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LARGE SETS OF INTEGERS AND HIERARCHY OFMIXING PROPERTIES OF MEASURE PRESERVING SYSTEMSBYVITALY BERGELSON (Columbus, OH) andTOMASZ DOWNAROWICZ (Wroªaw)Abstrat. We onsider a hierarhy of notions of largeness for subsets of Z (suh asthik sets, syndeti sets, IP-sets, et., as well as some new lasses) and study them inonjuntion with reurrene in topologial dynamis and ergodi theory. We use topo-logial dynamis and topologial algebra in βZ to establish onnetions between variousnotions of largeness and apply those results to the study of the sets Rε
A,B = {n ∈ Z :

µ(A ∩ T nB) > µ(A)µ(B)− ε} of times of �fat intersetion�. Among other things we showthat the sets Rε
A,B allow one to distinguish between various notions of mixing and intro-due an interesting lass of weakly but not mildly mixing systems. Some of our results onfat intersetions are established in a more general ontext of unitary Z-ations.Introdution. Let (X,B, µ, T ) be an invertible ergodi probability mea-sure preserving system. Given ε > 0 and A,B ∈ B with µ(A) > 0, µ(B) > 0,let us de�ne the set of times of �fat intersetion� by
RεA,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B) − ε}.When A = B, the sets RεA,B are intrinsially onneted with the variousenhanements and appliations of the lassial Poinaré reurrene theoremand are relatively well understood. For example, the Khinhin reurrenetheorem ([Kh℄; see also [B1, Setion 5℄) says that for any, not neessar-ily ergodi, probability measure preserving system (X,B, µ, T ), any A with

µ(A) > 0 and any ε > 0, the set RεA,A is syndeti (i.e., has bounded gaps).This result, in turn, follows from the (stronger) fat that RεA,A is a△∗-set, i.e.it has nontrivial intersetions with any set of the form {ni − nj}i>j , where
(ni)i∈N is an injetive sequene in Z (see Theorem 3.1 below). Note thatwhile every △∗-set is syndeti, not every syndeti set is a △∗-set (onsiderfor example the set of all odd numbers).2000 Mathematis Subjet Classi�ation: 37A25, 37B20.Key words and phrases: weak mixing, mild mixing, fat intersetions, IP-sets, idempo-tents, entral sets, upper Banah density.The �rst author is partially supported by NSF grant DMS-0600042. Researh of theseond author is supported by grant MENII 1 P03A 021 29, Poland.[117℄ © Instytut Matematyzny PAN, 2008
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Assuming ergodiity, one an show that the setsRεA,B are always syndeti.On the other hand, the natural question whether they are always of the form

E + k, where E is a △∗-set, k ∈ Z, has, in general, a negative answer (seeTheorem 1.7 below). One of the goals of this paper is to introdue and studysome new notions of largeness with the intention of better understanding thesets of times of fat intersetion and to apply them to the study of mixingproperties of dynamial systems.In order to formulate our main results we have �rst to introdue anddisuss the pertinent notions of largeness. This is done in Setion 1, at theend of whih the formulations of our main theorems are given. In Setion 2we take a loser look at notions of largeness whih are intrinsially relatedto topologial dynamis. In partiular, we show that one of the notions play-ing the deisive role in this paper, namely that of D-sets (see the de�nitionin Setion 1), an be naturally viewed as the extension of Furstenberg'snotion of entral sets (see [F, p. 161℄) whih proved to be very useful invarious appliations of ergodi theory to ombinatoris (see for example [B1℄and [B-M℄). In Setion 3 we provide the proofs of the haraterizations ofergodiity, weak, mild and strong mixing in terms of sets of times of fatintersetion. In Setion 4 we give an example of a dynamial system whihnot only proves that two of the lasses under study (IP∗
+ and D∗

•) are notontained in one another, but also that one annot replae D∗
• by its in-tersetion with IP∗

+ in the haraterization of the weak mixing property.Finally, in Setion 5 we apply our notions to isolate ertain nonempty sub-lass of weakly mixing but not mildly mixing transformations. The paper isonluded by an appendix ontaining an expliit example of a topologialdynamial system with spei� properties. Besides being interesting in itsown right, the existene of suh a system is important in one of the proofsin Setion 2.Aknowledgements. We are greatful to Sarah Bailey-Frik, RonniePavlov and Neil Hindman for useful omments. We also thank the anony-mous referee for numerous pertinent remarks and suggestions.1. Notions of largeness via duality. Let F be a family of nonemptysubsets of the integers Z. We will denote by F∗ the dual family onsisting ofall sets G suh that G ∩ F 6= ∅ for every F ∈ F . The family F is partitionregular if, whenever F ∈ F is represented as a union of �nitely many sets,then at least one of them belongs to F . It is not hard to verify that if F ispartition regular then its dual F∗ is a �lter: the intersetion of two elementsof F∗ belongs to F∗. (The other requirement for a �lter, the property of beinglosed under taking supersets, is obvious for F∗.) Two elementary examplesof this kind are
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1. Fix some n0 ∈ Z and let F = {F ⊂ Z : n0 ∈ F}. Then F∗ = F .2. Let F = I = {F ⊂ Z : |F | = ∞} (in�nite sets). Then F∗ = I∗ =
{F ⊂ Z : |Z \ F | <∞} (o�nite sets).Let us now mention a more subtle example.3. A set F ⊂ Z is alled an IP-set if it ontains the set FS(S) of �nitesums of some sequene S = (sn)n≥1 of nonzero integers:FS(S) = {sn1

+ · · · + snk
: n1 < · · · < nk, k ∈ N}.Let IP be the family of all IP-sets. One an show that both IP-setsand IP∗-sets (members of the dual family IP∗) an be haraterized(with the help of Hindman's theorem) in terms of idempotents in βZ(see De�nition 1.2 below and Theorems 1.2 and 1.5 in [B2℄).Reall that a family of subsets of Z whih is both partition regular and a�lter is alled an ultra�lter (or a maximal �lter). Note the obvious fat thatthe union of any olletion of ultra�lters is partition regular. Also, whilean intersetion of ultra�lters need not be an ultra�lter, it is always a �lter.The olletion of all ultra�lters is denoted by βZ and, endowed with anappropriate topology, beomes the Stone��eh ompati�ation of Z. Thereis a natural semigroup struture in βZ extending the addition operation of

Z (for more details see [H-S℄).The above examples have the following interpretation in terms of ultra-�lters: In the �rst example, F is nothing but a so-alled prinipal ultra�lter,i.e., the ultra�lter representing n0 in βZ (and so also is F∗). In the se-ond, F is the union of all nonprinipal ultra�lters and F∗ is the intersetionof all suh ultra�lters. Finally, in the third example F is the union of allnonprinipal ultra�lters whih are idempotents for the natural semigroupstruture of βZ (that is, F is the union of all idempotents exept zero) and
F∗ is the intersetion of the nonzero idempotents (f. [B2, Theorem 2.15(i),p. 20℄). The above fats are speial ases of the following more general state-ment:Lemma 1.1.(1) If F is an ultra�lter then F∗ = F .(2) If F =

⋃
αFα then F∗ =

⋂
αF

∗
α.In partiular , whenever F is a union of some olletion of ultra�lters, then

F∗ is the intersetion of that olletion.Intuitively, if we have the union of a rih olletion of families, its dualontains relatively few �very large� sets, namely, sets whih interset non-trivially every member of every family in this olletion. This approah to�largeness� will be utilized throughout this paper: a set is �large� if it belongsto the dual of a rih family of sets ontaining a union of many ultra�lters.
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For this reason the �rst example above is not very useful: the family F isjust a single ultra�lter (and so also is F∗), moreover, F∗ ontains �nite sets,so being a member of F∗ annot be onsidered a riterion for largeness. Butleaving this exeptional example aside, we will investigate a whole hierarhyof notions of largeness onstruted with the help of dual families, of whihthe property of being a member of I∗ is the strongest. Several importantnotions of largeness an be introdued with the help of idempotent ultra-�lters.In order to failitate the disussion we list some of the important familiesof large sets in the following de�nition. (Note that the family IP appearingin item (1) below was already introdued above.)Definition 1.2.(1) The olletion IP (of IP-sets) is the union of all nonzero idempotents

0 6= p ∈ βZ. Aordingly, IP∗ is the intersetion of all nonzeroidempotents.(2) The olletion D (of D-sets) is the union of all idempotents p ∈ βZsuh that every member of p has positive upper Banah density (1).Aordingly, D∗ is the intersetion of all suh idempotents.(3) The olletion C (of C-sets or entral sets) is the union of all minimalidempotents (2). Aordingly, C∗ is the intersetion of all minimalidempotents.Sine every member of a minimal idempotent has positive upper Banahdensity (3), we have C ⊂ D, hene, diretly from the de�nitions, we obtainthe following hierarhy:
I∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ C ⊂ D ⊂ IP ⊂ I.As we will see below, all these inlusions are in fat proper.We introdue two more notions of largeness de�ned via duality:Definition 1.3.(1) A subset F ⊂ Z is alled a △-set , or we say that F belongs to thefamily ∆, if there exists an injetive sequene S = (sn)n≥1 of integerssuh that the di�erene set △(S) = {si − sj : i > j} is ontainedin F .

(1) The upper Banah density of a set E ⊂ Z is de�ned as lim supm−n→∞

1

m−n
|E ∩

[n, m − 1]|. If the orresponding limit exists then it is alled the Banah density of E.
(2) An idempotent is minimal if it belongs to a minimal right ideal in βZ (see [H-S℄and [B2℄ for details). See also the disussion in Setion 2 on various equivalent de�nitionsof the notion of entral set.

(3) This follows from the stronger fat that every member of a minimal idempotent ispieewise syndeti (see [B2, Theorem 2.4 and Exerise 7℄).
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(2) A set F ⊂ Z is thik if it ontains arbitrarily long intervals [a, b] =
{a, a+1, . . . , b}. The olletion of all thik sets will be denoted by T .The dual family T ∗ is easily seen to oinide with the olletion ofall syndeti sets (i.e., sets having bounded gaps).The family ∆ is the union of a olletion of ultra�lters (see [B-H2, De�-nition 1.6 and Lemma 1.9℄), while that of thik sets is not (beause it is notpartition regular). It is known (and not very hard to see) that every thikset is an IP-set and every IP-set is a △-set, but not the other way around.In partiular, the olletion of ultra�lters whose union is ∆ ontains morethan just idempotents. The hierarhy of notions of largeness introdued sofar is as follows:o�nite = I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗ = syndeti.Given a family F and k ∈ Z, the shifted family is de�ned by F + k =

{F + k : F ∈ F}, where F + k = {n + k : n ∈ F}. The extreme lasses inthe above diagram are shift invariant; a shifted o�nite set remains o�nite,a shifted syndeti set remains syndeti. The other lasses fail to be shiftinvariant. This is not surprising for notions involving idempotents due tothe simple fat that if p is an idempotent then p + k is not (unless k = 0).To see that the family ∆∗ is not shift invariant note that it ontains theset of all even integers while it does not ontain the set of all odd integers.When F is not shift invariant, there are two natural ways of building a shiftinvariant family from it:Definition 1.4. For a given family F , F+ denotes the union ⋃
k∈Z

(F+k)while F• denotes the intersetion ⋂
k∈Z

(F + k).When applying these operations to a dual family F∗, we will write F∗
+and F∗

• , skipping the parentheses in what should formally be (F∗)+ and
(F∗)•. This onvention omplies with the existing notation e.g. for IP∗

+-sets.We will all F∗
+ the extended dual family. Note that, in general, F∗

+ is nota dual family. On the other hand, by Lemma 1.1(2), the family F∗
• is thedual of F+ (it ould be written as (F+)∗, but we will not use this onfusingsymbol). The elements of F∗

• are muh larger than those of F∗ as they mustinterset every set in the family F+ whih is muh riher than F . If F isa union of ultra�lters, so is F+, thus F∗
• is an intersetion of ultra�lters,and hene in partiular a �lter. It seems that the type F∗

• of shift invariantfamilies has not been su�iently reognized in the existing literature. Hereis the diagram inluding all dual and extended dual lasses related to thefamilies disussed so far:
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I∗
• ⊂ ∆∗

• ⊂ IP∗
• ⊂ D∗

• ⊂ C∗
• ⊂ T ∗

•

|| ∩ ∩ ∩ ∩ ||

I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗

|| ∩ ∩ ∩ ∩ ||

I∗
+ ⊂ ∆∗

+ ⊂ IP∗
+ ⊂ D∗

+ ⊂ C∗
+ ⊂ T ∗

+Now we will show that in this diagram no other inlusions hold exeptthe ones that are shown and those obtained by omposition. First, observethe following property of all △-sets F : a ertain distane between elementsof F appears in�nitely many times. Indeed, in any di�erene set △(S) with
S = (sn) the distane |s2 − s1| ours between all pairs of elements sn − s1and sn − s2 (n > 2). Obviously, the same property holds for shifted △-sets.We onlude that the set of powers of 2 does not ontain any shift of any
△-set, whih implies that the omplement of the powers of 2 is △∗

•. Henethe family ∆∗
• is larger than the lass I∗ of o�nite sets. Further, the set of allodd numbers is a△∗

+-set and is not an IP-set, hene in the diagram it esapesany lass ontained in C∗. Likewise, the set of all even integers is a △∗-setand not C∗
•. The onstrution of an IP∗

• but not △∗
+ is provided in Theorem2.11(1). The existene of a D∗

• but not IP∗
+ will follow from Theorem 1.7below. A C∗

• but not D∗
+ example is our Theorem 2.11(2). Finally, a syndetiset whih is not C∗

+ is provided in [B2, Theorem 2.10℄. All other �unwanted�inlusions are now eliminated by superposition.It is worth notiing that the family C+ (shifted entral sets) oinides with
PS, the family of pieewise syndeti or PS-sets (a set is pieewise syndeti if itis the intersetion of a thik set and a syndeti set). The proof an be found in[H-S, Theorem 4.43()℄. Thus, C∗

• = PS∗, the dual to the family of pieewisesyndeti sets. Elements of this dual an be easily identi�ed as �syndetiallythik�, meaning that for every E ∈ PS∗ and n ≥ 1, intervals of length nappear in E with bounded gaps (in [D℄ suh sets have been alled S-sets).This paper fouses on the role the notions of largeness of subsets of
Z play in ergodi theory and topologial dynamis. Reall that (X,T ) isa (topologial) dynamial system if X is a ompat Hausdor� spae and
T : X → X is a homeomorphism. The families de�ned as unions of ertainidempotents (IP-sets, C-sets and D-sets) have interpretations (and indeedonvenient alternative de�nitions) as families of sets of the form {n ∈ Z :
(Tnx, Tny) ∈ U}, where y is a reurrent point, the pair (x, y) is proximal (4)and U is a neighborhood of (y, y) in X ×X.While the families of IP-, C- and D-sets are useful in topologial dynam-is, their dual and extended dual families �nd appliations in ergodi theory.

(4) Two points x, y in a topologial dynamial system (X, T ) are proximal if the setof pairs (T nx, T ny) has an aumulation point on the diagonal.



HIERARCHY OF MIXING PROPERTIES 123

For example we will show how notions of largeness suh as D∗
+, D∗

• and IP∗
•an be used to haraterize the familiar ergodi-theoreti notions of ergodi-ity, weak mixing and mild mixing. As already mentioned in the introdution,in this paper we study the sets of times of fat intersetion,

RεA,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B) − ε}.In the spirit of Khinhin's theorem we will loate those sets for spei� typesof systems in our diagram of �large sets�. First of all, the Khinhin theoreman be strengthened: the set RεA,A is always △∗ (see Theorem 3.1). It isnot very surprising that the sets RεA,A do not form a shift invariant fam-ily. However, to apture the fat intersetions for arbitrary two sets A and
B (this only makes sense in ergodi systems) one needs a shift invariantnotion simply beause Rε

A,T kB
= RεA,B + k. The most natural andidate,namely the lass ∆∗

+, turns out to be too restritive. The sets of times offat intersetion are in this lass only for ertain rather speial types of sys-tems, e.g. systems with disrete spetrum. The smallest lass in our diagramthat su�es for all ergodi systems is the extended dual D∗
+. However, uri-ously enough, we will show that for the notions of mixing under study, thesets RεA,B are �aptured� by the more restritive shift invariant dual of theform F∗

• : for weak mixing this is D∗
•, for mild mixing this is IP∗

•, and formixing, diretly from the de�nition, this is I∗ (whih an also be writtenas I∗
• ).Let us brie�y reall some of the ergodi-theoreti notions:Definition 1.5.(1) The system (X,B, µ, T ) has disrete spetrum if L2(µ) is spanned bythe eigenfuntions of the unitary operator indued by T .(2) The system (X,B, µ, T ) is weakly mixing if the produt system

(X ×X,B × B, µ× µ, T × T ) is ergodi.(3) The system (X,B, µ, T ) is mildly mixing if there are no nontrivialrigid L2-funtions. (A funtion f ∈ L2(µ) is rigid if Tnkf → f in L2for some sequene nk → ∞.)(4) The system (X,B, µ, T ) is mixing if for any two sets A,B ∈ B onehas µ(A ∩ TnB) → µ(A)µ(B) as n→ ∞.We stress that the appropriate ategorization of fat intersetions for allpairs of sets is in many ases equivalent to a given ergodi-theoreti notion,whih makes the hierarhy of largeness very useful. In the following theoremwe ollet formulations of various familiar notions of mixing in terms of sets
RεA,B (see also Final remarks at the end of the paper). Some of the itemsin Theorem 1.6 below are mere reformulations of well known fats (see forexample [F℄), others have relatively easy proofs provided in Setion 3 (seealso Remark 1 below).
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Given a system (X,B, µ, T ) we denote by R(X,B, µ, T ) the family of allsets of times of fat intersetion in this system,R(X,B, µ, T ) = {RεA,B : ε > 0,

A,B ∈ B}.Theorem 1.6. Let (X,B, µ, T ) be an invertible probability measure pre-serving system. Then:(1) For any A ∈ B and any ε > 0 we have RεA,A ∈ ∆∗.(2) If (X,B, µ, T ) is ergodi and has disrete spetrum then R(X,B, µ, T )
⊂ ∆∗

+.(3) (X,B, µ, T ) is ergodi ⇔ R(X,B, µ, T ) ⊂ D∗
+ ⇔ R(X,B, µ, T ) ⊂ C∗

+

⇔ R(X,B, µ, T ) ⊂ T ∗.(4) (X,B, µ, T ) is weakly mixing ⇔ R(X,B, µ, T ) ⊂ D∗ ⇔ R(X,B, µ, T )
⊂ D∗

• ⇔ R(X,B, µ, T ) ⊂ C∗ ⇔ R(X,B, µ, T ) ⊂ C∗
• .(5) (X,B, µ, T ) is mildly mixing ⇔ R(X,B, µ, T )⊂IP∗⇔R(X,B, µ, T )

⊂ IP∗
• (f. Chapter 9, Setion 4 in [F℄).(6) (X,B, µ, T ) is mixing ⇔ R(X,B, µ, T ) ⊂ I∗ ⇔ R(X,B, µ, T ) ⊂ ∆∗

⇔ R(X,B, µ, T ) ⊂ ∆∗
• (see [K-Y℄ and Remark 1(f) below).Remark 1. Some of the equivalenes in Theorem 1.6 are trivial or veryeasy, some others follow from known results:(a) It is lear that in (3) only the �rst equivalene needs a proof, theother two follow from inlusions of the families of sets and from the fat thatin nonergodi systems the family R(X,B, µ, T ) ontains the empty set, so

R(X,B, µ, T ) 6⊂ T ∗.(b) Sine for any system (X,B, µ, T ) the family R(X,B, µ, T ) is shiftinvariant, it is obvious that R(X,B, µ, T ) ⊂ F ⇔ R(X,B, µ, T ) ⊂ F• forany family F .() Notie that ifR(X,B, µ, T ) ⊂ F , where F is a �lter, then, intersetingeah set RεA,B with the orresponding set RεA,Bc , we �nd that the sets of timesof aurate intersetion
QεA,B = {n ∈ Z : |µ(A ∩ TnB) − µ(A)µ(B)| < ε}also belong to F . In other words, Q(X,B, µ, T ) = {QεA,B : ε > 0, A,B ∈ B}

⊂ F . (Clearly, sineQεA,B ⊂ RεA,B , the onverse impliation also holds.) Thusstatements (4)�(6) in Theorem 1.6 are equivalent to analogous statementswith R(X,B, µ, T ) replaed by Q(X,B, µ, T ).(d) If the system (X,B, µ, T ) is not weakly mixing then one an �ndtwo sets A and B and an ε > 0 suh that RεA,A and RεA,B are disjoint (f.Theorem 4.31 in [F℄), and so they annot both be C∗-sets. Thus the ondition
R(X,B, µ, T ) ⊂ C∗ implies weak mixing (5). Hene, using remark (b) and

(5) The same fat is proved (by a di�erent method) in [K-Y, Proposition 5.2℄, inresponse to a question formulated in the preliminary version of this paper.
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obvious inlusions, we onlude that also in (4) only the �rst equivaleneneeds a proof. In fat, the �rst impliation ⇒ an be dedued (using ())from the lassial fat that weak mixing is equivalent to the ondition
lim
n→∞

1

n

n−1∑

i=0

|µ(A ∩ T iB) − µ(A)µ(B)| = 0 for any sets A,B ∈ B.(e) The �rst equivalene in (5) (in terms of aurate intersetions) isProposition 9.22 of [F℄, the seond follows from (b).(f) The �rst equivalene in (6) applied to aurate intersetions beomesmerely the de�nition of mixing. The seond equivalene in (6) (formulatedfor aurate intersetions) is nontrivial and has reently been proved in [K-Y,Theorem 4.4℄ (see also [K-Y, Proposition 5.1℄, formulated in response to aquestion in the preliminary version of our paper).To summarize the ontent of the above remark, only (1), (2) and portionsof (3) and (4) require proofs (see Theorems 3.1, 3.2, 3.8 and 3.9 in the nextsetion, respetively). For ompleteness we will also provide a proof of (5)using the language of idempotents (see Theorem 3.10).The following two results (whih are proved in Setions 4 and 5) isolatea new lass of systems de�ned in terms of fat intersetions and situatedstritly between weak and mild mixing. A priori it ould happen that forweakly mixing systems the sets RεA,B always belong to the intersetion of
IP∗

+ and D∗
•. The following theorem shows that this is not always so. (Italso provides a proof that the family D∗

• \ IP
∗
+ is nonempty.)Theorem 1.7. There exists a weakly mixing probability measure preserv-ing system (X,B, µ, T ), sets A,B ∈ B and ε > 0 suh that the set RεA,B isnot IP∗

+.On the other hand, the requirement that all sets RεA,B are IP∗
+ is insuf-�ient for mild mixing (in partiular D∗

• ∩ IP∗
+ \ IP∗ is nonempty):Theorem 1.8. There exists a weakly mixing but not mildly mixing prob-ability measure preserving system (X,B, µ, T ) suh that all the sets RεA,B areIP∗

+ (but not all of them are IP∗).
Questions.(a) Does there exist a mildly mixing system for whih not all sets RεA,Bbelong to ∆∗

+ (f. Theorem 2.11(1))?(b) Does there exist a mildly mixing nonmixing system for whih all sets
RεA,B belong to ∆∗

+? (Here we do not even know whether the family
IP∗

• ∩∆
∗
+ \∆∗ is nonempty.)() More generally, what is the dynamial ondition equivalent to

R(X,B, µ, T ) ⊂ ∆∗
+?
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The following �gure gives an overview of the lasses of systems understudy and inlusions between them. The symbol R(F) stands for the lassof systems (X,B, µ, T ) suh that R(X,B, µ, T ) ⊂ F .

2. IP-sets, entral sets and D-sets in topologial dynamis. Re-all that βZ is the Stone��eh ompati�ation of Z onsisting of ultra�lters,whih has a natural semigroup struture. On βZ there is also the naturalation τ whih extends the map n 7→ n+ 1 on Z.If p ∈ βZ is an ultra�lter then the p-limit of a sequene xn of elementsof a ompat spae is de�ned by the rule
p-limxn = x ⇔ (∀ open U ∋ x) {n ∈ Z : xn ∈ U} ∈ p.The following fat will be used repeatedly in our paper: if p is an idempo-tent and T is a ontinuous self-map of a ompat spae then p-limTnx = yimplies p-limTny = y (see Proposition 3.2 in [B2℄).Every transitive topologial dynamial system (X,T ) (with a transitivepoint x0) is a topologial fator of (βZ, τ) via the map p 7→ p-limTn(x0)(see e.g. Proposition 7.3 in [E℄).The orbit losure of a point x in a topologial dynamial system (X,T )is the set O(x) = {Tnx : n ∈ Z}. A point x in (X,T ) is reurrent if for everyneighborhood Ux ∋ x there exists n 6= 0 suh that Tnx ∈ Ux.It is known ([F, Theorem 2.17℄) that the set F of return times of areurrent point x, F = {n ∈ Z : Tnx ∈ Ux}, is an IP-set. We also haveTheorem 2.1. A set E ⊂ Z is IP if and only if there exist a ompatmetrizable dynamial system (X,T ), a pair of points x, y ∈ X suh that y
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is reurrent and (y, y) belongs to the orbit losure of (x, y) in the produtsystem (X ×X,T × T ), and an open neighborhood U(y,y) of (y, y) suh that
E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Remark 2. Note that if (y, y) belongs to the orbit losure of (x, y) then
x and y are proximal. In general, the onditions that y is reurrent and x isproximal to y do not imply (y, y) ∈ O(x, y). For example, x an be a �xpointin the orbit losure of a reurrent point y 6= x. In order that (y, y) ∈ O(x, y)the reurrene of y and the proximality of x and y must be realized along aommon sequene of times.Proof of Theorem 2.1. Let y and x be suh that y is a reurrent pointin X with (y, y) ∈ O(x, y) and let U(y,y) be an open neighborhood of (y, y).Consider the set E′ = {n ∈ Z : (Tnx, Tny) ∈ Uy × Uy}, where Uy × Uyis a produt neighborhood of (y, y) ontained in U(y,y). It is lear that theset E′ is in�nite, so it ontains some s 6= 0. Suppose E′ ontains FS(S),where S is some �nite set not ontaining zero. Let Vy ⊂ Uy be an openneighborhood of y suh that T s(Vy) ⊂ Uy for all s ∈ S. We an �nd 0 6=

s′ /∈ S for whih (T s
′

x, T s
′

y) ∈ Vy × Vy. Then (T s
′

x, T s
′

y) ∈ Uy × Uy and
(T s

′+sx, T s
′+sy) ∈ Uy×Uy for every s ∈ S. We have shown that E′ ⊃ FS(S′),where S′ = S ∪ {s′}. By indution, we will obtain a set FS(S) (where S isin�nite) ontained in E′, whih proves that E′ (as well as E) is an IP-set.To prove the onverse, onsider an arbitrary IP-set E and let x = (x(n))n∈Zbe the harateristi funtion of E viewed as an element of the shift system

X = {0, 1}Z. De�ne y = p-limTnx, where p is an idempotent suh that
E ∈ p (see De�nition 1.2(1)). Following the proof of Theorem 3.6 in [B2℄,we laim that the sequene y starts with the symbol 1: y(0) = 1. By thede�nition of p-lim, the set R = {n ∈ Z : (Tnx)(0) = y(0)} belongs to p.So, the intersetion R ∩E is nonempty (it belongs to p), whih implies thatthere exists n ∈ E with x(n) = y(0). But x(n) = 1 if and only if n ∈ E,so y(0) = 1. This implies that E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where
U(y,y) is de�ned as U1 × X, where U1 is the ylinder of elements startingwith 1.We will now introdue C-sets and D-sets in a similar way, by imposingadditional onditions on the reurrene of y.A point y ontained in a dynamial system (X,T ) is uniformly reurrentif, for any neighborhood U of y, the set of return times {n ∈ Z : Tny ∈ U}is syndeti. It is well known that y is uniformly reurrent if and only if theorbit losure O(y) of y is minimal.Central sets have been de�ned by H. Furstenberg ([F, Def. 8.3℄) as follows:Definition 2.2. A set C ⊂ Z is entral if there exists a ompat metriz-able dynamial system (X,T ), a point x ∈ X proximal to a uniformly reur-
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rent point y ∈ X and an open neighborhood Uy of y suh that

C = {n ∈ Z : Tnx ∈ Uy}.One an show that C is entral if and only if C is a member of a minimalidempotent in βZ (see [B-H1, Corollary 6.12℄ and [B2, Theorem 3.6℄). Wehave already used this equivalene in Setion 1 (De�nition 1.2).Central sets an also be haraterized with the help of produt systems:Theorem 2.3. A set C ⊂ Z is entral if and only if there exist a ompatmetrizable dynamial system (X,T ), a pair of points x, y ∈ X where y isuniformly reurrent and (y, y) belongs to the orbit losure of (x, y) in theprodut system (X × X,T × T ), and an open neighborhood U(y,y) of (y, y)suh that
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Proof. As mentioned in Remark 2, even if y is reurrent and x is proximalto y, (y, y) does not have to belong to the orbit losure of (x, y). Neverthe-less, it is easy to see that if y is uniformly reurrent then proximality of

x and y does imply that (y, y) belongs to the orbit losure of (x, y). Thisobservation is ruial to the proof. Let C be entral, and let x and y beas in De�nition 2.2. Then (y, y) belongs to the orbit losure of (x, y), and
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where U(y,y) = Uy × X. Conversely, if
C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)} with assumptions on x and y as in theformulation of the theorem, then C is entral diretly by De�nition 2.2, using
(x, y) and (y, y) as a pair of points in the diret produt (X × X,T × T ).Notie that (y, y) is uniformly reurrent in the produt system.Now we fous on D-sets. In the introdution we have de�ned them analo-gously to C-sets by replaing minimal idempotents by a wider lass of idem-potents all of whih have positive upper Banah density, so that the lass
D of D-sets is (stritly) intermediate between IP and C. We are interestedin obtaining a haraterization of D-sets, analogous to those of IP-sets andC-sets (in terms of visits of (Tnx, Tny) to U(y,y)) by imposing on y an ap-propriate reurrene ondition, as de�ned below.Definition 2.4. A point y in a (not neessarily metrizable) dynamialsystem (X,T ) is essentially reurrent if for any neighborhood Uy of y the setof visits {n ∈ Z : Tny ∈ Uy} has positive upper Banah density.Obviously, sine every syndeti set has positive upper Banah density,every uniformly reurrent point is essentially reurrent. A haraterizationof essentially reurrent points in terms of the properties of their orbit losuresis provided below.Definition 2.5. A dynamial system (Y, T ) will be alled measure satu-rated if the union of the topologial supports of all invariant probability
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measures (6) arried by Y is dense in Y . In other words, for every nonemptyopen set U there exists an invariant measure µ suh that µ(U) > 0.Note that every minimal system is measure saturated.Theorem 2.6. A point y is essentially reurrent if and only if the orbitlosure O(y) is measure saturated.Proof. First let us show that if a point y is essentially reurrent thenits orbit losure is measure saturated. Let Uy ∋ y be an open set and let
U ∋ y be open and suh that U ⊂ Uy. Sine y is essentially reurrent, theset A = {n ∈ Z : Tny ∈ U} has positive upper Banah density d. Let Inbe a sequene of intervals in Z with |In| → ∞ (as n → ∞) suh that theratios |A ∩ In|/|In| onverge to d. Let µn (n = 1, 2, . . . ) be the normalizedounting measures supported by the sets {T iy : i ∈ In}, and let µ be a weak∗aumulation point (7) of µn. Clearly, µ is T -invariant, supported by O(y)and satis�es µ(U) > 0, and thus µ(Uy) > 0. We have proved that the losure
M of the union of the supports of all invariant measures arried by O(y)ontains y. Sine M is a losed invariant set, it follows that M = O(y), i.e.,
O(y) is measure saturated.Conversely, assume that O(y) is measure saturated. Let Uy ∋ y be anopen set. Then there exists an invariant measure µ supported by O(y) suhthat µ(Uy) > 0. The ergodi theorem ensures that the funtion

f(x) = lim
n→∞

1

n

n∑

i=1

1Uy(T i(x))

satis�es Tf dµ = µ(Uy) > 0. Thus there exists y′ ∈ O(y) with f(y′) = d > 0.In other words, the set R = {n ∈ Z : Tny′ ∈ Uy} has natural density d, i.e.,
limn |R ∩ [1, n]|/n = d. Note that for any m ∈ N there exists n ∈ Z suh thatfor any i ∈ [0,m], Tn+i(y) ∈ Uy if and only if T i(y′) ∈ Uy. It follows thatthe set {n ∈ Z : Tny ∈ Uy} has positive upper Banah density (at least d)and hene y is essentially reurrent.Definition 2.7. Let p be an idempotent in βZ. We will all p essentialif every member of p has positive upper Banah density.We are in a position to provide a dynamial de�nition of D-sets, whihis ompletely analogous to the haraterizations of IP-sets and entral sets.

(6) The lassial Bogolyubov�Krylov theorem guarantees the existene of at least oneinvariant probability measure. The topologial support of a probability measure is thesmallest losed set of measure 1.
(7) A sequene of measures µn onverges to µ weak∗ if Tf dµn →

T
f dµ for everyontinuous funtion f on the spae Y .
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Theorem 2.8. A set D ⊂ Z is a D-set if and only there exists a ompatmetrizable dynamial system (X,T ), points x, y ∈ X with y essentially reur-rent for whih the orbit losure of (x, y) in the produt system (X×X,T×T )ontains (y, y), and an open neighborhood U(y,y) of (y, y) suh that

D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.Before we prove the theorem we need a series of lemmas.Lemma 2.9. An idempotent q ∈ βZ is an essentially reurrent point in
(βZ, τ) if and only it is essential.Remark 3. Glasner [G℄ introdues a set Z in βZ de�ned as the losureof the union of the supports of all invariant measures on βZ and he provesthat it is a so-alled kernel for the family of sets of positive upper Banahdensity. In fat one impliation of the above lemma ould be dedued fromthat result, but we hoose to give an independent proof.Proof of Lemma 2.9. Let q be essentially reurrent and let E be anyelement of q. The losure E of E in βZ an be interpreted as a neighborhoodof q. There exists an invariant measure µ suh that µ(E) > 0. Sine µ issupported by the orbit losure of 0, the set of visits of 0 to this neighborhood(whih is E) has positive upper Banah density (by the same argument as inthe proof of Theorem 2.6). The onverse is also true. The map p 7→ p+q is afator map from βZ onto O(q), and both 0 and q map to q. A neighborhood
Uq of q in O(q) lifts to a neighborhood Vq of q in βZ and the set Rq of timesof visits of q in Uq ontains the set R0 of times of visits of 0 in Vq. But R0 isa member of q (beause its omplement is not). Sine q is assumed to be anessential idempotent, all members of q have positive upper Banah density(see De�nition 2.7). It follows that R0 has positive upper Banah densityand hene, by De�nition 2.4, q is essentially reurrent.It is obvious that if π : X → Y is a topologial fator map and y ∈ Yis uniformly reurrent then there exists a uniformly reurrent π-lift x ∈ Xof y (beause the preimage of O(y) is invariant and any one of its minimalsubsets must map onto O(y)). The lemma below is an analogous statementfor essentially reurrent points.Lemma 2.10. Let π : X → Y be a topologial fator map (surjetion)between dynamial systems (X,S) and (Y, T ). If y is an essentially reurrentpoint in Y then there exists an essentially reurrent π-lift x of y. Moreover ,we an �nd suh an x with O(x) ontaining no proper losed invariant subsetmapped by π onto O(y).Proof. Applying Zorn's lemma to the family of all lifts of O(y), i.e., oflosed invariant sets mapped by π onto O(y), we an �nd a minimal suhlift X0 ⊂ X. Let x be any lift of y ontained in X0. Sine O(x) ⊂ X0 and it
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maps onto O(y), by minimality O(x) = X0. On the other hand, sine everyinvariant measure arried by O(y) lifts to at least one invariant measurearried by O(x), the losure X1 of the union of the supports of all invariantmeasures arried by O(x) maps onto a losed set ontaining the union ofthe supports of all invariant measures arried by O(y). Sine y was assumedto be essentially reurrent, X1 maps onto O(y) and hene, being a losedinvariant subset of X0, it also equals X0. This proves that x is essentiallyreurrent, and that its orbit losure is a minimal lift of O(y), as required.Proof of Theorem 2.8. Let D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where
x and y are as in the formulation of the theorem. Consider a fator map
π : βZ → O(x, y) de�ned by p 7→ π(p) := p-lim(Tnx, Tny). By assump-tion, O(y, y) ⊂ O(x, y). Sine O(y, y) is ontained in the diagonal, it istopologially onjugate to O(y) and hene (y, y) is essentially reurrent. ByLemma 2.10, we an �nd in βZ an essentially reurrent π-lift p1 of (y, y)whose orbit losure is a minimal lift of O(y, y). We will show that p1 an bereplaed by an idempotent. Consider the set

I = {p ∈ O(p1) : π(p) = (y, y)}.By an elementary veri�ation, I is a losed semigroup of βZ, so it ontainsan idempotent q. Sine q maps to (y, y), its orbit losure maps onto O(y, y).By minimality of the lift O(p1), q has the same orbit losure as p1, and heneis essentially reurrent.Finally, D ∈ q follows from two fats: 1) (Tnx, Tny) does not belong tothe neighborhood U(y,y) of (y, y) for all n ∈ Dc; 2) q-lim(Tnx, Tny) = (y, y).This implies Dc /∈ q, so that D must belong to q. We have ompleted theproof of one impliation.To prove the onverse, let D be a D-set (i.e., a member of an essentiallyreurrent idempotent). Identify the harateristi funtion of D with a point
x in {0, 1}Z and denote the shift transformation by T . De�ne y = q(x) :=
q-limTnx. Sine q is an idempotent, q(y) = y, so q(x, y) = (y, y), i.e., theorbit of (x, y) aumulates at (y, y), as required. Now we repeat the argumentused in the proof of Theorem 2.1: The set R = {n ∈ Z : (Tnx)(0) = y(0)}belongs to q, so R∩D 6= ∅. Sine x(n) = 1 for n ∈ D, we have y(0) = 1. As aonsequene, D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, U(y,y) = U1×X, U1 denotesthe ylinder of elements starting with 1, and X denotes the full shift spae.The last thing we need to verify is that y is essentially reurrent. But thisis immediate, beause y is the image of q via the fator map π : βZ → O(x)given by p 7→ p(x), and it is elementary to see that any fator map preservesessentially reurrent points.Remark 4. Note that if y is an essentially reurrent point in the orbitlosure of x and x, y are proximal, then the set {n ∈ Z : Tnx ∈ Uy} need
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not be a D-set. For example, let y = (y(n)) be a forward transitive point inthe full shift on three symbols 0, 1, 2 (suh a y is essentially reurrent) with
y(0) = 0 and let x be as follows: x(n) = 1 whenever y(n) = 1 (this makes xand y proximal), x[m,n] = y[0, n−m] if y[m,n] = 2 . . .2 and y(m− 1) 6= 2(then x is forward transitive, hene its orbit losure ontains y), and x(n) = 2whenever y(n) = 0. Then the set {n ∈ Z : Tnx ∈ Uy} is not even an IP-set:If p-limTn(x) = y then p-limTn(y) 6= y (p-limTn(y) has the symbol 2 atthe zero oordinate), and hene p is not an idempotent.We now fous on the dual families, more preisely, on proving the �non-ontainment� laims formulated in the introdution below the main diagram.Theorem 2.11.(1) There exists an IP∗

•-set whih is not △∗
+.(2) There exists a C∗

•-set whih is not D∗
+.Proof. A set of integers enumerated inreasingly as (an) (over n ∈ Z or

n ∈ N) is said to have progressive gaps if it ontains a subsequene ank
(wewill all eah �nite subset {ank+1, ank+2, . . . , ank+1

} a hunk) suh that for
nk+1 < i ≤ nk+1 one has ai−ai−1 > ank+1

−ai (inside eah hunk every gapis larger than the distane to the right end of the hunk) and ank+1−ank
→ ∞(the gaps between the hunks tend to in�nity). The struture of a set withprogressive gaps is shown below:

.... • .. • •.............. • ... • . • ....................................

hunk︷ ︸︸ ︷
•................ • ... • • ....

an1
an2

an3A typial example of a set with progressive gaps is the di�erene set △(S)for a rapidly (for example exponentially) inreasing sequene S.It is not hard to see that in suh a set, for any �xed d, the set of elements
ai suh that there exists j > i with aj − ai = d is either �nite or has gapstending to in�nity (beause the distane d an eventually our only insidethe hunks and then only one in every hunk).Notie the following property of all IP-sets F : a ertain distane d be-tween elements of F appears along an IP-set. Indeed, if F ontains the setof �nite sums FS(S) with S = (sn) then the distane |s1| ours betweenall pairs b and s1 + b for every b ∈ FS(A′), where A′ = (sn)n≥2. Clearly,an analogous statement holds for shifted IP-sets: a ertain distane d oursalong a shifted IP-set. In partiular, the gaps between pairs with distane ddo not tend to in�nity. We onlude that a set with progressive gaps doesnot ontain any shifted IP-set.Let (rk)k≥1 be a sequene ontaining all integers. Using the above ob-servation we will now desribe how to onstrut a set E as the union overall integers k of △-sets Ek shifted by rk suh that E has progressive gaps,
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hene ontains no shifted IP-sets. Clearly, the omplement of suh a set E isIP∗
• and not △∗

+. Begin with the di�erene set of a rapidly growing sequene,so that it has progressive gaps. Let E1 be this di�erene set shifted by r1.Indutively, suppose a union of k shifted (by r1, . . . , rk) di�erene sets makesa set Ek with progressive gaps. We will now reate a new di�erene set △(S)with progressive gaps, whose hunks ��t into the large gaps� of Ek − rk+1 insuh a way that Ek+1 de�ned as Ek ∪ (△(S) + rk+1) maintains progressivegaps. Let s1 = 1. Suppose we have de�ned s1, . . . , sn ∈ S. This determines apart of △(S) and the �shape� of the next hunk {sn+1 − sn, . . . , sn+1 − s1}.The next element sn+1 of S determines only the shifting of this new hunk.By an appropriate hoie of sn+1 we an position this hunk in the entralpart of some very large gap between the hunks of Ek − rk+1. In the union
(Ek − rk+1)∪△(S) this gap splits into two gaps about half the original sizewith a new hunk in the middle. Similarly we hoose sn+2, and so on, untilthe whole sequene S is de�ned. It is lear that (Ek − rk+1) ∪ △(S) (andhene Ek ∪ (△(S) + rk+1)) maintains progressive gaps. We an pass to step
k + 2 and further steps. If in eah step k we split only gaps larger thansome inreasing (with k) threshold value, the set E =

⋃
k Ek will maintainprogressive gaps, and it is a union of shifted △-sets, as needed to ompletethe proof of statement (1).We now desribe the onstrution of a C∗

•-set whih is not D∗
+. The ideais the same as in the preeding argument, exept that we will use di�erentproperties of sets. Suppose there exists a non-pieewise syndeti set E suhthat E + k is a D-set for eah k ∈ Z. Suh an E ontains no shifted C-sets(reall that C+ = PS). Thus the omplement of E is a C∗

•-set, and sineevery shift of E misses a D-set, it is not a D∗
+-set.It remains to onstrut a non-pieewise syndeti set E. Consider a topo-logially weakly mixing (8) and measure saturated system (X,T ) with theproperty that the losure of the union of all minimal sets is smaller than

X. An expliit onstrution of suh an example is provided in the appendix(the example is in fat topologially mixing, with an invariant measure hav-ing full support, and with a �xpoint as the unique minimal set). Anotherexample with the same properties was indiated by F. Blanhard: it is thesubstitution 0 7→ 001, 1 7→ 1 (see [B-H-S, Proposition 55℄). Let U be an openset disjoint from another open set V ontaining the union of all minimal sets.Notie that the orbit losure of y is onjugate to that of (y, y) in the produtsystem. If y is a transitive point then it is essentially reurrent, and heneso is (y, y). There exists a pair (x, y) transitive in X ×X with both x and y
(8) A topologial dynamial system (X, T ) is said to be topologially weakly mixing(resp. mixing) if for any nonempty open sets A, B ⊂ X the set {n ∈ Z : T nA ∩ B 6= ∅} isthik (resp. o�nite).
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ontained in U . Then, for any integer k, the pair (T kx, y) is also transitive,hene its orbit losure ontains (y, y). Thus the set {n − k : Tnx ∈ U} is aD-set (write it as {j : (T jT kx, T jy) ∈ U ×X}). This implies that any shiftof the set E = {n ∈ Z : Tnx ∈ U} is a D-set, as required. This set E is notpieewise syndeti; if it were we ould easily onstrut a uniformly reurrentpoint in the losure of U , whih is impossible, sine all suh points are in V .3. Appliations of the dual families to unitary and measure pre-serving ations. This setion ontains proofs of the nontrivial impliationsin Theorem 1.6. We begin with the role of the △∗- and △∗

+-sets.Theorem 3.1 (see Theorem 1.6(1)). In every measure preserving systemthe set RεA,A of times of fat intersetion for one set A is △∗.Proof (f. [B1, p. 49℄; see also [K-Y, Proposition 4.1℄). First observe thatif An is any sequene of sets of equal measure α in a probability spae, thenfor every ε > 0, the inequality µ(Ai ∩ Aj) > α2 − ε holds for at least onepair of indies i < j. Indeed, suppose otherwise and onsider the funtion∑n
i=1 1Ai

. Its inner produt with 1 equals nα, while the square of its L2-normis easily seen to be at most n2(α2 − ε) + n. For large n this ontradits theCauhy�Shwarz inequality.One this is established, take any injetive sequene S = (sn) and let
An = T snA. Then µ2(A) − ε < µ(T siA ∩ T sjA) = µ(A ∩ T sj−siA) for atleast one pair of indies i < j, proving that RεA,A intersets △(S).Remark 5. We remark that the above proof atually shows that RεA,Ahas nonempty intersetion with every large enough �nite di�erene set.Theorem 3.2 (see Theorem 1.6(2)). Let (X,B, µ, T ) be an ergodi ro-tation of a ompat abelian group (where µ is the Haar measure). Then forany A,B ∈ B and ε > 0 the set RεA,B is △∗

+.Proof. The proof is based on a simple observation that for group rotationsKhinhin's theorem takes on a stronger form. Namely, if (X,B, µ, T ) is a (notneessarily ergodi) ompat abelian group rotation, then for any C ∈ B and
ε > 0, one atually sees that the set

RεC = {n ∈ Z : µ(C ∩ T−nC) ≥ µ(C) − ε}is △∗ (note that in the displayed formula we have µ(C) rather than µ(C)2).Indeed, let△(S) = {si−sj} where S = (si). Finding a subsequene sik → ∞suh that T sik (e) onverges we obtain a uniformly onvergent sequene ofmaps T sik . Thus T sik
−sil onverges to the identity uniformly (hene strong-ly in L1(µ)), whih implies that µ(C ∩ TnC) ≥ µ(C) − ε for some n ofthe form sik − sil (belonging to △(S)). Returning to the ergodi ase andtwo sets A,B ∈ B, let us �rst �nd (by ergodiity) an integer n0 suh that
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µ(A ∩ T−n0B) > µ(A)µ(B) − ε/2. Setting C = A ∩ T−n0B one easily seesthat RεA,B ⊃ R
ε/2
C + n0, whih implies the assertion.We will now disuss the onnetions between essential idempotentsand unitary ations. Consider a unitary operator U on a separable Hilbertspae H. We will use the orthogonal deomposition H = Hc ⊕Hwm, where

Hc = {x ∈ H : {Unx}n∈Z
is ompat in the norm topology},

Hwm =

{
x ∈ H :

1

N

N−1∑

n=0

|〈Unx, x〉| → 0

}

(see [Kr, Setion 2.4℄ and [B2, Theorem 4.5℄). Reall that in a Hilbert spaethe norm onvergene limxn = y is equivalent to the onjuntion of theweak onvergene of xn to y and the onvergene of norms lim ‖xn‖ = ‖y‖.Sine any unitary operator U is an isometry, the relation p-limUnx = x forsome p ∈ βZ holds in the weak topology if and only if it holds in the strongtopology.Lemma 3.3. If p ∈ βZ is an idempotent then p-limUnx = x for any
x ∈ Hc.Proof. By de�nition ofHc, U ats on the ompat metri spae {Unx}n∈Zwhere it is distal (it is atually an isometry). In distal systems one has
p-limUnx = x for any idempotent (if p-limUnx = y for an idempotent pthen also p-limUny = y, hene x and y are proximal, and so, by distality,
x = y).The above statement an be reversed for essential idempotents:Lemma 3.4. If p ∈ βZ is an essential idempotent and p-limUnx = x forsome x ∈ H then x ∈ Hc.Proof. For ε > 0 onsider the set E = {n ∈ Z : ‖Unx − x‖ < ε/2}.Clearly E ∈ p. Note that for any n1, n2 ∈ E one has

‖Tn1−n2x− x‖ = ‖Tn1x− Tn2x‖ ≤ ‖Tn1x− x‖ + ‖Tn2x− x‖ < ε.Sine E ∈ p, it has positive upper Banah density, whih implies that E−Eis syndeti (see [F, Prop. 3.19(a)℄ or [B1, p. 8℄), i.e., �nitely many shiftedopies of E − E over Z. This in turn implies that �nitely many preimagesof the ε-ball around x over the orbit of x. Sine U is an isometry we haveovered the orbit by �nitely many ε-balls, hene the orbit of x is preompat,i.e., x ∈ Hc.Lemma 3.5. If p ∈ βZ is an essential idempotent then p-limUnx = 0weakly for any x ∈ Hwm.Proof. By ompatness of the ball of radius ‖x‖ around zero in the weaktopology, there exists some y suh that p-limUnx = y weakly. Sine Hwm is
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invariant and losed, y ∈ Hwm. On the other hand, p is an idempotent, so
p-limUny = y. By Lemma 3.4, y ∈ Hc. This implies y = 0.Reall that a unitary operator U ating on a Hilbert spae H is alledweakly mixing if it has no nontrivial eigenvetors. One an show that U isweakly mixing if and only if in the deomposition H = Hc ⊕Hwm one has
Hc = {0} (see [Kr, Thms. 3.4 and 4.4℄). Let now (X,B, µ, T ) be an invertibleweakly mixing system. It is not hard to hek that in this ase the unitaryoperator indued by T on L2(µ) is weakly mixing in the above sense onthe orthoomplement of the spae of onstant funtions. This leads to thefollowing orollary of Lemmas 3.4 and 3.5:Corollary 3.6. An invertible probability measure preserving system
(X,B, µ, T ) is weakly mixing if and only if for every f ∈ L2(X) and anyessential idempotent p ∈ βZ,

p-limTnf =
\
f dµ (in the weak topology).Equivalently , (X,B, µ, T ) is weakly mixing if and only if for any A,B ∈ Band any essentially reurrent idempotent p, p-limµ(A ∩ TnB) = µ(A)µ(B).We now turn our attention to the D∗-sets. It was proved in [B2, Theo-rem 4.4℄ that a unitary operator U ating on a Hilbert spae H is weaklymixing if and only if for any ε > 0 and any pair x, y ∈ H the set Rεx,y =

{n ∈ Z : 〈Unx, y〉 > −ε} is C∗. We will show that a slight modi�ation ofthat proof provides a somewhat stronger result.Theorem 3.7. A unitary operator U ating on a Hilbert spae H isweakly mixing if and only if for any ε > 0 and any pair x, y ∈ H the set Rεx,yis D∗.Proof. If U is weakly mixing then Hc = {0} and the result follows fromLemma 3.5. Assume now that for any ε and x, y ∈ H the set Rεx,y is D∗. If
U is not weakly mixing then there exists x ∈ Hc, x 6= 0. By Lemma 3.3,
p-limUnx = x for any essential idempotent p. Then p-lim 〈Unx, x〉 = ‖x‖2,whih implies that Rεx,−x is not D∗ for ε > 0 small enough.We an now ontinue with proving the statements of Theorem 1.6:Theorem 3.8 (see Theorem 1.6(3)). An invertible probability measurepreserving system (X,B, µ, T ) is ergodi if and only if for any A,B ∈ B and
ε > 0 the set RεA,B belongs to D∗

+.Proof (f. [B2, Theorem 4.11℄). Assume that (X,B, µ, T ) is ergodi. Set
f = 1A and g = 1B. Deompose g = g1 + g2, g1 ∈ Hc, g2 ∈ Hwm. Note that
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g1 dµ = µ(B). By the von Neumann ergodi theorem,

1

N

N−1∑

n=0

\
f(Tnx)g1(x) dµ(x) →

\
f dµ

\
g1 dµ = µ(A)µ(B),hene there exists n0 satisfying Tf(Tn0x)g1(x) dµ(x) > µ(A)µ(B)− ε. Let pbe an essential idempotent. Applying our Lemmas 3.3 and 3.5, we an write

p-limµ(Tn0A ∩ TnB) = p-lim\f(Tn0x)g(Tnx) dµ(x)

= p-lim\f(Tn0x)g1(T
nx) dµ(x) + p-lim\f(Tn0x)g2(T

nx) dµ(x)

=
\
f(Tn0x)g1(x) dµ(x) + 0 > µ(A)µ(B) − ε.This implies that RεA,B − n0 ∈ p, whih proves that RεA,B is D∗

+.The onverse is obvious: if the sets RεA,B are all D∗
+ then they are non-empty, whih implies ergodiity.Theorem 3.9 (see Theorem 1.6(4)). The system (X,B, µ, T ) is weaklymixing if and only if for any A,B ∈ B and ε > 0 the set RεA,B is D∗.Moreover , if (X,B, µ, T ) is weakly mixing then RεA,B has Banah density 1.Proof. Assume that (X,B, µ, T ) is weakly mixing. Then, by Corollary3.6, for any A,B ∈ B and any essential idempotent p we have the equality

p-limµ(A ∩ TnB) = µ(A)µ(B), and hene RεA,B is a D∗-set. Realling thatweak mixing an be haraterized by the relation
lim

N−M→∞

1

N −M

N−1∑

n=M

|µ(A ∩ TnB) − µ(A)µ(B)| = 0,we see that the set RεA,B has Banah density 1.To prove the onverse, assume that (X,B, µ, T ) is not weakly mixing.If µ is ergodi then there exists an eigenfuntion f whih takes values in anontrivial subgroup G of the unit irle and sends the measure µ (via theonjugate map f∗(µ)(A) = µ(f−1A)) to the Haar measure λ on G. Thereexists a sequene of trigonometri polynomials Wk de�ned on the unit irleand onverging in L2(λ) to the harateristi funtion of, say, the uppersemiirle {z : |z| = 1, 0 ≤ arg(z) < π}. Clearly, f assumes values in theupper (half-losed) semiirle with probability α ∈ [1/2, 2/3]. The funtions
Wk◦f onverge in L2(µ) to the harateristi funtion of a set A of measure α.Sine the powers fk are also eigenfuntions, all eigenfuntions belong to Hc,and sine Hc is a losed linear spae, 1A ∈ Hc (9). If µ is not ergodi,the fat that Hc ontains a nontrivial harateristi funtion is immediate.

(9) The existene of a nontrivial harateristi funtion in Hc an also be dedued usingthe lassial fat that an ergodi non-weakly mixing system has a nontrivial Kronekerfator isomorphi to an ergodi rotation on a ompat abelian group.
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Now, by Lemma 3.3 one has, for any essential idempotent, p-lim1T−nA =
p-lim(Tn1A) = 1A, and hene p-limµ(A∩TnAc) = p-limµ(T−nA∩Ac) = 0,so that RεA,Ac is not D∗.Theorem 3.10 (see Theorem 1.6(5), see also Proposition 9.22 in [F℄).The system (X,B, µ, T ) is mildly mixing if and only if for any A,B ∈ B and
ε > 0 the set RεA,B is IP∗.Proof. Assume that (X,B, µ, T ) is mildly mixing. Then for every nonzeroidempotent p ∈ βZ one has p-limµ(A ∩ T−nB) = µ(A)µ(B). To see this itsu�es to verify that p-limTnf = 0 in L2 for every f with zero integral(and then apply this to f = 1B − µ(B)). Indeed, if p-limTnf = g 6= 0 then
p-limTng = g (beause p is an idempotent), hene g is a rigid funtion. Thisimplies RεA,B ∈ p, hene RεA,B is IP∗.To prove the onverse, assume that the system is not mildly mixing. Let
f ∈ L2(µ) be a nononstant real rigid funtion. For some t ∈ R and ε > 0both A = {x : f(x) < t} and B = {x : f(x) ≥ t+ ε} have positive measure.It is easy to see that the set {n ∈ Z : ‖Tnf − f‖ < ε2} is an IP-set, and onthe other hand it is disjoint from RεA,B. Thus RεA,B is not an IP∗-set.4. An example of a weakly mixing system for whih RεA,B is notIP∗

+. Let U be a unitary operator on a separable Hilbert spaeH. Let x ∈ H.It is known that the sequene an = 〈Unx, x〉 is positive de�nite, whih implies
an =

T
zn dν for some probability measure ν (depending on x) supported bythe unit irle T = {z : |z| = 1}. The ation of U on the losed ylisubspae Span{Unx : n ∈ Z} is unitarily isomorphi to the multipliationby the identity funtion z on L2(ν). Temporarily we restrit our attentionto suh ations only, i.e., H will denote L2(ν) and U will stand for themultipliation by the element z. Reall that the Banah�Alaoglu theoremasserts that the unit ball B of L2(ν) is weakly ompat.Clearly, U is a self-homeomorphism of B in the weak topology, hene weobtain a topologial dynamial system (B,U).Let C be a subset of T of positive measure ν. Suppose that p-lim zn = 1C(in the weak topology) for some ultra�lter p ∈ βZ. We will now show thatthere exists an idempotent with the same property. First of all, notie thatthen p-lim zn1C = 1C beause the weak onvergene holds when restritedto C and outside of C we have hanged all funtions to zero. This easilyimplies that the set of ultra�lters p for whih p-lim zn = 1C is a semigroup.It is also losed, so it does ontain an idempotent. Atually one easily showsthat the onverse also holds: p-lim zn is the harateristi funtion of a setfor any idempotent p, but we will not need this.Now assume that ν0 is a nonatomi measure supported by a Kronekerset Λ ⊂ T (see [C-F-S, Appendix 4℄; in partiular, Λ is a topologial Cantor
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set). By de�nition, the sequene of funtions (zn) restrited to Λ is uniformlydense in the set of all ontinuous unimodular funtions on Λ, whih easilyimplies that this sequene is also weakly dense in the (weakly ompat) set
B0(ν0) ⊂ L2(ν0) de�ned as the set of all funtions f satisfying |f | ≤ 1.The system (B0(ν0), U) is now topologially transitive (with the onstantfuntion 1 as a transitive point), and every measurable subset C of Λ (modulothe measure ν0) orresponds to at least one idempotent p via the relation
p-limUn1 = 1C in this system.For some of the onstrutions below we will need a symmetri measure ν,i.e., a measure satisfying ν(C) = ν(C∗), where C∗ = {z : z ∈ C}. Reall thatfor Kroneker sets Λ∩Λ∗ = ∅. Let K = Λ∪Λ∗ and let ν = 1

2(ν0 +ν∗0), where
ν∗0 is a measure on Λ∗ symmetri to ν0. For f0 ∈ B0(ν0) de�ne f ∈ B0(ν)by the rule f(z) = f0(z) for z ∈ Λ and f(z) = f0(z) for z ∈ Λ∗. Themap f0 7→ f establishes a topologial onjugay between (B0(ν0), U) and
(B̃0(ν), U), where B̃0(ν) now denotes the intersetion of B0(ν) with theolletion of all funtions satisfying the symmetry ondition f(z) = f(z) (ineither spae, U is the operator of multipliation by z). It is essential that thefuntion z itself satis�es the above symmetry ondition, so U is well de�nedon B̃0(ν).We now proeed with further details of the onstrution of the example.Consider k ∈ Z. There are two possible ases:
(1) ν{z : |Re zk| > 1/2} > 1/3and (2), the opposite. It follows immediately from the de�nition of a Kro-neker set that both ases are represented by nonempty sets of k's. An el-ementary (but key) observation is that if k and k0 satisfy (2) then k + k0neessarily satis�es (1). We now �x one representative k0 satisfying (2). If ksatis�es (1) then either

ν{z : Re zk > 1/2} ≥ 1/6 or ν{z : Re zk < −1/2} ≥ 1/6.For k satisfying (1) let Ck denote the larger of the above two sets (hooseany one if their measures are equal). For k satisfying (2), Ck is de�ned asthe larger of the sets {z : Re zk+k0 > 1/2} or {z : Re zk+k0 < −1/2}. Thefollowing fats are obvious for eah k:
Ck = C∗

k ,∣∣∣
\
Ck

zk dν
∣∣∣ ≥

1

12
(in ase (1)),

∣∣∣
\
Ck

zk+k0 dν
∣∣∣ ≥

1

12
(in ase (2)).

For uni�ed notation, de�ne r(k) = 0 if k satis�es (1) and r(k) = k0 if k
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satis�es (2). We an now write

∣∣∣
\
Ck

zk+r(k) dν
∣∣∣ ≥

1

12
.Clearly, by symmetry, all the above integrals are real.Let pk be an idempotent orresponding to the set Ck, i.e., suh that

pk -lim zn = 1Ck
(weakly). Then

pk -lim∣∣∣
\
zn+k+r(k) dν

∣∣∣ =
∣∣∣
\
p-lim zn+k+r(k) dν

∣∣∣ =
∣∣∣
\
Ck

zk+r(k) dν
∣∣∣ ≥

1

12
.

Obviously, beause the inequality |
T
g dν| > 1/13 holds on a weakly open setof funtions, the set of n's for whih |
T
zn+k+r(k) dν| > 1/13 belongs to theidempotent ultra�lter pk, hene ontains an IP-set Mk. We have proved thefollowing statement:Lemma 4.1. Let U be a unitary operator on a Hilbert spae H. If x ∈ Hhas spetral measure ν symmetri and onentrated on the union K of aKroneker set Λ and its omplex onjugate re�etion Λ∗ then for every kthere exists an IP-set Mk suh that for every n ∈Mk,

|〈Un+k+r(k)x, x〉| >
1

13
,where r(k) assumes only two values: 0 and some k0 ∈ Z. This implies thatfor E = {n ∈ Z : |〈Unx, x〉| < 1/13}, the intersetion E∩(E+k0) is not IP∗

+.The above onstrution an be applied to weakly mixing measure pre-serving transformations, with an interpretation in terms of fat intersetions(announed in the introdution as Theorem 1.7):Theorem 4.2. There exists a weakly mixing invertible measure preserv-ing transformation (X ′,B′, µ′, T ′), two sets A′, B′ ∈ B′ and ε > 0 suh thatthe set RεA′,B′ of times of ε-fat intersetion is not IP∗
+. In partiular , the set

Rεx,y disussed in Theorem 3.7 need not be IP∗
+.The onstrution will involve spetral theory of Gauss�Kroneker sys-tems, namely the fat that there exists a weakly mixing measure preservingtransformation (X,B, µ, T ) and a funtion f ∈ L2(µ) with zero integral (wewill write f ∈ L2

0(µ)) suh that the spetral measure ν of f with respet tothe unitary operator UT indued by T is supported by a set K ⊂ T as de-sribed in Lemma 4.1 (see e.g. [C-F-S, Chapter 8, Setion 2 and Chapter 14,Setion 4).De�ne J = {n ∈ Z : |〈UnT f, f〉| > 1/13}. By Lemma 4.1, this set ontainsfor eah k the shifted IP-set Mk + k + r(k). Outside a small set A0 ⊂ Xof measure 1/p (p ∈ N) the funtion f an be uniformly, up to some 1/q,approximated by a simple zero integral funtion g onstant on elements of
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some partition A = {Ai : i = 1, . . . , p} of X into sets of equal measure 1/p.By hoosing q and p large enough we an thus ensure that |〈UnT g, g〉| > 1/14for all n ∈ J . Denote by G = (gi)i=1,...,p the vetor with gi = g(Ai). Theformula
F (A) = GAG

Tde�nes a ontinuous funtion on p × p matries A = [ai,j ], assuming value0 at the matrix with all entries equal to 1/p2. Thus there exists a positiveonstant δ suh that |GAG
T| > 1/10 implies |ai,j − 1/p2| > δ for at leastone pair of indies (i, j). For given n let An denote the matrix with entries

ai,j = µ(TnAi ∩Aj). As is easily veri�ed,
〈UnT g, g〉 = F (An),so for n ∈ J we dedue that

(∗) µ(TnAi ∩Aj) di�ers from µ(Ai)µ(Aj) = 1/p2 by at least δfor at least one pair of sets Ai, Aj (depending on n).The �nal step is a onstrution of a pair of sets whih satis�es a similar�fault of independene� (perhaps with a smaller onstant) for all n in theunion of Mk + k. These sets will be found in the diret 2p2-fold Cartesianprodut (X ′, µ′, T ′) = (X×2p2 , µ×2p2, T×2p2) as desribed below. Note that
(X ′, µ′, T ′) remains a weakly mixing system. The desired sets are:
A = (A1 × · · · ×A1) × (A2 × · · · ×A2) × · · · × (Ap × · · · ×Ap)×

×(T k0A1×· · ·×T k0A1)×(T k0A2×· · ·×T k0A2)×· · ·×(T k0Ap×· · ·×T k0Ap),with p repetitions in eah parenthesis, and
B = (A1 × · · · ×Ap) × · · · × (A1 × · · · ×Ap),with 2p repetitions of A1 × · · · ×Ap. Now observe that

µ′(T ′n+k
A′ ∩B′) =

∏

i,j

µ(Tn+kAi ∩Aj) ·
∏

i,j

µ(Tn+k+k0Ai ∩Aj).Both produts are of p2 nonnegative numbers whose sum is 1. It is an ele-mentary exerise that among suh produts the largest is (1/p2)p
2 ahievedonly if all terms are equal to 1/p2. Otherwise it is stritly smaller. So, byontinuity, whenever at least one term of this produt di�ers from 1/p2 by

δ (in either diretion), then the whole produt is smaller than (1/p2)p
2

− γ,where γ is some �xed positive number (depending only on δ).Now let n ∈Mk. Then either n+k or n+k+k0 belongs to J . So, by (∗),at least one term in at least one of the above produts di�ers from 1/p2by δ, and, as a onsequene, one of the produts is smaller than (1/p2)p
2

−γ.Sine the other produt is still at most (1/p2)p
2 , the disussed measure of
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intersetion does not exeed

(
1

p2

)2p2

−

(
1

p2

)p2

γ.The �rst term oinides with µ′(A′)µ′(B′). The seond term is a positiveonstant ε. We have proved that the set RεA′,B′ misses all the shifted IP-sets
Mk + k, so is not IP∗

+.5. An intermediate lass of weakly mixing transformations. Thissetion ontains the onstrution announed in Theorem 1.8.Theorem 5.1. There exists a nonempty lass of weakly mixing rank-onerigid transformations (X,B, µ, T ) suh that the set RεA,B of times of ε-fatintersetion is IP∗
+ for every ε > 0 and any measurable sets A,B, but it isnot always IP∗.Proof. In the argument below we will skip the tedious but relativelyobvious spei�ation of �epsilons� and �deltas�.The onstrution of (X,B, µ, T ) follows the standard sheme of �uttingand staking with spaers� (see e.g. [P, Setion 4.5℄). We start with theinterval [0, 1] whih we all tower ∆1 of height h1 = 1. Having onstruteda tower ∆2m−1 (with an odd index) of height h2m−1 we hoose an integer

q2m−1 suh that h2m−1/q2m−1 is small, ut the tower into 2q2m−1 equalwidth olumns and add single spaers above the left q2m−1 olumns (see�gure below).
−−−−−

−−−−−−−−−−

−−−−−−−−−−

−−−−−−−−−−Then we stak, reating the tower ∆2m whose height equals
h2m = 2q2m−1h2m−1 + q2m−1.Next, we ut this tower into q2m (whih is larger than h2m) olumns andwe stak them, this time without adding any spaers. This gives us a tower

∆2m+1 of height h2m+1 = q2mh2m. Continuing in this manner (note that weinsert spaers only when onstruting towers with even indies) we arriveat a spae with a bounded measure and a measure preserving transforma-tion. After normalizing we obtain a probability measure preserving rank-onesystem (X,B, µ, T ).Let L2
0(µ) denote the subspae of L2(µ) onsisting of funtions with zerointegral. Let f ∈ L2

0(µ) be a omplex-valued funtion of norm 1, whih isonstant on levels of the tower ∆2m0−1 for some m0 ∈ N and zero on thespaers added in the later steps. We are interested in the sequene µ̂f (n) =
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〈Tnf, f〉. Fix some n ∈ N. Choose m > m0. Let x be a �typial� point in
X. We are going to observe how the orbits of x and Tnx pass through thetower ∆2m. Let n1 be the smallest k ≥ 0 suh that Tn+kx belongs to the baseof the tower, and n2 be the smallest k ≥ n1 suh that T kx belongs to thebase of the tower. De�ne n0 = n2 − n1. Clearly, independently of our hoieof n, 0 ≤ n0 < h2m. Consider �rst the ase when n0 < h2m/2. We ontinueour disussion with the help of the �gure below. The top and bottom linesrepresent the orbits of Tnx and x, respetively; any three dashes orrespondto a passage through the tower ∆2m−1; zeros orrespond to the visits in thespaers; vertial lines separate the passages through the tower ∆2m−1 notseparated by spaers; and the question marks indiate possible spaers addedat later stages of our onstrution.

· · · 0−−− 0−−− 0−−− 0 −−−|−−−|−−−|−−−|−−−?

next passage︷ ︸︸ ︷
−−−0−−− 0 · · ·

−−− 0 −−− 0−−− 0−−− 0 −−− 0 −−−|−−−|−−−|−−−|−−−?

| shift 1 | mixing | shift 2 | mixing |We distinguish four onseutive intervals on the time axis appearing in the�gure:
• The �rst one, denoted in the �gure as �shift 1�, roughly of length
h2m/2 − n0, where spaers appear in both orbits, so that the pairsof �simultaneous� passages through the tower ∆2m−1 for x and Tnxare all shifted in time by the same amount.

• The seond one, denoted as �mixing�, roughly of length n0, with spaersin the orbit of x and without spaers in the orbit of Tnx, so that theshifts of �simultaneous� passages through ∆2m−1 hange progressivelyby a unit.
• The third one, denoted as �shift 2�, roughly of the same length as the�rst one, without spaers in both orbits, with all shifts the same butperhaps di�erent from shift 1.
• The fourth one, whih is again of the �mixing� type (in this interval Tnxstarts its next passage through ∆2m); the possible spaers appearing atthe question marks will not hange the mixing type of this last interval.If h2m/2 ≤ n0 < h2m then one has to interpret the top line as the orbitof x and the bottom line as the orbit of Tnx.Assuming that the mixing intervals are not too short they an be dividedinto some number of intervals of length (h2m−1 + 1)h2m−1 whih we all�yles�, and short �remainders� at both ends. In every yle the orbit of oneof the points x, Tnx passes h2m−1+1 times through the tower ∆2m−1 without�hitting� the spaers, while the other orbit passes through this tower h2m−1times �hitting� the spaers (in the �gure we have roughly one omplete yle;
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the piture is too small to show real proportions). Notie that the averagevalue of f(T i+nx)f(T ix) along a omplete yle equals 0 (sine eah �xedlevel of the tower ∆2m−1 for x �meets� all levels of the same tower for Tnxthe same number of times, f is onstant on suh levels with average value 0).Every time the orbit of x passes through ∆2m we observe a �pattern� offour intervals: shift 1/mixing/shift 2/mixing. Suh patterns will be repeatedthroughout the orbit, eah with its own parameter n0. (This parameter willhange from one pattern to another only when a higher order spaer appearsat a plae indiated by a question mark either in the orbit of x or in theorbit of Tnx but not in both.)These observations lead us to the following onlusions:(a) If, in a signi�ant fration of all patterns, the mixing intervals arenot too short (i.e., when the parameters n0 are not too lose to 0or to h2m), then the ontribution of the omplete yles auses thevalue of 〈Tnf, f〉 to be of modulus essentially smaller than 1.(b) If the mixing intervals �dominate� (i.e., in most patterns, n0 is loseto h2m/2), then the value of 〈Tnf, f〉 is lose to zero. (We assumethat q2m−1 is so large in omparison with h2m−1 that in a patterndominated by its two mixing intervals, the length of the mixing in-terval ontains so many omplete yles that we an safely ignorethe ontribution of the �remainders�).Now suppose the value of 〈Tnf, f〉 is lose to 1. By (a), this impliesthat n0 is either small or lose to h2m in most of the patterns shift 1/mix-ing/shift 2/mixing. In this ase we replae n by n+h2m/2, and we will havethe domination of mixing intervals, as desribed in ase (b). Then, not onlyfor f but also for any other normalized funtion f ′ ∈ L2

0(µ) whih is onstanton the levels of ∆2m0−1, the following holds:() 〈Tn+h2m/2f ′, f ′〉 is lose to zero.This is true for every m > m0. For �xed m and any k ∈ Z with |k| relativelysmall ompared to h2m (still very large if m is large), n + k is not muhdi�erent from n in the above arguments, hene the ondition that 〈Tnf, f〉is lose to 1 implies that(d) 〈Tn+k+h2m/2f ′, f ′〉 is lose to zero.In partiular, this proves that T is weakly mixing, sine, for f ′ approximatingan eigenfuntion, the values of 〈Tnf ′, f ′〉 whih are lose to 1 appear withbounded gaps, while the parameter k in (d) an range through arbitrarilylong intervals of integers.Our onstrution produes a rank-one system and it is known that arank-one transformation has simple spetrum (see [C-N℄ for more details on
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rank-one systems), so there exists a yli vetor fc in L2
0(µ). Fix a pair offuntions φ and ψ in L2

0(µ). These funtions an be approximated by �niteombinations of the funtions of the form T kfc.Now onsider a nonzero idempotent p ∈ βZ. The weak limit p-lim(Tng)exists for every g ∈ L2
0(µ) and equals some g′ ∈ L2

0(µ) suh that p-lim(Tng′)
= g′. Suppose g′ 6= 0 for some g. Then we an normalize g′ and denote it g′′.We an now approximate g′′ by f ∈ L2

0(µ) onstant on the levels of sometower ∆2m0−1 and zero on spaers added in later stages of the onstrution.Clearly, p-lim〈Tnf, f〉 is a number lose to 1. This implies that every IP-set
M belonging to p ontains a sequene M ′ along whih n does not satisfy (a)(i.e., n0 is small or lose to h2m in most patterns), and hene satis�es ()and (d).If m is large enough, the hypotheses () and (d) hold (with slightly worseerror terms) also for f ′ = fc. Sine every term 〈Tn+h2m/2φ, ψ〉 splits into a�nite ombination of terms of the form 〈Tn+k+h2m/2fc, fc〉 (with oe�ientsand k's not depending on n), for su�iently large m1 every suh term with
n ∈ M ′ is lose to zero. This proves that Rεφ,ψ intersets M + h2m1

/2. Thehoie of m1 is independent of the idempotent p satisfying g′ 6= 0 for some g(it only depends on φ and ψ).Now assume that p is suh that g′ = 0 for all g ∈ L2
0(µ). In partiular thisis true for g = Tn+h2m1

/2φ so p-lim〈Tn+h2m1
/2φ, ψ〉 = 0, hene again Rεφ,ψintersets M + h2m1

/2. We have proved that Rεφ,ψ is IP∗
+. This immediatelyimplies an analogous statement for sets A,B.Finally, observe that the system is rigid along the sequene h2m (beauseof the many onseutive passages through ∆2m without spaers in the nexttower). Thus it is not mildly mixing, hene at least one set RεA,B is not IP∗.This onludes the proof.Appendix

Theorem A.1. There exists an invertible topologially mixing symbolidynamial system (X ′, T ′) with a �xpoint as a unique minimal set and havingan invariant measure with full topologial support.Sketh of proof. (The onstrution is an adaptation of one appearing inTheorem 1 of [D-Y℄.) Start with an aperiodi stritly ergodi (minimal withunique invariant measure µ) subshift (X,T ) on two symbols {a, b}. Fromeah point x ∈ X we will reate unountably many points (sequenes) x′over three symbols {a, b, c}, whih will onstitute our new desired subshift
(X ′, T ′). Namely, �x a sequene of losed and open sets (e.g., ylinders)
Uk ⊂ X shrinking to a point x∗ so fast that ∑∞

k=1 µ(Uk) < ∞. For x =
. . . , x−1, x0, x1, . . . let (ni)i∈Z be the times of the visits of x in U1, and let
ki denote the depth of eah visit, i.e., the maximal k suh that Tnix ∈ Uk.
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Let c be a new (third) symbol and let ck = [c, . . . , c] stand for the blokof k symbols c. Now, from x we reate the sequenes x′ by inserting into x,between xni−1 and xni

, either the blok cki or cki+1 (all suh possible hoieslead to unountably many sequenes x′ made from one x). For example, oneof the points x′ will be
. . . , xn−1−1, c

k−1+1, xn−1
, . . . , xn0−1, c

k0+1, xn0
, . . . , xn1−1, c

k1 , xn1
, . . .The points in the orbit of x∗ will produe exeptional sequenes x′�eitherending or beginning with in�nitely many symbols c. Let X ′ be the losureof the set of all sequenes x′ so onstruted from all x ∈ X. To verify theproperties laimed in the formulation of the theorem notie the following:(1) In eah x′ and for eah k, the bloks ck appear with bounded gaps.This implies that the �xpoint c∞ = . . . ccc . . . is the only minimal set in X ′.(2) We now prove that there exists a �nite invariant measure whosesupport is X ′. Viewing the symbols c as �spaers�, the system (X ′, T ′) anbe thought of as a �skysraper�: The base is the set {x′ : x′0 6= c}, the levels(for k > 0) are {x′ : x′

−k 6= c, [x′
−k+1, . . . , x

′
0] = ck}. We do not inlude inthis skysraper the points x′ obtained from points x belonging to the orbitof x∗, but as we will explain, suh points form a set of measure zero. The�rst return time map indued on the base onsists in shifting eah x′ by thedistane to the nearest symbol di�erent from c, so that (at oordinate zero)it merely reads the onseutive entries of the original sequene x ∈ X. Notethat eah point x′ is determined by two sequenes: x and a {0, 1}-valuedsequene y = (yi) governing the (binary) deisions made while insertingeither cki or cki+1. All (unountably many) di�erent points obtained fromone x remain di�erent in the system indued on the base of the skysraper,hene this indued system is not isomorphi to (X,T ). It is however anextension of (X,T ) and it is not hard to see that this extension has the formof a skew produt TS of (X,T ) (minus the orbit of x∗) with the full shift

(Y, S) on two symbols {0, 1} de�ned by
TS(x, y) = (Tx, S1U1

(x)y),i.e., we apply the shift on the seond oordinate if x ∈ U1, otherwise theentry on the seond oordinate remains unhanged. Clearly, the produtmeasure µ× λ is TS-invariant (where λ denotes the homogeneous Bernoullimeasure on the two-shift Y ), and has full topologial support in the produtspae. Also, we note that the exeptional points reated from the orbit of
x∗ form a set of measure zero for the produt measure (this set is the liftof a ountable set and µ is nonatomi). Observe that the �rst level of theskysraper extends above a dense subset of U1 × Y and for k ≥ 2 the kthlevel extends above a dense subset of Uk−1 × Y . Sine ∑

k µ(Uk) < ∞, theprodut measure µ × λ on the base �lifts� to a �nite invariant measure on
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the whole skysraper with full topologial support in the skysraper. By anobvious approximation argument, this measure has full support also in X ′.The desired probability measure is obtained by normalization.(3) We will show that under additional assumptions, (X ′, T ′) an be madetopologially mixing. Let us impose a stronger requirement on the speed ofdeay of the sets Uk: the smallest gap between visits in Uk (k ≥ 2) is largerthan 2k times the largest gap between visits in U1. This implies that betweenany two visits in Uk eah point visits U1 at least 2k times (of ourse thisan be done by hoosing Uk to be ontained in balls around x∗ of rapidlydereasing radii).Let x′ ∈ X ′ be reated from a point x ∈ X not belonging to the or-bit of x∗, and let B′ be the �nite blok x′[−m′,m′]. (Note that every blokappearing in X ′ an be obtained this way.) Let B = x[−m,m] be a blok(possibly muh longer than B′) whose appearane at any element z ∈ X(with oordinate zero at the enter) ensures that for a su�iently long time(forward and bakward) the orbit of z visits the sets Uk at exatly the sametimes as x does, so that among the points z′ reated from z there existsone with z′[−m′,m′] = B′. By minimality, B appears at a positive oor-dinate in x∗, say B = x∗[r − m, r + m]. Sine, for eah k, x∗ belongs to
Uk, its return to Uk is preeded by at least 2k visits in U1. Begin reat-ing the sequene x∗′ from x∗ by insertions. Its negative part is �lled with
. . . , c, c, c, and positive with the positive part of x∗ with appropriate inser-tions. The insertions into x∗[r−m, r+m] may be arranged so that x∗′[r′−m′,
r′ +m′] = B′. In order to prove the mixing property we need to show thatthe onstrution of x∗′ an then be ontinued to the right in so many waysthat any blok C ′ possible in X ′ will appear in these ontinuations at alldistanes larger than some onstant. Fix one suh C ′ and let C be a blokappearing in X making the reation of C ′ possible (just like B was hosenfor B′). Notie that C appears in x∗ with bounded gaps. Let x∗1′, x∗2′, . . .denote the sequene of ontinuations of x∗′ suh that in x∗n

′ all insertionsto the right of r + m are of the smaller type (i.e., cki) exept inside oneseleted (nth after position r+m) ourrene of C, where the insertions areadjusted to reate the blok C ′. Let dn be the distane between the blok
B′ (made from the opy of B entered at position r) and C ′ (the one madefrom the nth opy of C) in x∗n′. We an now enlarge eah distane dn by one,two, or more units, replaing one, two, or more insertions between position
r + m and the nth opy of C onsidered, by insertions of the larger type
cki+1. The last thing to show is that for n large enough there are at least
dn+1 − dn suh �regulating insertions� available, so that enlarging the dis-tane dn we an reah dn+1. This will prove that it is possible to obtain C ′ atany su�iently large distane following B′. This is the essene of topologialmixing.
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Let g denote the maximal gap between the ourrenes of C in x∗. Let

k0 be suh that the distane between two visits of the orbit of x∗ in Uk0+1exeeds g, so that at most one visit in Uk0+1 is possible between two bloks C.If n is suh that between the nth and (n+1)st opy of C (ounting fromthe right end r + m of B) the orbit of x∗ visits Uk0+1 with some depth
k > gk0 + r +m + g, then the distane dn+1 − dn does not exeed gk0 + k(there are at most g insertions of size k0, and k is the size of the uniquelarger insertion). In that ase this unique visit to Uk is preeded by at least
2k > k+ gk0 + r+m+ g visits in U1, of whih at least k+ gk0 > dn+1 − dnfall between B and the nth opy of C, allowing equally many �regulatinginsertions�, as required. If n is suh that between the nth and (n + 1)stopies of C there is no visit of depth larger than gk0 + r + m + g then
dn+1 − dn is bounded (for instane, by g(gk0 + r + m + g)). So, in eitherase, if n is large enough, the nth opy of C is preeded by su�iently manyvisits in U1 allowing su�iently many �regulating insertions�.Final remarks. We would like to indiate one natural way of extendingstatements (4) and (5) of Theorem 1.6. Let k ∈ N. For i = 1, . . . , k let
Pi(n) be nononstant polynomials satisfying Pi(Z) ⊂ Z. Given a measurepreserving system (X,B, µ, T ), sets Ai ∈ B (i ∈ [0, k]) and ε > 0, de�ne
RεA0,A1,...,Ak

= {n ∈ Z : µ(A0 ∩ T
P1(n)A1 ∩ · · · ∩ TPk(n)Ak) > µ(A0)µ(A1) · · ·µ(Ak) − ε},

QεA0,A1,...,Ak

= {n ∈ Z : |µ(A0∩T
P1(n)A1∩· · ·∩TPk(n)Ak)−µ(A0)µ(A1) · · ·µ(Ak)| < ε}.Denote byRk(X,B, µ, T ) andQk(X,B, µ, T ) the family of all sets of the form

RεA0,A1,...,Ak
and the family of all sets of the form QεA0,A1,...,Ak

, respetively(note that both Rk(X,B, µ, T ) and Qk(X,B, µ, T ) depend on the hoie ofthe polynomials Pi(n)). Then one an show that:(i) (X,B, µ, T ) is weakly mixing i� Rk(X,B, µ, T ) ∈ D∗ for any k ≥ 1and any �xed system of integer-valued polynomials P1(n), . . . , Pk(n).(ii) (X,B, µ, T ) is mildly mixing i� Rk(X,B, µ, T ) ∈ IP∗ for any k ≥ 1and any �xed system of integer-valued polynomials P1(n), . . . , Pk(n).Also, it is easy to see that in (i) the family D∗ an be equivalently replaedby D∗
•, C∗ or C∗

• , while in (ii) the family IP∗ an be equivalently replaed by
IP∗

•. Additionally, all resulting statements hold if Qk(X,B, µ, T ) is used inplae of Rk(X,B, µ, T ) (f. Remark 1).The main ingredient in proving the statements (i) and (ii) is provided bymultiple reurrene theorems along ultra�lters (see Theorems 4.8 and 5.1(v)in [B2℄).
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With regard to mixing, it is proved in [K-Y℄ that(iii) (X,B, µ, T ) is mixing i� for any three sets A,B,C ∈ B all sets ofthe form
QεA,B,C = {n ∈ Z : |µ(A ∩ Tα1nB ∩ Tα2nC) − µ(A)µ(B)µ(C)| < ε}belong to ∆∗.Obviously, an analogous statement involving the sets

RεA,B,C = {n ∈ Z : µ(A ∩ Tα1nB ∩ Tα2nC) > µ(A)µ(B)µ(C) − ε}is also true. As before, the family ∆∗ an be replaed by ∆∗
•. No extensionof this result to more general sets of polynomials is known.
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