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Abstract. In topological dynamics a theory of recurrence properties via (Fursten-
berg) families was established in the recent years. In the current paper we aim to establish
a corresponding theory of ergodicity via families in measurable dynamical systems (MDS).
For a family F (of subsets of Z+) and a MDS (X,B, µ, T ), several notions of ergodicity re-
lated to F are introduced, and characterized via the weak topology in the induced Hilbert
space L2(µ).

T is F-convergence ergodic of order k if for any A0, . . . , Ak of positive measure, 0 =
e0 < · · · < ek and ε > 0, {n ∈ Z+ : |µ(

⋂k

i=0
T−neiAi)−

∏k

i=0
µ(Ai)| < ε} ∈ F . It is proved

that the following statements are equivalent: (1) T is ∆∗-convergence ergodic of order 1;
(2) T is strongly mixing; (3) T is ∆∗-convergence ergodic of order 2. Here ∆∗ is the dual
family of the family of difference sets.

1. Introduction. By a topological dynamical system (TDS) (X, T ) we
mean a compact metric space X together with a surjective continuous map
T from X to itself. For a TDS (X, T ) and non-empty open subsets U and V
of X let N(U, V ) = {n ∈ Z+ : U ∩ T−nV 6= ∅}, where Z+ is the set of non-
negative integers. Note that we use N to denote the set of positive integers. It
turns out that many recurrence properties of TDS can be described using the
return time sets N(U, V ) (see [1], [8], [14], [12], [13] and [10]). For example,
for a TDS (X, T ) it is known that T is (topologically) strongly mixing iff
N(U, V ) is cofinite, T is (topologically) weakly mixing iff N(U, V ) is thick [8],
and T is (topologically) mildly mixing iff N(U, V ) is an (IP -IP )∗ set [14],
[12] for each pair of non-empty open subsets U and V . Recently, Huang and
Ye [14] showed that a minimal system (X, T ) is weakly mixing iff the lower
Banach density of N(U, V ) is 1, and (X, T ) is mildly mixing iff N(U, V ) is
an IP ∗-set for each pair of non-empty open sets U and V .

By a measurable dynamical system (MDS) we mean (X,B, µ, T ), where
(X,B, µ) is a Lebesgue space and T : X → X is invertible and measure pre-
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serving. Many results on MDS and TDS share similar formulations, though
the methods to prove them are quite different. For a MDS (X,B, µ, T ), let
B+ = {B ∈ B : µ(B) > 0} and N(A, B) = {n ∈ Z+ : µ(A ∩ T−nB) > 0} for
A, B ∈ B+. The classical results in ergodic theory state that a transforma-
tion T is ergodic iff N(A, B) 6= ∅ for each pair of A, B ∈ B+; T is weakly
mixing iff for each pair of measurable sets A, B there is a subset D of Z+

with density 1 such that limn∈D, n→∞ µ(A ∩ T−nB) = µ(A)µ(B); and T is
mildly mixing iff IP ∗-limµ(A ∩ T−nB) = µ(A)µ(B) (see for example [19]
and [9]).

We aim to establish a theory of ergodicity in MDS via families of sub-
sets of Z+ as in topological dynamics. In the topological setup for a given
family one naturally defines a notion of F -transitivity. Unlike the topo-
logical case, we can associate several notions of ergodicity to a given fam-
ily in the measure-theoretical case: F -ergodicity, F -positive ergodicity, F -
uniform positive ergodicity and F -convergence ergodicity. We characterize
these concepts via the weak topology in the associated Hilbert space L2(µ).
Moreover, high order mixing related to a family is discussed. In partic-
ular, it is proved that the following statements are equivalent: (1) T is
∆∗-convergence ergodic (of order 1); (2) T is strongly mixing; (3) T is ∆∗-
convergence ergodic of order 2. Here ∆ := {F −F : F ⊂ Z+ is infinite} with
F − F := {a − b > 0 : a, b ∈ F} and ∆∗ is the collection of subsets of Z+

which have non-empty intersection with each element in ∆.
As a by-product it is shown that for any MDS (X,B, µ, T ), any A ∈ B

with positive measure and ε > 0, {n ∈ Z+ : µ(A ∩ T−nA) > µ(A)2 − ε} ∈
∆∗; this strengthens a well known result of Khinchin, since a ∆∗-set is
syndetic. We mention that in general {n ∈ Z+ : µ(A ∩ T−nA ∩ T−2nA) >
µ(A)3 − ε} ∈ ∆∗ does not hold ([9, p. 177]) even for ergodic MDS, but the
set {n ∈ Z+ : µ(A ∩ T−nA ∩ T−2nA) > µ(A)3 − ε} is syndetic [5] when T is
ergodic.

After submission of the paper we got to know that Bergelson and Dow-
narowicz have a paper [3] submitted to the same special volume and dealing
with a similar topic. Though the results in both papers are almost com-
plementary, they also have a strong connection. First, the stronger version
of Khinchin’s result is observed in both papers. Second, the results in this
paper and in [17] answer some questions asked in the preliminary version
of [3]. For details see Section 5.

The paper is organized as follows. In Section 2, we introduce necessary
notations and ergodic concepts associated to a given family. In the following
section we obtain some characterizations of the concepts via the weak topol-
ogy in L2(µ). In Section 4, we discuss high order mixing for the family ∆∗,
and in the final section we outline how our results answer some questions
asked in the preliminary version of [3].
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2. Some definitions. It was Furstenberg [8], [9] who first used subsets
of Z+ to describe dynamical properties in a systematic way. For the recent
results, see [1], [12], [10], [13] and [14].

Let us recall some notions related to Furstenberg families (for details see
[1]). Let P = P(Z+) be the collection of all subsets of Z+. A subset F of P
is a family if it is upwards hereditary, that is, F1 ⊂ F2 and F1 ∈ F imply
F2 ∈ F . A family F is proper if it is a proper subset of P, i.e. neither empty
nor all of P. It is easy to see that F is proper if and only if Z+ ∈ F and
∅ /∈ F . Any subset A of P generates the family [A] = {F ∈ P : F ⊃ A for
some A ∈ A}. For a family F , the dual family is

F∗ = {F ∈ P : Z+ \ F /∈ F} = {F ∈ P : F ∩ F ′ 6= ∅ for all F ′ ∈ F}.

It is indeed a family, proper if F is. Clearly,

(F∗)∗ = F and F1 ⊂ F2 ⇒ F∗
2 ⊂ F∗

1 .

Let Finf be the family of all infinite subsets of Z+ and let Fc := F∗
inf .

Note that Fc is the collection of all cofinite subsets of Z+. A family F is full

if F1∩F2 ∈ Finf for any F1 ∈ F and F2 ∈ F∗. All the families considered

in this paper are assumed to be full.

We say that a family F has the Ramsey property if whenever F1 ∪ F2 ∈
F , then either F1 ∈ F or F2 ∈ F . If a proper family F is closed under
intersection, then F is called a filter. One can show that F has the Ramsey
property iff F∗ is a filter [1]. Note that if F has the Ramsey property, then
F1 ∩ F2 ∈ F if F1 ∈ F and F2 ∈ F∗. Since we need some special families to
describe various ergodicity properties, we give some definitions.

Definition 2.1. Let S be a subset of Z+.

(1) The lower density and upper density of S are defined by

d(S) = lim inf
n→∞

1

n
|S ∩ [0, n − 1]| and d(S) = lim sup

n→∞

1

n
|S ∩ [0, n − 1]|

respectively, where [a, b] denotes the interval {a, a + 1, a + 2, . . . , b}.
(2) If d(S) = d(S) = d(S), then we say that the density of S is d(S).
(3) The lower Banach density and upper Banach density of S are defined

by

BD∗(S) = lim inf
|I|→∞

|S ∩ I|

|I|
and BD∗(S) = lim sup

|I|→∞

|S ∩ I|

|I|

respectively, where I is taken over all finite intervals of Z+.
(4) S = {s1 < s2 < · · · } is syndetic if {sn+1 − sn : n ∈ N} is bounded.
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(5) S is thick if for any L ∈ N there exists some N ∈ N with [N, N +
L − 1] ⊂ S.

From the definitions it is not hard to see that S is syndetic iff BD∗(S)
> 0, and S is thick iff BD∗(S) = 1 (see [17]). We use Fs and Ft to denote
the collections of syndetic sets and thick sets respectively, and Fpud, Fd1,
Fpubd and Flbd1 to denote the collections of subsets of Z+ with positive upper
density, density 1, positive upper Banach density and lower Banach density 1
respectively. It is clear that F∗

s = Ft, F
∗
pud = Fd1 and F∗

pubd = Flbd1. Also,
it is easy to see that Fd1 and Flbd1 are filters.

Definition 2.2. Let S be a subset of Z+.

(1) S is called an IP -set if there is a subsequence {pi}
∞
i=1 in N such that

all finite sums pi1 + · · · + pij with i1 < · · · < ij, j ∈ N, are in S.
The collection of IP -sets is denoted by Fip and each element of F∗

ip

is called an IP ∗-set.
(2) S is called a ∆-set if it contains an infinite difference set, i.e. there

is a subsequence F = {p1 < p2 < · · · } of Z+ such that S ⊃ ∆(F ) :=
{pi − pj : i > j}. The collection of ∆-sets is denoted by ∆ and each
element of ∆∗ is called a ∆∗-set.

It is well known that both Fip and ∆ have the Ramsey property [4, 9],
and

Finf ) ∆ ) Fip ) Ft, Fc ( ∆∗ ( F∗
ip ( Fs.

Recall that a MDS (X,B, µ, T ) is ergodic if B ∈ B and T−1B = B
imply that µ(B) = 0 or µ(B) = 1; it is weakly mixing if the product system
T × T is ergodic; it is mildly mixing if B ∈ B and lim infn µ((B\T−nB) ∪
(T−nB\B)) = 0 imply that µ(B) = 0 or µ(B) = 1; and it is strongly mixing

if for any two sets A, B ∈ B we have µ(A ∩ T−nB) → µ(A)µ(B).

The other mixing properties we shall use are intermixing and partial
mixing. Let (X,B, µ, T ) be a MDS. We define a function γ : B+ × B+ → R

by

γ(A, B) := lim inf
n

µ(A ∩ T−nB)

µ(A)µ(B)

for A, B ∈ B+. A MDS (X,B, µ, T ) is called

• intermixing or lightly mixing if γ(A, B) > 0 for any A, B ∈ B+,
• partially mixing if infA,B∈B+ γ(A, B) > 0.

It is known (see for example [17]) that

strong mixing ⇒ partial mixing ⇒ intermixing

⇒ mild mixing ⇒ weak mixing.
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Recall that for a given family F a TDS is F -transitive if N(U, V ) ∈ F for
each pair of non-empty open subsets U and V . In [17] the authors defined
F -ergodicity just as for a TDS. Studying this property we realized that,
unlike the topological case, some other notions of ergodicity related to a
given family are also useful, which we now introduce.

Definition 2.3. Let (X,B, µ, T ) be a MDS and let F be a family.

E1: T is F -ergodic if for any A, B ∈ B+,

N(A, B) := {n ∈ Z+ : µ(A ∩ T−nB) > 0} ∈ F ;

E2: T is F -positively ergodic (F -p.ergodic) if for any A, B ∈ B+, there
exists α = α(A, B) > 0 such that

{n ∈ Z+ : µ(A ∩ T−nB) > α} ∈ F ;

E3: T is F -uniformly positively ergodic (F -u.p.ergodic) if there exists
α > 0 such that for any A, B ∈ B+,

{n ∈ Z+ : µ(A ∩ T−nB) > αµ(A)µ(B)} ∈ F ;

E4: T is F -convergence ergodic (F -c.ergodic) if for any A, B ∈ B+ and
ε > 0, {n ∈ Z+ : |µ(A ∩ T−nB) − µ(A)µ(B)| < ε} ∈ F , i.e.

F - lim
n

µ(A ∩ T−nB) = µ(A)µ(B).

It is clear that E1–E4 are successively stronger ergodic properties. In
particular, for F = Fc, it is known that E1 and E2 are both equivalent to
intermixing (i.e. light mixing) [6, 17], E3 is equivalent to partial mixing, and
E4 is just strong mixing. So E2, E3 and E4 are not equivalent [6, 7, 16, 18].

For F = Finf it is clear that E1–E3 are equivalent to ergodicity, and
E4 is strictly stronger than ergodicity. To see this, we note that a periodic
system does not satisfy E4.

Recall that we have shown in [17] that T is weakly mixing iff N(A, B)
∈ Ft iff T is Flbd1-c.ergodic; and T is mildly mixing iff N(A, B) ∈ F∗

ip iff T is
F∗

ip-c.ergodic. Thus, E1–E4 are all equivalent to weak mixing when F = Ft,
F = Fd1 or F = Flbd1; and E1–E4 are all equivalent to mild mixing when
F = F∗

ip.
As Fc, Flbd1 and IP ∗ are filters, many families we consider in this paper

are filters or have the Ramsey property. Unfortunately, we do not know any
family F for which E1 and E2 are not equivalent.

Finally, we give a simple property of E1 which was observed in [17].

Proposition 2.4. Let (X,B, µ, T ) be a MDS and let F be a family.

Then the following statements are equivalent :

(1) T is F∗-ergodic.

(2) For any F ∈ F and any A ∈ B+, µ(
⋃

i∈F T−iA) = 1.
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Proof. (1)⇒(2). Assume that there are B ∈ B+ and F ∈ F such that
µ(

⋃

i∈F T−iB) < 1. Let A = (
⋃

i∈F T−iB)c. Then µ(A) > 0. Hence µ(A ∩
T−iB) = 0 for any i ∈ F . As F ∩ N(A, B) 6= ∅, there is i ∈ N(A, B) such
that µ(A ∩ T−iB) = 0, a contradiction.

(2)⇒(1). If there are A, B ∈ B+ with N(A, B) 6∈ F∗, then we have
F = Z+ \ N(A, B) ∈ F . Thus, µ(

⋃

i∈F T−iB) = 1, and hence

µ(A) = µ
(

A ∩
⋃

i∈F

T−iB
)

= µ
(

⋃

i∈F

A ∩ T−iB
)

= 0,

a contradiction.

3. Characterizations of ergodicity related to a family. In this sec-
tion we shall give characterizations of the four ergodic properties associated
to a given family. Some of these characterizations will be used in the next
section.

For a MDS (X,B, µ, T ) let UT : L2(µ) → L2(µ) be the associated unitary
operator. For a given B ∈ B, a family F and F ∈ F , we use clcw UF

B to
denote the closure (with respect to the weak topology in L2(µ), i.e. fn → f
if
T
fng dµ →

T
fg dµ for each g ∈ L2(µ)) of the convex set generated by

UF
B := {Un

T 1B : n ∈ F}. An element in the convex set has the form of
∑N

i=1 λiU
ni

T 1B with λi ≥ 0 and
∑N

i=1 λi = 1, where ni ∈ F and N ∈ N. For
each f ∈ clcw UF

B , it is easy to see 0 ≤ f ≤ 1 and
T
f dµ = µ(B). It turns out

that we can use this kind of functions to characterize the different ergodic
properties related to a given family. We start from the strongest property.

Theorem 3.1. Let (X,B, µ, T ) be a MDS and let F be a family with the

Ramsey property. Then the following statements are equivalent :

(1) T is F∗-c.ergodic.

(2) For each B ∈ B+ and F ∈ F , there is a subsequence {ni}
∞
i=1 of F

such that Uni

T 1B → fB = µ(B).
(3) For each B ∈ B+ and F ∈ F , there is a constant function fB ∈

clcw UF
B .

Proof. (1)⇒(2). Let {Ai}
∞
i=1 ⊂ B be a countable base of B, i.e. {Ai}

∞
i=1

is dense in B with the metric d(A, B) := µ(A △ B). For a fixed B ∈ B+, let

D(i, ε) = {n ∈ Z+ : |µ(Ai ∩ T−nB) − µ(Ai)µ(B)| < ε}.

It is clear that D(i, ε) ∈ F∗. Fix F ∈ F , and let n1 ∈ F ∩ D(1, 1). Since
F∗ is a filter, we can find n2 > n1 with n2 ∈ F ∩ D(1, 1/2) ∩ D(2, 1/2). If
n1 < · · · < ni are defined, let ni+1 > ni with

ni+1 ∈ F ∩ D

(

1,
1

i + 1

)

∩ · · · ∩ D

(

i + 1,
1

i + 1

)

.
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So we get a subsequence {ni} of F . By choosing a subsequence again we can
assume Uni1B → fB (weakly). It is clear that for each i,\

1Ai
(fB − µ(B)) dµ = 0.

This implies that fB = µ(B) by a simple approximation argument.

(2)⇒(3) is obvious.

(3)⇒(1). It is easy to see that fB = µ(B). If (1) is not true, then we have
{n ∈ Z+ : |µ(A ∩ T−nB) − µ(A)µ(B)| ≥ ε} ∈ F for some ε > 0. As F has
the Ramsey property, we may assume that F := {n ∈ Z+ : µ(A ∩ T−nB) ≥
µ(A)µ(B)+ε} ∈ F . Then each f ∈ clcw UF

B satisfies
T
1A·fdµ ≥ µ(A)µ(B)+ε.

This contradicts the assumption that µ(B) ∈ clcw UF
B .

For the F -u.p.ergodicity we have the analogous result and the proof is
similar.

Theorem 3.2. Let (X,B, µ, T ) be a MDS and let F be a family with the

Ramsey property. Then the following statements are equivalent :

(1) T is F∗-u.p.ergodic.

(2) There exists α > 0 such that for each B ∈ B+ and F ∈ F , there is a

subsequence {ni}
∞
i=1 of F such that Uni

T 1B → fB ≥ αµ(B).
(3) There exists α > 0 such that for each B ∈ B+ and F ∈ F , there is a

function fB ∈ clcw UF
B with fB ≥ αµ(B).

In the above theorems we need the assumption that F∗ is a filter. For
example, without this condition in Theorem 3.1, (3) can only imply that
both {n ∈ Z+ : µ(A∩T−nB) > µ(A)µ(B)−ε} and {n ∈ Z+ : µ(A∩T−nB) <
µ(A)µ(B) + ε} are in F∗.

Now we turn to characterizations of F∗-p.ergodicity and F∗-ergodicity.
Let (X,B, µ) be a probability measure space. We call a collection H ⊂ B
hereditary if whenever A ∈ H and A ⊃ B ∈ B then also B ∈ H. We say
that the hereditary collection H saturates B if for every A ∈ B+, there exists
B ∈ H ∩ B+ with B ⊂ A. There is an important property concerning this
collection: If H is a hereditary collection which saturates B then there exists
a countable measurable partition ξ = {Ai : i ∈ N} of X, with Ai ∈ H for
every i. See [11, p. 69] for a proof. Using this result we can show:

Theorem 3.3. Let (X,B, µ, T ) be a MDS and let F be a family. Then

the following statements are equivalent :

(1) T is F∗-positively ergodic.

(2) For each B ∈ B+ and Fi ∈ F with F1 ⊃ F2 ⊃ · · · , there exists

fB ∈
⋂

i clcw UFi

B with fB > 0 a.e. x ∈ X.
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Proof. (1)⇒(2). Let

H =
{

A ∈ B : there exists f ∈
⋂

i

clcw UFi

B with f(x) > 0 a.e. x ∈ A
}

.

Then H satisfies:

(i) If A ∈ H and A ⊃ C ∈ B then also C ∈ H.
(ii) For each A ∈ B+, there exists C ∈ H with C ⊂ A and µ(C) > 0.

(i) is obvious. To see (ii), we consider sets A, B ∈ B+. Since T is F∗-p.ergodic
there is δ(A, B) > 0 with {n ∈ Z+ : µ(A ∩ T−nB) > δ} ∈ F∗. Let

Ei = Fi ∩ {n ∈ Z+ : µ(A ∩ T−nB) > δ} ⊂ Fi.

Then {Ei} is a decreasing sequence. Choose f ∈
⋂

i clcw UEi

B 6= ∅. It is clear
that

T
A

f dµ ≥ δ > 0. Let C := {x ∈ A : f(x) > 0}. Then C ∈ B+ ∩H.

So there exists a countable partition ξ = {Ak : k ∈ N} of X with
Ak ∈ H for every k. Assume fk is the function corresponding to Ak. Then
fB :=

∑

k 2−kfk ∈
⋂

i clcw UFi

B and fB > 0 for a.e. x ∈ X.

(2)⇒(1). Assume (1) is false. Then there are A, B ∈ B+ such that for
any i we have

Fi := {n ∈ Z+ : µ(A ∩ T−nB) ≤ 1/i} ∈ F .

It is clear that F1 ⊃ F2 ⊃ · · · . By (2) we can find fB ∈
⋂

i clcw UFi

B with
fB > 0. So 0 <

T
1A · fB dµ = (1A, fB) ≤ 1/i → 0, a contradiction.

For F∗-ergodicity we have:

Theorem 3.4. Let (X,B, µ, T ) be a MDS and let F be a family. Then

the following statements are equivalent :

(1) T is F∗-ergodic.

(2) For each B ∈ B+ and F ∈ F , there exists fB ∈ clcw UF
B with fB > 0

for a.e. x ∈ X.

Proof. (1)⇒(2). By Proposition 2.4, for each B ∈ B+ and F = {nk :
k ∈ N} ∈ F we have µ(

⋃

k T−nkB) = 1. Let fB :=
∑

k 2−k1T−nkB. It is easy
to see fB ∈ clcw UF

B and fB > 0 a.e. x ∈ X.

(2)⇒(1). Assume (1) is false. Then there are A, B ∈ B+ such that

F := {n ∈ Z+ : µ(A ∩ T−nB) = 0} ∈ F .

By (2) we can find fB ∈ clcw UF
B with fB > 0. So 0 <

T
1A · fB dµ =

(1A, fB) = 0, a contradiction.

4. Strong mixing and high order mixing related to ∆∗. In this
section we consider the ergodicity related to ∆∗ and the high order mixing
property. It is shown that ∆∗-c.ergodicity, strong mixing and ∆∗-c.ergodicity
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of order 2 are equivalent. The questions whether ∆∗-ergodicity implies inter-
mixing, or whether ∆∗-ergodicity and ∆∗-p.ergodicity are equivalent remain
open.

Recall that a subset F of Z+ is a Poincaré sequence if for any MDS
(X,B, µ, T ) and any A ∈ B+, there is 0 6= n ∈ F with µ(A∩T−nA) > 0. It is
known that every ∆-set is a Poincaré sequence [9]. So N(A, A) is a ∆∗-set for
any A ∈ B+. Khinchin had shown that {n ∈ Z+ : µ(A∩T−nA) > µ(A)2−ε}
is syndetic [15]. Recently Bergelson, Host and Kra got a similar result for
3-fold and 4-fold cases: for any ergodic MDS (X,B, µ, T ), A ∈ B and ε > 0,
the sets

{n ∈ Z+ : µ(A ∩ T−nA ∩ T−2nA) > µ(A)3 − ε}

and

{n ∈ Z+ : µ(A ∩ T−nA ∩ T−2nA ∩ T−3nA) > µ(A)4 − ε}

are both syndetic [5]. The referee pointed out that Proposition 4.1 below,
which can be seen as a generalization of Khinchin’s result, is in fact es-
sentially contained in [2, p. 49] (see also [3]). To see the connection with
Theorem 4.4 and for completeness we include a proof which is different
from the one given in [2].

Proposition 4.1. Let (X,B, µ, T ) be a MDS , ε > 0 and A ∈ B+. Then

{n ∈ Z+ : µ(A ∩ T−nA) > µ(A)2 − ε} ∈ ∆∗.

Proof. Assume to the contrary that there are A ∈ B+ and ε > 0 such
that

{n ∈ Z+ : µ(A ∩ T−nA) > µ(A)2 − ε} 6∈ ∆∗.

That is, there is a sequence {ni} with

{n ∈ Z+ : µ(A ∩ T−nA) ≤ µ(A)2 − ε} ⊃ {nj − ni : i < j}.

We may assume Uni

T 1A → fA (weakly). By the Cauchy–Schwarz inequality
we have (fA, fA) ≥ (

T
fA dµ)2 = µ(A)2. But at the same time,

(fA, fA) = lim
i

lim
j

(Uni

T 1A, U
nj

T 1A) = lim
i

lim
j

(1A, U
nj−ni

T 1A) ≤ µ(A)2 − ε,

contradiction.

Remark 4.2. In [9] Furstenberg constructed a minimal TDS (X, T ) and
a non-empty open set A with

{n ∈ Z+ : A ∩ T−nA ∩ T−2nA 6= ∅} 6∈ ∆∗.

Thus for any invariant probability Borel measure µ on (X, T ) and 0 < ε <
µ(A)3,

{n ∈ Z+ : µ(A ∩ T−nA ∩ T−2nA) > µ(A)3 − ε} 6∈ ∆∗.
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If we strengthen the assumption in Proposition 4.1, we can conclude that
T is strongly mixing. To do this, we need a property related to ∆ whose
proof can be found in [9].

Proposition 4.3. Let F = {p1 < p2 < · · · }⊂Z+ and let S =∆(F )∈∆.

If S = S1∪S2, then there is a subsequence F1 = {pi1 < pi2 < · · · } of F such

that S1 ⊃ ∆(F1) or S2 ⊃ ∆(F1). In particular , ∆ has the Ramsey property.

Now we are ready to show

Theorem 4.4. Let (X,B, µ, T ) be a MDS. If for any ε > 0 and A ∈ B+,

{n ∈ Z+ : |µ(A ∩ T−nA) − µ(A)2| < ε} ∈ ∆∗,

then T is strongly mixing. In particular , ∆∗-c.ergodicity implies strong mix-

ing.

Proof. By Theorem 3.1 it remains to show that for each B ∈ B+ and
each F ∈ Finf , there exists a subsequence {ni}

∞
i=1 ⊂ F with Uni

T 1B → fB =
µ(B) (weakly). Thus we assume limn∈F Un

T 1B = fB (weakly) and will show
fB = µ(B). By Proposition 4.3 and the assumption there exists F1 ⊂ F
with

F1 − F1 ⊂ (F − F ) ∩ {n ∈ Z+ : |µ(B ∩ T−nB) − µ(B)2| < 1/2}.

Now assume F1 ⊃ · · · ⊃ Fk have been chosen. We can find Fk+1 ⊂ Fk with

Fk+1 − Fk+1 ⊂ (Fk − Fk) ∩ {n ∈ Z+ : |µ(B ∩ T−nB) − µ(B)2| < 1/2k+1}.

Thus we have |µ(T−aB ∩ T−bB) − µ(B)2| < 1/2k for any a, b ∈ Fk with
a 6= b. Denote Fk by {nk

i }
∞
i=1 and form a new subsequence {n1

1, n
2
2, n

3
3, . . .}.

Write it as {ni}
∞
i=1 and assume n1 < n2 < · · · by deleting some elements.

Since limi Uni

T 1B = fB (weakly), we have

(fB, fB) = lim
i

lim
j

(Uni

T 1B , U
nj

T 1B) ≤ µ(B)2 + lim
i

1

2i
= µ(B)2 =

(\
fB dµ

)2
.

This implies fB = µ(B) by using the Cauchy–Schwarz inequality.

As there is a partially mixing system which is not strongly mixing [7],
∆∗-c.ergodicity is strictly stronger than ∆∗-u.p.ergodicity. Checking the ex-
ample in [6], we see that it is intermixing but not ∆∗-u.p.ergodic. So ∆∗-
u.p.ergodicity is strictly stronger than ∆∗-p.ergodicity. We do not know
whether ∆∗-ergodicity and ∆∗-p.ergodicity are equivalent.

We have proved that ∆∗-c.ergodicity is equivalent to strong mixing. In
the following we shall show that strong mixing implies ∆∗-c.ergodicity of
order 2. We start from the following definition.

Definition 4.5. A MDS (X,B, µ, T ) is called F -c.ergodic of order k if
for any k + 1 sets A0, A1, . . . , Ak ∈ B and integers 0 < e1 < · · · < ek,

F - lim
n

µ(A0 ∩ T−ne1A1 ∩ · · · ∩ T−nekAk) = µ(A0)µ(A1) · · ·µ(Ak).
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If F is a filter we can get the following characterization by a similar
argument to the proof of Theorem 3.1:

T is F -c.ergodic of order k iff for any k sets A1, . . . , Ak ∈ B, integers
0 < e1 < · · · < ek and F ∈ F∗, there is a subsequence {ni}

∞
i=1 of F such

that

lim
i

(Tnie11A1
) · · · (Tniek1Ak

) = µ(A1) · · ·µ(Ak) (weakly).

Does F -c.ergodicity imply higher order F -c.ergodicity? This is a long
standing open question known as the Rokhlin conjecture for F = Fc. In [9]
the author proved that it is true for the families F = Fd1 and F = F∗

ip.
Since ∆∗ is a family close to Fc, it is natural to ask: What is the situation
when F = ∆∗? For this family we have:

Theorem 4.6. Strong mixing implies ∆∗-c.ergodicity of order 2.

We remark that due to the limitation of our method which is very close
to the one used in [9] the proof cannot be used for the case of order k ≥ 3.
We start from the following two lemmas.

Lemma 4.7. Let Q ∈ ∆∗ and S ∈ ∆. For each q ∈ Q let Rq ∈ Fc. Then

for each given k ≥ 1 there exist n1 < · · · < nk in S such that nj − ni ∈ Q
for i < j and ni ∈ Rnj−ni

.

Proof. Since ∆ has the Ramsey property, Q ∩ S ∈ ∆. There exist m1 <
m2 < · · · such that mj−mi ∈ Q∩S for i < j. For fixed q1 = mi2−mi1 ∈ Q∩S
we choose i3 > i2 and q2 = mi3 − mi2 such that q2, q2 + q1 ∈ Rq1

. It is clear
that q2, q2 + q1 ∈ Q∩S. Assume i1, . . . , ir and q1, . . . , qr−1 have been found.
We choose ir+1 > ir and qr = mir+1

− mir such that

qr, qr + qr−1, . . . , qr + qr−1 + · · · + q1 ∈
⋂

1≤s≤t≤r−1

Rqs+qs+1+···+qt .

It is clear that qr, qr + qr−1, . . . , qr + qr−1 + · · · + q1 ∈ Q ∩ S. Continuing in
this way we find q1, . . . , qk. Now we set n1 = qk, n2 = qk + qk−1, . . . , nk =
qk + qk−1 + · · ·+ q1. It is clear that {n1 < · · · < nk} ⊂ S. At the same time,
we have

nj − ni = qk−i + · · · + qk−j+1 ∈ Q ∩ S for 1 ≤ i < j ≤ k,

ni = qk+· · ·+qk−i+1 ∈
⋂

1≤s≤t≤k−1

Rqs+qs+1+···+qt ⊂ Rqk−i+···+qk−j+1
= Rnj−ni

.

This completes the proof.

Lemma 4.8. Let {xn} be a bounded sequence of vectors in Hilbert space

and suppose that

∆∗- lim
m

(Fc- lim
n

〈xn+m, xn〉) = 0.

Then with respect to the weak topology , ∆∗- limn xn = 0.
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Proof. Let x be some vector and suppose that S := {n : 〈xn, x〉 > ε} ∈ ∆
for some ε > 0. We assume for convenience that the Hilbert space is over
the reals. We have x 6= 0 and for δ < ε2/‖x‖2, let

Q = {m : Fc- lim
n

〈xn+m, xn〉) < δ/2}.

Then Q ∈ ∆∗ and for each q ∈ Q, Rq = {n : 〈xn+q, xn〉) < δ} ∈ Fc. Apply
Lemma 4.7 to these sets with k to be specified later. If n1, . . . , nk satisfy the
conclusion of Lemma 4.7, then

(i) 〈xni
, x〉 > ε, 1 ≤ i ≤ k,

(ii) 〈xni
, xnj

〉 < δ, 1 ≤ i < j ≤ k.

Set yi = xni
− εx/‖x‖2. Then

〈yi, yj〉 < δ −
2ε2

‖x‖2
+

ε2

‖x‖2
= δ −

ε2

‖x‖2
< 0, 1 ≤ i < j ≤ k.

But since the yi are bounded independently of k, and

0 ≤
∥

∥

∥

k
∑

i=1

yi

∥

∥

∥

2
=

k
∑

i=1

‖yi‖
2+2

∑

i<j

〈yi, yj〉 ≤ k max ‖yi‖
2−k(k−1)

(

ε2

‖x‖2
−δ

)

,

we arrive at a contradiction if k is chosen sufficiently large.

Now we are ready to give

Proof of Theorem 4.6. It remains to show that

∆∗- lim
n

µ(A0 ∩ T−ne1A1 ∩ T−ne2A2) = µ(A0)µ(A1)µ(A2).

Let
an(x) = 1A1

(Tne1x)1A2
(Tne2x) − µ(A1)µ(A2).

We will show that ∆∗- limn an = 0 with respect to the weak topology. Since
T is strongly mixing we have

lim
m

lim
n

〈an+m, an〉

= lim
m

lim
n

\
1A1

(T (n+m)e1x)1A2
(T (n+m)e2x)1A1

(Tne1x)1A2
(Tne2x) dµ

− µ(A1)
2µ(A2)

2

= lim
m

lim
n

\
1A1

(Tme1x)1A1
(x)1A2

(Tn(e2−e1)+me2x)1A2
(Tn(e2−e1)x) dµ

− µ(A1)
2µ(A2)

2

= lim
m

(\
1A1

(Tme1x)1A1
(x) dµ

)(\
1A2

(Tme2x)1A2
(x) dµ

)

− µ(A1)
2µ(A2)

2

=
\
1A1

dµ
\
1A1

dµ
\
1A2

dµ
\
1A2

dµ − µ(A1)
2µ(A2)

2 = 0.
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Thus, Fc- limm(Fc- limn〈an+m, an〉) = 0. By Lemma 4.8 we know ∆∗- limn an

= 0 in the weak topology. This proves the theorem.

We remark that by similar arguments we can prove that strong mixing of
order k implies ∆∗-c.ergodicity of order k+1 for any k ≥ 1. We do not know
whether strong mixing implies ∆∗-c.ergodicity of order k for any k ≥ 3.

Question 4.9. Does ∆∗-c.ergodicity of order 2 imply strong mixing of

order 2? Generally , does ∆∗-c.ergodicity of order k imply strong mixing of

order k for each k ≥ 2?

Affirmative answers to these questions will answer the Rokhlin conjecture
affirmatively by the above remark.

5. Applications. In this section we will use the results of Section 4 and
of [17] to answer some questions asked in the preliminary version of [3].

Let (X,B, µ, T ) be a MDS. Given ε > 0 and A, B ∈ B+, the set of fat

intersection is defined in [3] as follows:

Rε
A,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B) − ε}.

A simple observation is that if Rε
A,B ∈ F for any A, B ∈ B+ with F

given, then {n ∈ Z : µ(A ∩ TnB) < µ(A)µ(B) + ε} ∈ F .

For a given family F let F+ =
⋃

k∈Z
(F + k) and F• =

⋂

k∈Z
(F + k). To

simplify the notations let F∗
+ = (F∗)+ and F∗

• = (F∗)•.

One of the questions asked in the preliminary version of [3] is whether
the requirement that all sets Rε

A,B are in ∆∗
• yields a class of systems sit-

uated strictly between mild mixing and strong mixing. By Theorem 4.4 we
see that the requirement is equivalent to strong mixing since ∆∗

• ⊂ ∆∗.
So we have the following observation communicated to us by T. Downa-
rowicz.

Proposition 5.1. The requirement that all sets Rε
A,B are in ∆∗

• does

not yield a class of systems situated strictly between mild mixing and strong

mixing. In fact , the requirement is equivalent to strong mixing.

Let C be the family consisting of central sets [9], [3]. Since C has the
Ramsey property and C ⊂ Fip ⊂ ∆ (see [9]) we have

C∗
• ⊂ C∗ ⊂ C ⊂ Fip ⊂ ∆.

Theorem 3.1 in [17] states that T is weakly mixing iff {n ∈ Z+ : µ(A ∩
T−nB) > 0} is a recurrence set for any A, B ∈ B+. Recall that a subset
S of N is a recurrence set if for any TDS (X, T ) there are x ∈ X and a
subsequence {si} of S with T six → x ([20]). Another question asked in the
preliminary version of [3] is whether the requirement that all sets Rε

A,B are
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in C∗
• generates a notion of “mixing” weaker than weak mixing. Since a ∆-set

is a recurrence set, we have

Proposition 5.2. The requirement that all sets Rε
A,B are in C∗

• does not

generate a class of systems weaker than weak mixing. In fact , the requirement

is equivalent to weak mixing.
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