definitions it is shown in [27] that the Hilbert cube, the Can-
tor set and the even-dimensional spheres have the Rokhlin property. (The
result for the Cantor set was independently obtained by Akin, Hurley and
Kennedy in [9].)

6.1. Theorem.

1. The Hilbert cube Q = [−1, 1]N has the Rokhlin property.

2. The Cantor set has the Rokhlin property.

3. The group G of homeomorphisms of the cube Id which fix each point

of the boundary ∂Id has the Rokhlin property.

4. Every even-dimensional sphere S2d has the Rokhlin property.

On the other hand, it appears that for general compact manifolds of
positive finite dimension the answer is rather different. For circle homeo-
morphisms, Poincaré’s rotation number, τ : H+(S1) → R/Z, h 7→ τ(h),
where H+(S1) = H0(S

1) is the subgroup of index 2 of orientation preserv-
ing homeomorphisms, is a continuous conjugation invariant mapping and
thus there are a continuum of different closed disjoint conjugation invariant
subsets. We refer the reader to the work [9] by Akin, Hurley and Kennedy
for a detailed discussion of circle homeomorphisms.

A related problem is concerned with the generic behavior of entropy in
these spaces. What is the topological entropy of a typical homeomorphism
in H(X)? The machinery developed in [27] for dealing with the Rokhlin
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property enables the authors to answer the entropy problem as follows. For
the Hilbert cube, and spheres Sd, d ≥ 2, the set of homeomorphisms with
infinite entropy is residual, while for the Cantor set it is the set of zero
entropy which is a dense Gδ subset of H(X).

7. The dynamics of topologically generic homeomorphisms. For
the Cantor set X, as we will see in Section 10 below, the group Homeo(X)
has the SRP and if T0 ∈ Homeo(X) has a dense Gδ conjugacy class then the
dynamical properties of T0 are, by definition, the dynamical properties of the
generic homeomorphism of X. Of course typically the group of homeomor-
phisms of a manifold does not have the SRP, that is, there is no comeager
conjugacy class in Homeo(X). It is nonetheless natural to enquire what are
the dynamical properties held by a generic set of homeomorphisms, or as the
title of the fundamental work of Akin, Hurley and Kennedy [9] suggests, to
ask what is the typical dynamics of a generic homeomorphism. This section
is a brief survey of the results obtained in [9].

We have already mentioned some of the results obtained in [9] about
Homeo(X) with X being the Cantor set or the circle. In this section we
will describe the results of [9] which concern the case where X is a compact
manifold. Thus we will assume that X is a compact piecewise linear man-
ifold of dimension at least 2 (e.g. a smooth manifold without boundary of
dimension ≥ 2). We fix a compatible metric on X.

Unlike many classical works which treat the general diffeomorphism of
a manifold, in [9] the objects one deals with are merely homeomorphisms,
and the dynamical properties which are considered are strictly topological.
Many of these were first introduced and studied by Conley [17]. We follow
the notation of Akin’s monograph [4].

Given f ∈ Homeo(X) and ε > 0 an ε-chain between two points x, y ∈ X
is a finite sequence {xj}

n
j=0 with x0 = x, xn = y and n ≥ 1 such that each

xj+1 is within ε of f(xj), j = 0, . . . , n− 1. Set

Cf = {(x, y) ∈ X ×X : for every ε > 0 there exists an ε-chain

connecting x and y}
and for x ∈ X,

Cf(x) = {y : (x, y) ∈ Cf}.

The relation Cf is a closed transitive relation with C(f−1) = {(y, x) : (x, y) ∈
Cf}. It is reflexive when restricted to the set of chain recurrent points. A
point x ∈ X is chain recurrent when x ∈ Cf(x) or, equivalently, when
(x, x) ∈ Cf . The set of chain recurrent points, denoted |Cf |, is a closed
f -invariant set with |Cf | = |Cf−1|. The relation Cf ∩ Cf−1 is a closed,
f -invariant equivalence relation on |Cf |. Its equivalence classes are called
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the chain components of f . The chain components are closed, f -invariant
subsets, and the chain components of f are the same as those of f−1.

A subset D ⊂ X is called f -chain invariant when Cf(D) ⊂ D, i.e.
Cf(x) ⊂ D for all x ∈ D. Equivalently, for every ε > 0 there exists a δ > 0
such that no δ-chain beginning in D can leave an ε-neighborhood of D.
A closed set U is called inward for f if f(U) ⊂ int f(U). An inward set
is f -chain invariant. To an inward set corresponds the attractor A which
is defined as A =

⋂∞
n=1 f

n(U). The open set W =
⋃∞

n=0 f
−n(U) is the

basin of attraction of A and the closed set X \W is the associated repellor

(= attractor for f−1) with X \A the basin of repulsion for R. An attractor-

repellor pair (A,R) is characterized as a pair of disjoint closed, f -invariant
sets such that (i) |Cf | ⊂ A ∪R and (ii) Cf(A) = A and Cf−1(R) = R.

On the space of chain components the relation Cf induces a partial
order by B1 ; B2 if (x, y) ∈ Cf for x ∈ B1 and y ∈ B2 (this relation
does not depend upon the choice of x and y). A chain component is called
terminal if B ; B1 implies B = B1. Equivalently, B is a Cf -invariant chain
component. B is called initial if it is terminal for f−1. If A is a closed set such
that Cf(A) = A, or equivalently, if f(A) = A and A is f -chain invariant,
then A is called a quasi-attractor . A quasi-attractor A is the intersection
of a monotone sequence of attractors, and the inward set neighborhoods
of A form a base for the neighborhood system of A. For example, a chain
component is a quasi-attractor iff it is terminal.

Using Zorn’s lemma one shows that every nonempty quasi-attractor con-
tains a terminal chain component. Finally, a point x ∈ X is a chain conti-

nuity point (see Akin [5]) if for each ε > 0 there is a δ > 0 with the property
that if {xn} is a δ-chain with x0 = x, then the distance from xn to fn(x) is
less than ε for every n > 0.

We are now ready to state the main results of [9]. When we say that
“a generic homeomorphism of X” has a certain property, we mean that the
collection of f ∈ Homeo(X) with that property is residual. Recall that we
assume here that X is a compact piecewise linear manifold of dimension at
least 2.

1. Let A be an attractor of a generic f ∈ Homeo(X). Then:

(a) A contains infinitely many repellors for f .
(b) intA 6= ∅ and it is the union of the basins of repulsion for the

repellors contained in A.
(c) ∂A is a quasi-attractor (but not an attractor, having an empty

interior).
(d) Thus there are uncountably many distinct sequences A = A1 ⊃

R1 ⊃ A2 ⊃ R2 ⊃ · · · , with the Ai attractors and the Ri repel-
lors.
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2. For a generic f ∈ Homeo(X):

(a) |C(f)| is a Cantor set.
(b) In |Cf |, the set of periodic points is dense and meager. Hence |Cf |

coincides with the set of nonwandering points, and also with the
closure of the set of recurrent points for f .

3. For a generic f ∈ Homeo(X):

(a) There are uncountably many chain components.
(b) The union of chain components which admit a subshift of finite

type as a factor is dense in |Cf |.
(c) The restriction of f to each terminal chain component is either a

finite periodic orbit or an adding machine.
(d) The union of the terminal chain components which are not peri-

odic is a residual subset of |Cf |. Of course the same is true for
the initial sets and thus the set of “dynamically isolated points”,
which lie in chain components which are both initial and terminal,
is a residual subset of |Cf |.

4. For a generic f ∈ Homeo(X) the set of points x ∈ X whose ω-limit set
is an adding machine terminal chain component and whose α-limit set
is a distinct adding machine initial chain component is residual in X.
Note that such a point cannot be one of the “dynamically isolated”
points as in 3(d).

5. For a generic f ∈ Homeo(X) the points which are chain continuous
for both f and f−1 form a residual subset of X whose intersection
with |Cf | is residual in |Cf |. In particular the generic f is almost

equicontinuous in the sense that the set of equicontinuity points for
{fn : n ∈ Z} is a residual set in X (see [25] and [7]).

Some of these generic properties carry over to dimensions 1 or 0, but some
do not. As we will see in Section 10 below, for the “special homeomorphism
of the Cantor space” T = T (D,C), whose conjugacy class is comeager, the
chain recurrence set |C(T )| is a disjoint union of an uncountable collection of
universal adding machines, it coincides with the set of nonwandering points
and, in this case, also with the set of “dynamically isolated” points.

8. Groups with the strong Rokhlin property. Is there any Polish
topological group with the strong Rokhlin property? The answer is: Yes,
there are many. Here is perhaps the simplest example.

8.1. Theorem. The Polish group S∞ = S(N) of all permutations of

a countable set , with the topology of pointwise convergence, has the strong

Rokhlin property.
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Proof. Let N =
⋃

{An,k : n = 1, 2, 3, . . . , k = 1, 2, 3, . . . } be a disjoint
decomposition of N such that cardAn,k = n. Choose a linear order on each
An,k and let π ∈ S∞ be defined by the requirement that its restriction to
each An,k is a cyclic permutation. Since clearly a conjugacy class in S∞ is
uniquely determined by a cycle structure, our claim will follow by showing
that the set of permutations in S∞ having the same cycle structure as π is
a dense Gδ in S∞.

Now, clearly for each n and k the collection of permutations having
at least k disjoint n-cycles is a dense open set. Thus, the intersection A
of these collections, that is, the set of permutations which admit infinitely
many n-cycles for each n, is a dense Gδ subset of S∞. On the other hand,
so is the set

B =
∞
⋂

n=1

∞
⋃

k=1

{σ : σk(n) = n}

of permutations with no infinite orbits. Since A∩B is exactly the conjugacy
class of π our proof is complete.

9. The group H+[0, 1] has the SRP. The group G = H+[0, 1] of order
preserving homeomorphisms of the unit interval I = [0, 1] is a Polish group
when equipped with the topology of uniform convergence.

We will next show that G has the SRP. For f ∈ G let Fix(f) := {x ∈ I :
f(x) = x}. Let us say that an order preserving homeomorphism of an inter-
val [a, b] is of type ± if f(x) > x (respectively f(x) < x) for every x ∈ [a, b].
If Fix(f) = A is a Cantor subset of I, then J(A), the countable collection
of components of I \A, has the order type of the rational numbers, and we
say that it is typical if for any distinct j1, j2 ∈ J(A) there are i1, i2 in J(A)
such that the restrictions of f to i1 and i2 have opposite signs. It is easy
to show that any two typical homeomorphisms are conjugate in G and we
denote the conjugacy class of typical homeomorphisms by T. It is also clear
that T is dense in G. Thus it only remains to show that T is Gδ.

It is not hard to check that the map f 7→ Fix(F ), from G to the metric
space 2I with the Hausdorff metric, is upper semicontinuous, and it follows
that the set O1 of elements g ∈ G where it is actually continuous is a dense
Gδ in G.

By a well known result of Kuratowski the collection of Cantor subsets of
I is a dense Gδ subset, say C, of 2I , and it follows that O2 = Φ−1(C), where
Φ is the restriction of Fix to O1, is a Gδ in O1, hence also in G.

For 0 ≤ a < b ≤ 1 in Q, let Va,b be the set of g ∈ O2 such that, if a and b
lie in two distinct elements of J(Fix(g)), say j1 and j2, then there are i1, i2
in J(Fix(g)) that lie between j1 and j2 and the restrictions of g to i1 and
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i2 have opposite types. Clearly each Va,b is open and their intersection is T.
This completes the proof that T is a dense Gδ conjugacy class in G.

The SRP for G = H+[0, 1] was first shown by Kuske and Truss in [45].
They also show thatH does not have the stronger property of ample generics
(see Section 13 below).

10. The Cantor group has the SRP. As was mentioned above, in [27]
it was shown that the Polish group H(X) of homeomorphisms of the Can-
tor set X has the Rokhlin property and the same result was independently
obtained in [9]. In the latter work the authors posed the question whether
a much stronger property holds for H(X), namely that there exists a con-
jugacy class which is a dense Gδ in G, i.e. whether H(X) has the strong
Rokhlin property.

In [6] it was shown that the subgroup Gµ of the Polish group G = H(X)
of all homeomorphisms of the Cantor set X which preserve a special kind
of a probability measure µ on X has the SRP. Recently this was shown by
Kechris and Rosendal in [42] to be the case for many other closed subgroups
of G = H(X), including G itself. The authors of [42] use abstract model-
theoretical arguments in their proof and they present it as an open problem
to give an explicit description of the generic homeomorphism.

In [8] the authors provide a new and more constructive proof of the
fact that the group H(X) of homeomorphisms of the Cantor set has the
SRP. Moreover their proof relies on a detailed description of the generic
homeomorphism of X. Below we provide a detailed picture of this “special
homeomorphism of the Cantor space”. For full details the reader is referred
to [8].

Let Z denote the ring of integers and Θm denote the quotient ring Z/mZ

of integers modulom form = 1, 2, . . . . LetΠ : Z → Θm denote the canonical
projection. If m divides n then this factors to define the projection π :
Θn → Θm. The positive integers are directed with respect to the divisibility
relation. We denote the inverse limit of the associated inverse system of finite
rings by Θ. This is a topological ring with a monothetic additive group on
a Cantor space having projections π : Θ → Θm for positive integers m.
We denote by Π the induced map from Z to Θ which is an injective ring
homomorphism. We also use Π for the maps π ◦Π : Z → Θm. Notice that
we use π for the maps with compact domain and Π for the maps with
domain Z. We can obtain Θ by using any cofinal sequence in the directed
set of positive integers. We will normally use the sequence k!.

On each of these topological rings we denote by τ the homeomorphism
which is translation by the identity element, i.e. τ(t) = t+1. The dynamical
system (Θ, τ) is called the universal adding machine. The adjective “uni-
versal” is used because it has as factors periodic orbits of every period.
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Let Z∗ denote the two-point compactification with limit points ±∞. Let
τ be the homeomorphism of Z∗ which extends the translation map by fixing
the points at infinity. The points of Z form a single orbit of τ which tends
to the fixed points in the positive and negative directions. We construct an
alternative compactification Σ of Z with copies of Θ at each end. Σ is the
closed subset of Z∗ ×Θ given by

Σ := {(x, t) : x = ±∞ or x ∈ Z and t = Π(x)}.

It is invariant with respect to τ × τ and we denote the restriction of τ × τ
by τ : Σ → Σ. A spiral is any dynamical system isomorphic to (Σ, τ). We
will also refer to the underlying space as a spiral.

The points of {±∞} × Θ are the recurrent points of the spiral. The
remaining points, i.e. {(x,Π(x)) : x ∈ Z}, are the wandering points of the
spiral.

We define the map ζ which collapses the spiral and identifies the ends:

ζ : Σ → Θ, ζ(x, t) = t.

That is, ζ is just the projection onto the second, Θ, coordinate. Clearly,
ζ : (Σ, τ) → (Θ, τ) is an action map.

Next we describe the construction of a “Cantor set of spirals”. Let I =
[0, 1] and C be the classical Cantor set in I consisting of those points a
which admit a ternary expansion .a0a1a2 . . . with no ai = 2. Let D consist
of those a in I which admit a ternary expansion .a0a1a2 . . . such that the
smallest index i = 0, 1, . . . with ai = 2 (if any) is even. That is, for the
Cantor set C we remove all the middle third open intervals, first one of
length 1/3, then two of length 1/9, then four of length 1/27 and so forth.
For D we retain the interval of length 1/3, remove the two of length 1/9,
keep the four of length 1/27, remove the eight of length 1/81 and so forth.
The boundary of D is the Cantor set C. J(D \ C) consists of the open
intervals of length 1/32k+1 which we retained in D whereas J(I \D) consists
of the open intervals of length 1/32k which we removed from D.

The set D \C is an open subset of R. It is the union of the countable set
J(D \ C) of the disjoint open intervals which are the components of D \ C.
If j ∈ J(D \ C) then j = (j−, j+) with endpoints j−, j+ ∈ C.

Notice that between any two subintervals in J(D\C)∪J(I\D) = J(I\C)
there occur infinitely many intervals of J(D \C) and of J(I \D). We let [D]
denote the set of components of D. A component of D is either a closed
interval j̄ for j ∈ J(D \C) or a point a of C which is not the endpoint of an
interval in J(D \ C).

We obtain the compact, zero-dimensional space Z(D,C) from the dis-
joint union

J(D \ C) ×Σ ∪ C ×Θ
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by identifications so that in Z = Z(D,C),

(j,−∞, t) = (j−, t) and (j,+∞, t) = (j+, t)

for all j ∈ J(D \ C) and t ∈ Θ. That is, after taking the product of D with
the group Θ we replace each interval j × Θ by a copy of the spiral Σ. The
homeomorphism 1J×τ ∪ 1C×τ factors through the identifications to define
the dynamical system (Z, τ) = (Z(D,C), τ(D,C)).

For each r ∈ C, the subset {r} × Θ is an invariant set for τ(D,C) on
which τ(D,C) is simply the adding machine translation τ on the Θ factor.
For each j ∈ J(D \ C) the subset {j} × Σ is an invariant set for τ(D,C) on
which τ(D,C) is the spiral τ on the Σ factor. That is, we have a collection of
adding machines indexed by the closed nowhere dense set C with a countable
number of gap pairs j− < j+ of C spanned by spirals.

The space Z(D,C) is compact and zero-dimensional, but the wandering
points within the spirals are discrete. Now define

X(D,C) := Z(D,C) × C, T (D,C) := τ(D,C) × 1C .

Thus, T (D,C) is a homeomorphism of the Cantor space X(D,C).

The projection map C × Θ → C which collapses each adding machine
to a point extends to a continuous map q : Z(D,C) → D by embedding
the orbit of wandering points of {j} × Σ in an order preserving manner
into a bi-infinite sequence {q(j, (x,Π(x))) : x ∈ Z} in the interval j which
converges to j± as x ∈ Z tends to ±∞.

Via q we can pull back the ordering on D ⊂ R to obtain a total quasi-
order on Z(D,C). On the other hand, the collapsing map ζ on each spiral
defines ζ : Z(D,C) → Θ by

ζ(j, (x, t)) = t for (j, (x, t)) ∈ J(D \ C) ×Σ.

ζ(a, t) = t for (a, t) ∈ C ×Θ.

Clearly, q × ζ : Z(D,C) → I × Θ and q × ζ × πC : X(D,C) → I × Θ × C
are embeddings.

We call (Z(D,C), τ(I,C)) a Cantor set of spirals. Of course, there are only
countably many spirals in Z(D,C), and the ordering on the set of spirals is
order dense. However, q : Z(D,C) → D induces a much larger order than
the chain relation. If x0 is on a spiral and x1 is not on the same spiral then
q(x0) and q(x1) are separated by a gap in I \ D of length greater than ε
provided ε is sufficiently small. This gap cannot be crossed by an ε-chain for
τ(D,C). It follows that the chain relation is exactly the orbit closure relation
for τ(D,C).

We call T (D,C) the special homeomorphism of the Cantor space X(D,C)
and the main result of [8] is to show that the collection of homeomorphisms
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h ∈ H(C) which are topologically conjugate to T (D,C) is a dense Gδ con-
jugacy class of the Polish group C(X).

11. Fräıssé structures and their automorphism groups. In this
section we will describe part of the work of Kechris and Rosendal [42] which
deals with various Rokhlin properties of groups of automorphisms of certain
countable model-theoretical structures. For the, not too heavy, model theory
used here we refer the reader to [34] and [42].

Briefly, a (countable) signature L consists of two (finite or countable)
collections of symbols, the relation symbols {Ri : i ∈ I} and the function
symbols {fj : j ∈ J} (one of these may be empty). Each symbol has its arity

(a positive integer), n(i) for Ri and m(j) for fj . A structure

A = 〈A, {RA

i : i ∈ I}, {fA

j : j ∈ J}〉

in a given signature L is a nonempty set A and two collections: of relations
RA

i ⊂ An(i), i ∈ I, and of functions fA
j : Am(j) → A, j ∈ J . An embedding

of a structure A into a structure B is a map π : A→ B such that

RA

i (a1, . . . , an(i)) ⇔ RB

i (π(a1), . . . , π(an(i))),

π(fA

j (a1, . . . , am(j))) = fB

j (π(a1), . . . , π(am(j))).

A simple example of a class of structures is the class of graphs. Here the
signature L consists of a single binary relation (the edge relation). A graph
A is then a set of vertices A together with a subset RA of A × A which is
irreflexive and symmetric.

Let K be a class of finite structures in a fixed countable signature L. We
say that K is a Fräıssé class if it has the following properties:

1. (HP) K is hereditary , i.e., A ≤ B and B ∈ K implies A ∈ K (where
A ≤ B means A can be embedded into B).

2. (JEP) The joint embedding property , i.e., if A,B ∈ K then there is a
C ∈ K with A ≤ C and B ≤ C.

3. (AP) The amalgamation property , i.e., if f : A → B and g : A → C

are embeddings with A,B,C ∈ K then there is a D ∈ K and embed-
dings r : B → D and s : C → D with r ◦ f = s ◦ g.

4. K contains, up to isomorphism, only countably many structures; and
contains structures of arbitrarily large (finite) cardinality.

For any Fräıssé class K there is a corresponding Fräıssé limit

K = Flim(K),

which is the unique countably infinite structure with the properties:

(a) K is locally finite, i.e., finitely generated substructures of K are finite.
(b) K is ultrahomogeneous, i.e., any isomorphism between finite sub-

structures extends to an automorphism of K.
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(c) Age(K) = K, where Age(K) is the class of all finite structures that
can be embedded in K.

A countably infinite structure K satisfying (a) and (b) is called a Fräıssé

structure and the correspondence

K 7→ K = Flim(K), K 7→ Age(K)

is a canonical bijection between Fräıssé classes and Fräıssé structures. Every
closed subgroup G ≤ S∞ is of the form G = Aut(K) for some Fräıssé
structure K.

Examples of Fräıssé structures include the trivial structure (N,=), R

the random graph, (Q, <) the order type of the rational numbers, B∞ the
countable atomless Boolean algebra, and U0 the rational Urysohn space.
The latter is the Fräıssé limit of the class of finite metric spaces with rational
distances.

With a Fräıssé class K Truss [56] associates the class Kp of all systems
S = 〈A, ψ : B → C〉, where A,B,C ∈ K, B,C ≤ A and ψ : B → C is an
isomorphism. An embedding of a second system T = 〈D, φ : E → F〉 in S

is an isomorphism f : A → D such that f embeds B into E, C into F and
f ◦ ψ ⊂ φ ◦ f .

Kechris and Rosendal show that the property of a Fräıssé structure K

that ensures the Rokhlin property of G = Aut(K) is the JEP for Kp.

11.1. Theorem. Let G = Aut(K) where K is a Fräıssé structure with

Fräıssé limit K. The following are equivalent :

1. G has a dense conjugacy class.

2. The class Kp satisfies the JEP.

As corollaries they deduce, e.g., that each of the groups Aut(B∞),
Aut(F, λ) and Aut(U0), which correspond to the Fräıssé classes:

1. K = finite Boolean algebras,
2. K = finite measure Boolean algebras with rational measure,
3. K = finite metric spaces with rational distances,

respectively, has the Rokhlin property.
Since Aut(B∞) is canonically isomorphic to H(X), the homeomorphism

group of the Cantor set, the first case retrieves the results of Glasner-
Weiss [27] and Akin–Hurly–Kennedy [9]. The Polish group Aut(F, λ) embeds
densely into the Polish group Aut(X,X, µ), where (X,X) is the standard
Borel space and µ is an atomless Borel probability measure on X. The im-
age is a dense subgroup and the RP of Aut(X,X, µ) follows (retrieving the
classical Halmos–Rokhlin theorem). Similarly, Iso(U0) is the group of isome-
tries of the universal rational Urysohn space U0 and as this Polish group
embeds densely into the group Iso(U) of isometries of the universal Urysohn
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space U, it follows that the latter group also has the RP. This last fact was
also proven by Glasner and Pestov. In the next section we will present a
new proof, due to A. Kechris, of the fact that Iso(U) does not have the SRP
(Theorem 12.5).

Similarly by considering the diagonal action of Aut(K) on Aut(K)n for
every n ∈ N Kechris and Rosendal obtain the following results.

11.2. Theorem. Each of the following Polish groups has the RP :

H(2N)N, H(2N, σ)N, Aut(X,µ)N, Aut(N<N)N, Aut(U0)
N, Iso(U)N.

We now turn to the strong Rokhlin property (having a “generic auto-
morphism” in the terminology of Kechris and Rosendal). It turns out that
here the relevant properties of Kp are JEP and WAP (see also Truss [56]
and Ivanov [36]). A class Kp has the weak amalgamation property (WAP)
if for any S = 〈A, ψ : B → C〉 ∈ Kp there is T = 〈D, φ : E → F〉 and an
embedding e : S → T such that for any embeddings f : T → T0, g : T → T1,
where T0,T1 ∈ Kp, there is U ∈ Kp and embeddings r : T0 → U, s : T1 → U

with r ◦ f ◦ e = s ◦ g ◦ e.

11.3. Theorem. Let G = Aut(K) where K is a Fräıssé structure with

Fräıssé limit K. The following are equivalent :

1. G has the SRP.

2. The class Kp has the JEP and WAP.

Kechris and Rosendal then show that for K = BA, the class of finite
Boolean algebras, Kp has both the JEP and WAP, and deduce the SRP for
the group H(X) of homeomorphisms of the Cantor set.

12. Iso(U) does not have the SRP. In this section we present a
new theorem of A. Kechris which asserts that every conjugacy class in the
group Iso(U) of isometries of the universal Urysohn space U is meager, that
is, Iso(U) does not have the SRP. The proof runs along the same lines
as Hjorth’s proof of Theorem 3.5, which asserts that the same holds for
the group Aut(X,µ). However, the basic fact that is used here, in lieu of
Rokhlin’s lemma, is a deep theorem of Solecki. This result was also, inde-
pendently, obtained by A. Vershik (yet unpublished).

Let (A, d) be a finite metric space. An isometry p : D → E from D onto
E, with D,E ⊂ A, is called a partial isometry . A point x ∈ A is a cyclic

point if pn(x) ∈ D for all n ∈ N. Otherwise x is called acyclic. Let Z(p)
denote the set of cyclic points. For a cyclic x ∈ A let mx be the smallest
n > 0 with pn(x) = x. If x ∈ A is acyclic, let

nx = min{n ≥ 0 : pn(x) 6∈ D} + max{n ≥ 0 : p−n(x) ∈ D},

where max ∅ = 0.
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Although we will only need the case when all the points in A are acyclic
(i.e. Z(p) = ∅) we cite below the general statement of the theorem.

12.1. Theorem (Solecki [55, Theorem 3.2]). Let (A, d) be a finite metric

space, D,E ⊂ A, and p : D → E a partial isometry from D onto E.

There is then a finite metric space (B, ̺) with A ⊂ B as metric spaces

(i.e. ̺↾A × A = d), an isometry q : B → B which extends p, and a natural

number M such that :

1. q2M = idB.

2. If x ∈ A is acyclic then qj(x) 6= x for all 0 < j < 2M .

3. A∪qM (A) is the amalgam of A and qM (A) over Z(p), i.e. A∩qM (A)
= Z(p), qM↾Z(p) = idZ(p), and for a1, a2 ∈ A,

̺(a1, q
M (a2)) =

{

2 diam(A) if Z(p) = ∅,

min{d(a1, z) + d(a2, z) : z ∈ Z(p)} otherwise.

In fact , if we set ∆ = diam(A), δ = min{d(x, y) : x, y ∈ A, x 6= y}, and

N = max{nx : x ∈ A \ Z(p)} (where max ∅ = 0), then any natural number

M divisible by all the mx for x ∈ Z(p) and satisfying

(M −N)δ > 2N∆

will serve in the above statement.

12.2. Lemma. Given distinct z1, . . . , zm ∈ U and δ > 0 such that δ <
min d(zi, zj), there are zδ

1, . . . , z
δ
m ∈ U with d(zi, z

δ
i ) = δ and d(zδ

i , z
δ
j ) =

d(zi, zj).

Proof. It is enough to show there is an abstract metric space ({z1, . . . , zm,
v1, . . . , vm}, ̺) with

̺(zi, vi) = δ, ̺(vi, vj) = d(zi, zj).

For this simply take the ℓ1 direct sum of ({z1, . . . , zm}, d) with a two-point
space with distance δ between the two points. Thus

̺(vi, vj) = d(zi, zj), ̺(zi, vj) = d(zi, zj) + δ.

12.3. Lemma. Given f ∈ Iso(U), y1, . . . , yn ∈ U, ε > 0, one can find

g ∈ Iso(U) such that

d(g(yi), f(yi)) < ε and g({y1, . . . , yn}) ∩ {y1, . . . , yn} = ∅.

Proof. Let {y1, . . . , yn, f(y1), . . . , f(yn)} = {z1, . . . , zm}, where zi 6= zj

for i 6= j (so that n ≤ m ≤ 2n). With 0 < δ < mini6=j d(zi, zj), δ < ε
apply Lemma 12.2 to define {zδ

1, . . . , z
δ
m} ⊂ U. Now extend the isometry h :

{z1, . . . , zm} → {zδ
1, . . . , z

δ
m} to an isometry h ∈ Iso(U) and set g = h ◦ f .

12.4. Lemma. Fix x ∈ U. The set

{(f, g) ∈ Iso(U) × Iso(U) : ∃n [d(fn(x), x) < 1/2 and d(gn(x), x) > 1]}

is open and dense in Iso(U) × Iso(U).
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Proof. Fix f, g ∈ Iso(U), x0 = x, x1, . . . , xk ∈ U, and ε > 0. We need to
find f0, g0 ∈ Iso(U) such that

d(f0(xi), f(xi)) < ε, d(g0(xi), g(xi)) < ε, i = 0, . . . , k,

and for some n,

d(fn
0 (x), x) < 1/2, d(gn

0 (x), x) > 1.

We can assume (by adding more points to x1, . . . , xk) that d(xi, xj) > 1/2
for some i and j. By Solecki’s theorem the isometry

xi 7→ f(xi), i = 0, . . . , n,

extends to an isometry φ : A → A of some finite set A ⊃ {x0, . . . , xk,
f(x0), . . . , f(xk)}. Let f0 ⊃ φ be an element of Iso(U).

Since A is finite, there exists ℓ > 0 such that φℓ(x) = x and so f ℓ
0(x) = x,

hence f ℓm
0 (x) = x for all m.

Next apply Lemma 12.3 to choose g′ ∈ Iso(U) such that d(g′(xi), g(xi))
< ε and

(6) g′({x0, . . . , xk}) ∩ {x0, . . . , xk} = ∅.

By Solecki’s Theorem 12.1 the partial isometry xi 7→ g′(xi), i = 0, 1, . . . , k,
extends, for arbitrarily large M , to an isometry φM of some finite set such
that

d(xi, φ
M
M (xi)) = 2 diam{x0, . . . , xk} > 1.

(Note that by (6) every point of {x0, . . . , xk} is acyclic, so that there are no
divisibility conditions on M .)

Extend φM to g0,M ∈ Iso(U). Then

(7) d(x, gM
0,M(x)) > 1.

Also g0,M ⊃ g′↾{x0, . . . , xk} so d(g0,M (xi), g(xi)) < ε.
Now choose M = n = ℓm (with m sufficiently large) so that if g0 = g0,n,

then
d(x, gn

0 (x)) > 1 and also d(x, fn
0 (x)) = 0 < 1/2.

We are now ready for the proof of Kechris’ theorem. We will make use
of the following useful notation. If Z is a topological space with the Baire
property, the formula “∀∗z ∈ Z” reads “for a comeager set of z ∈ Z”.

12.5. Theorem (Kechris). Every conjugacy class in Iso(U) is meager.

Proof. Suppose the conjugacy class of f0 ∈ Iso(U) is comeager. As in
the proof of Theorem 3.5 we use the Jankov–von Neumann theorem (The-
orem 3.4) to find a Borel map F : Iso(U) → Iso(U) such that

∀∗f ∈ U [F (f)fF (f)−1 = f0].
We then have

∀∗f ∈ U [F (f)fn = fn
0 F (f)]

for every n ∈ Z.
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We choose a suitable sequence {yi} ⊂ U and then cover Iso(U) by a
countable collection of sets Vi such that d(F (f)(x), yi) < 1/8 for every
f ∈ Vi. Since the map f 7→ F (f)(x) is Baire measurable, each Vi equals
Ui △Mi with Ui open and Mi meager. By Baire’s theorem there exists at
least one i with Ui 6= ∅. With U = Ui and y = yi, we have for the open
nonempty U ⊂ Iso(U) and y ∈ U,

∀∗f ∈ U [d(F (f)(x), y) < 1/8].

By Lemma 12.4 there are f1, f2 ∈ U and n with

F (fi)fiF (fi)
−1 = f0,

d(fn
1 (x), x) < 1/2, d(fn

2 (x), x) > 1,

d(F (fi)(x), y) < 1/8,

d(fn
0 F (f1)(x)), F (f1)(x)) < 1/2, d(fn

0 F (f2)(x), F (f2)(x)) > 1,

d(F (fi)(x), y) < 1/8.

So

d(fn
0 (y), y)

≤ d(fn
0 (y), fn

0 F (f1)(x)) + d(fn
0 F (f1)(x), F (f1)(x)) + d(F (f1)(x), y)

≤ 1/8 + 1/2 + 1/8 = 3/4.

And

d(fn
0 (y), y) + d(fn

0 (y), fn
0 F (f2)(x)) + d(F (f2)(x), y)

≥ d(fn
0 F (f2)(x), F (f2)(x)) > 1.

So

d(fn
0 (y), y) > 1 − 1/8 − 1/8 = 3/4.

This conflict completes the proof.

13. Groups with ample generic elements. In their paper [42]
Kechris and Rosendal define an even stronger property than SRP (see also
Hodges et al. [35]). A Polish group G has ample generic elements (or has
ample generics for short) if for each finite n there is a comeager orbit for
the (diagonal) conjugacy action of G on Gn:

g · (g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

(In the nomenclature of ergodic theory this property would be called SRP of

all finite orders. Kechris and Rosendal show, with a clever short argument,
that no Polish group can have the infinite version of the SRP; see [42, the
second Remark after Proposition 5.1.])

Of course “ample generics” implies the SRP but there are Polish groups
with the SRP which do not have ample generic elements. One such group is
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the group Aut(Q, <) of order preserving bijections of the rational numbers
(this is due to Hodkinson (unpublished), see the paper of Truss, On notions

of genericity and mutual genericity , University of Leeds preprint, 18, 2005,
on his web page).

The list of Polish groups known to have ample generics includes the au-
tomorphism groups of ω-stable ℵ0-categorical structures, the automorphism
group of the random graph, and the automorphism group of the rational
Urysohn space. To this list the authors of [42] add the group of Haar mea-
sure preserving homeomorphisms of the Cantor space, H(2N, σ), and the
group of Lipschitz homeomorphisms of the Baire space NN.

As far as we know, the question whether the group H(X) of homeomor-
phisms of the Cantor set X has ample generics is still open. Also note that
the case of the dyadic (Haar) measure σ on 2N is not included in the type
of measures handled by Akin in [6].

Having ample generic elements is a very powerful property. Let us men-
tion two of the many consequences proven in [42].

13.1. Theorem. A Polish group with ample generics also has the small

index property , i.e., any subgroup of index < 2ℵ0 is open.

13.2. Theorem. Let G be a Polish group with ample generics. Then

any homomorphism π : G → H of G into a separable topological group is

necessarily continuous.

Regarding the latter result, see also the recent work of Rosendal and
Solecki [52].

14. Further related work. A famous result of Oxtoby and Ulam [51]
asserts that ergodicity is residual for Lebesgue measure preserving homeo-
morphisms of the cube. The book by Alpern and Prassad [10] is devoted to
generalizations of this classical theorem in the context of groups of measure
preserving homeomorphisms of cubes and compact connected manifolds.

In a series of papers Bezuglyi, Dooley, Kwiatkowski and Medynets
[11]–[14] introduce several topologies on the group H(X) of homeomor-
phisms of the Cantor set and establish categorical statements concerning
various naturally defined subsets of H(X) with respect to these topologies.

The main theme in Glasner and King [23] as well as in Rudolph’s pa-
per [54] is a correspondence principle which asserts that two, seemingly
completely different “settings” are in fact “generically” related in the sense
that a dynamical property is meager/comeager in one if and only if it is
meager/comeager in the other. On the one hand, we have the classical set-
ting of Aut(X,X, µ), and on the other the, no less classical, setting of the
space of shift invariant measures on the infinite-dimensional torus or the
Hilbert cube.
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Is there a topological analogue to this correspondence principle? A natu-
ral candidate for a topological setting is the groupH(X) of homeomorphisms
of the Cantor set. However, by the Rosendal–Kechris result that H(X) has
a dense Gδ conjugacy class, we see that the discussion of generic properties
in H(X) is trivial. Notwithstanding, in a recent work Mike Hochman [33]
establishes a correspondence principle between the setting H(X) on the one
hand and the setting of closed invariant subsets of, say, the Hilbert cube on
the other, which becomes meaningful when it is restricted to some naturally
defined subspaces of both settings. Using coding arguments he proves vari-
ous facts in the space of shift-invariant subsets setting and then transports
them to the H(X) setting. As a striking example we mention the fact that
in the subset of H(X) consisting of the totally transitive homeomorphisms,
being prime is a generic property.
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