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CENTRAL LIMIT THEOREMS FORNON-INVERTIBLE MEASURE PRESERVING MAPSBYMICHAEL C. MACKEY (Montréal) and MARTA TYRAN-KAMI�SKA (Katowi
e)Abstra
t. Using the Perron�Frobenius operator we establish a new fun
tional 
entrallimit theorem for non-invertible measure preserving maps that are not ne
essarily ergodi
.We apply the result to asymptoti
ally periodi
 transformations and give a spe
i�
 exampleusing the tent map.1. Introdu
tion. This paper is motivated by the question �How 
an weprodu
e the 
hara
teristi
s of a Wiener pro
ess (Brownian motion) from asemidynami
al system?�. This question is intimately 
onne
ted with 
entrallimit theorems for non-invertible maps and various invarian
e prin
iples.Many results on 
entral limit theorems and invarian
e prin
iples for mapshave been proved (see e.g. the surveys by Denker [5℄ and Ma
key and Tyran-Kami«ska [17℄). These results extend ba
k over some de
ades, and in
ludethe work of Boyarsky and S
arowsky [3℄, Gouëzel [8℄, Jabªo«ski and Mal
zak[12℄, Rousseau-Egele [25℄, and Wong [32℄ for the spe
ial 
ase of maps of theunit interval. Martingale approximations, developed by Gordin [7℄, were usedby Keller [13℄, Liverani [16℄, Melbourne and Ni
ol [19℄, Melbourne and Török[20℄, and Tyran-Kami«ska [27℄ to give more general results.Throughout this paper, (Y,B, ν) denotes a probability measure spa
eand T : Y → Y a non-invertible measure preserving transformation. Thus
ν is invariant under T , i.e. ν(T−1(A)) = ν(A) for all A ∈ B. The transferoperator PT : L1(Y,B, ν) → L1(Y,B, ν), by de�nition, satis�es\

PT f(y)g(y) ν(dy) =
\
f(y)g(T (y)) ν(dy)for all f ∈ L1(Y,B, ν) and g ∈ L∞(Y,B, ν).Let h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0. De�ne the pro
ess {wn(t) : t ∈

[0, 1]} by2000 Mathemati
s Subje
t Classi�
ation: Primary 37A50, 60F17; Se
ondary 28D05,60F05.Key words and phrases: fun
tional 
entral limit theorem, measure preserving trans-formation, Perron�Frobenius operator, maximal inequality, asymptoti
 periodi
ity, tentmap. [167℄ 
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168 M. C. MACKEY AND M. TYRAN-KAMI�SKA
(1.1) wn(t) =

1√
n

[nt]−1∑

j=0

h ◦ T j for t ∈ [0, 1], n ≥ 1(the sum from 0 to −1 is set equal to 0), where [x] denotes the integer partof x. For ea
h y, wn(·)(y) is an element of the Skorokhod spa
e D[0, 1] ofall fun
tions whi
h are right 
ontinuous and have left-hand limits, equippedwith the Skorokhod metri

̺S(ψ, ψ̃) = inf

s∈S
( sup
t∈[0,1]

|ψ(t) − ψ̃(s(t))| + sup
t∈[0,1]

|t− s(t)|), ψ, ψ̃ ∈ D[0, 1],where S is the family of stri
tly in
reasing, 
ontinuous mappings s of [0, 1]onto itself su
h that s(0) = 0 and s(1) = 1 [1, Se
tion 14℄.Let {w(t) : t ∈ [0, 1]} be a standard Brownian motion. Throughout thepaper the notation
wn →d √

η w,where η is a random variable independent of the Brownian pro
ess w, denotesthe weak 
onvergen
e of the sequen
e wn in the Skorokhod spa
e D[0, 1].Our main result, whi
h is proved using te
hniques similar to those ofPeligrad and Utev [22℄ and Peligrad et al. [23℄, is the following:Theorem 1. Let T be a non-invertible measure preserving transforma-tion on the probability spa
e (Y,B, ν) and let I be the σ-algebra of all T -invariant sets. Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is su
h that(1.2) ∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Pk
Th

∥∥∥
2
<∞.Then(1.3) wn →d √

η w,where η = Eν(h̃
2 | I) and h̃ ∈ L2(Y,B, ν) is su
h that PT h̃ = 0 and

lim
n→∞

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

= 0.Re
all that T is ergodi
 (with respe
t to ν) if, for ea
h A ∈ B with
T−1(A) = A, we have ν(A) ∈ {0, 1}. Thus if T is ergodi
 then I is atrivial σ-algebra, so η in (1.3) is a 
onstant random variable. Consequently,Theorem 1 signi�
antly generalizes [27, Theorem 4℄, where it was assumedthat T is ergodi
 and there is α < 1/2 su
h that

∥∥∥
n−1∑

k=0

Pk
Th

∥∥∥
2

= O(nα)(we use the notation b(n) = O(a(n)) if lim supn→∞ b(n)/a(n) <∞).
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entral limit theorems for spe
i�
 examples of trans-formations one assumes that the transformation is mixing. For non-invertibleergodi
 transformations for whi
h the transfer operator is quasi-
ompa
t onsome subspa
e F ⊂ L2(ν) with norm | · | ≥ ‖·‖2, the 
entral limit theoremand its fun
tional version was given in Melbourne and Ni
ol [19℄. Sin
e qua-si
ompa
tness implies exponential de
ay of the L2 norm, our result applies,thus extending the results of [19℄ to the non-ergodi
 
ase. For examples oftransformations in whi
h the de
ay of the L2 norm is slower than exponentialand our results apply, see [27℄.In the 
ase of invertible transformations, non-ergodi
 versions of the 
en-tral limit theorem and its fun
tional generalizations were studied by Volný[28�31℄ using martingale approximations. In a re
ent review by Merlevèdeet al. [21℄, the weak invarian
e prin
iple was studied for stationary sequen
es
(Xk)k∈Z whi
h, in parti
ular, 
an be des
ribed as Xk = X0 ◦ T k, where Tis a measure preserving invertible transformation on a probability spa
e and
X0 is measurable with respe
t to a σ-algebra F0 su
h that F0 ⊂ T−1(F0).Choosing a σ-algebra F0 for a spe
i�
 example of invertible transformationis not an easy task and the requirement that X0 is F0-measurable may some-times be too restri
tive (see [4, 16℄). Sometimes, it is possible to redu
e aninvertible transformation to a non-invertible one (see [20, 27℄). Our result inthe non-invertible 
ase extends [22, Theorem 1.1℄, whi
h is also to be found in[21, Theorem 11℄, where a 
ondition introdu
ed by Maxwell and Woodroofe[18℄ is assumed. In [27℄ the 
ondition was transformed to equation (1.2). Inthe proof of our result we use Theorem 4.2 in Billingsley [1℄ and approxima-tion te
hniques whi
h were motivated by [22℄. The 
orresponding maximalinequality in our non-invertible setting is stated in Proposition 1, and itsproof, based on ideas of [23℄, is provided in Appendix A for 
ompleteness.As in [22℄, the random variable η in Theorem 1 
an also be obtained as alimit in L1, whi
h we state in Appendix B.The outline of the paper is as follows. After the presentation of someba
kground material in Se
tion 2, we turn to a proof of our main Theorem 1in Se
tion 3. Se
tion 4 introdu
es asymptoti
ally periodi
 transformationsas a spe
i�
 example of a system to whi
h Theorem 1 applies. We analyzethe spe
i�
 example of an asymptoti
ally periodi
 family of tent maps inSe
tion 4.4.2. Preliminaries. The de�nition of the Perron�Frobenius (transfer) op-erator for T depends on a given σ-�nite measure µ on the measure spa
e
(Y,B) with respe
t to whi
h T is non-singular, i.e. µ(T−1(A)) = 0 forall A ∈ B with µ(A) = 0. Given su
h a measure the transfer operator
P : L1(Y,B, µ) → L1(Y,B, µ) is de�ned as follows. For any f ∈ L1(Y,B, µ),there is a unique element Pf in L1(Y,B, µ) su
h that
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(2.1) \

A

Pf(y)µ(dy) =
\

T−1(A)

f(y)µ(dy) for all A ∈ B.

This in turn gives rise to di�erent operators for di�erent underlying measureson B. Thus if ν is invariant for T , then T is non-singular and the transferoperator PT : L1(Y,B, ν) → L1(Y,B, ν) is well de�ned. Here we write PT toemphasize that the underlying measure ν is invariant under T .The Koopman operator is de�ned by
UT f = f ◦ Tfor every measurable f : Y → R. In parti
ular, UT is also well de�nedfor f ∈ L1(Y,B, ν) and is an isometry of L1(Y,B, ν) into L1(Y,B, ν), i.e.

‖UT f‖1 = ‖f‖1 for all f ∈ L1(Y,B, ν). Sin
e the measure ν is �nite, wehave Lp(Y,B, ν) ⊂ L1(Y,B, ν) for p ≥ 1. The operator UT : Lp(Y,B, ν) →
Lp(Y,B, ν) is also an isometry on Lp(Y,B, ν).The following relations hold between the operators UT ,PT : L1(Y,B, ν)
→ L1(Y,B, ν):(2.2) PTUT f = f and UTPT f = Eν(f |T−1(B))for f ∈ L1(Y,B, ν), where Eν(· |T−1(B)) : L1(Y,B, ν) → L1(Y, T−1(B), ν) isthe operator of 
onditional expe
tation. Note that if the transformation Tis invertible then UTPT f = f for f ∈ L1(Y,B, ν).Theorem 2. Let T be a non-invertible measure preserving transforma-tion on the probability spa
e (Y,B, ν) and let I be the σ-algebra of all T -invariant sets. Suppose that h ∈ L2(Y,B, ν) is su
h that PTh = 0. Then

wn →d √
η w,where η = Eν(h2 | I) is a random variable independent of the Brownian mo-tion {w(t) : t ∈ [0, 1]}.Proof. When T is ergodi
, a dire
t proof based on the fa
t that the family

{
T−n+j(B),

1√
n
h ◦ Tn−j : 1 ≤ j ≤ n, n ≥ 1

}

is a martingale di�eren
e array is given in [17, Appendix A℄ and uses themartingale 
entral limit theorem (
f. [2, Theorem 35.12℄) together with theBirkho� ergodi
 theorem. This 
an be extended to the 
ase of non-ergodi
 Tby using a version of the martingale 
entral limit theorem due to Eagleson[6, Corollary p. 561℄.Example 1. We illustrate Theorem 2 with an example. Let T : [0, 1] →
[0, 1] be de�ned by
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T (y) =





2y, y ∈ [0, 1/4),

2y − 1/2, y ∈ [1/4, 3/4),

2y − 1, y ∈ [3/4, 1].Observe that the Lebesgue measure on ([0, 1],B([0, 1])) is invariant for Tand that T is not ergodi
 sin
e T−1([0, 1/2]) = [0, 1/2] and T−1([1/2, 1]) =
[1/2, 1]. The transfer operator is given by
PT f(y) =

1

2
f

(
1

2
y

)
1[0,1/2)(y) +

1

2
f

(
1

2
y +

1

4

)
+

1

2
f

(
1

2
y +

1

2

)
1[1/2,1](y).Consider the fun
tion

h(y) =





1, y ∈ [0, 1/4),
−1, y ∈ [1/4, 1/2),

−2, y ∈ [1/2, 3/4),

2, y ∈ [3/4, 1].A straightforward 
al
ulation shows that PTh = 0 and Eν(h2 | I) = 1[0,1/2]+
4 · 1[1/2,1]. Thus Theorem 2 shows that

wn →d
√
Eν(h2 | I)w.In parti
ular, the one-dimensional distribution of the pro
ess √

Eν(h2 | I)whas a density equal to
1

2

1√
2πt

exp

(
−x

2

2t

)
+

1

2

1√
8πt

exp

(
−x

2

8t

)
, x ∈ R.In general, for a given h the equation PTh = 0 may not be satis�ed.Then the idea is to write h as a sum of two fun
tions, one of whi
h satis�esthe assumptions of Theorem 2 while the other is irrelevant for the 
onver-gen
e to hold. At least a part of the 
on
lusions of Theorem 1 is given in thefollowingTheorem 3 (Tyran-Kami«ska [27, Theorem 3℄). Let T be a non-invert-ible measure preserving transformation on the probability spa
e (Y,B, ν).Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is su
h that (1.2) holds. Thenthere exists h̃ ∈ L2(Y,B, ν) su
h that PT h̃ = 0 and

1√
n

n−1∑

j=0

(h− h̃) ◦ T j → 0

in L2(Y,B, ν) as n→ ∞.We will use the following two results for subadditive sequen
es.



172 M. C. MACKEY AND M. TYRAN-KAMI�SKALemma 1 (Peligrad and Utev [22, Lemma 2.8℄). Let Vn be a subadditivesequen
e of non-negative numbers. Suppose that ∑∞
n=1 n

−3/2Vn <∞. Then
lim

m→∞

1√
m

∞∑

j=0

Vm2j

2j/2
= 0.

Lemma 2. Let Vn be a subadditive sequen
e of non-negative numbers.Then for every integer r ≥ 2 there exist two positive 
onstants C1, C2 (de-pending on r) su
h that
C1

∞∑

j=0

Vrj

rj/2
≤

∞∑

n=1

Vn

n3/2
≤ C2

∞∑

j=0

Vrj

rj/2
.

Proof. When r = 2, the result follows from Lemma 2.7 of [22℄, the proofof whi
h 
an be easily extended to the 
ase of arbitrary r > 2.3. Maximal inequality and the proof of Theorem 1. We start by�rst stating our key maximal inequality whi
h is analogous to Proposition 2.3in [22℄.Proposition 1. Let n, q be integers su
h that 2q−1 ≤ n < 2q. If T isa non-invertible measure preserving transformation on the probability spa
e
(Y,B, ν) and f ∈ L2(Y,B, ν), then
(3.1) ∥∥∥∥ max

1≤k≤n

∣∣∣
k−1∑

j=0

f ◦ T j
∣∣∣
∥∥∥∥

2

≤
√
n (3‖f − UTPT f‖2 + 4

√
2∆q(f)),

where(3.2) ∆q(f) =

q−1∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
T f

∥∥∥
2
.

In what follows we assume that T is a non-invertible measure preservingtransformation on the probability spa
e (Y,B, ν).Proposition 2. Let h ∈ L2(Y,B, ν). De�ne
(3.3) hm =

1√
m

m−1∑

j=0

h ◦ T j and wk,m(t) =
1√
k

[kt]−1∑

j=0

hm ◦ Tmj

for m, k ∈ N and t ∈ [0, 1]. Let us take an m su
h that the sequen
e
‖max1≤l≤k |wk,m(l/k)| ‖2 is bounded. Then

lim
n→∞

‖ sup
0≤t≤1

|wn,1(t) − w[n/m],m(t)| ‖2 = 0.



CENTRAL LIMIT THEOREMS 173Proof. Let kn = [n/m]. We have
|wn,1(t)−wkn,m(t)| ≤ 1√

n

∣∣∣
[nt]−1∑

j=m[knt]

h◦T j
∣∣∣+

(
1√
kn

−
√
m√
n

)∣∣∣
[knt]−1∑

j=0

hm◦Tmj
∣∣∣,whi
h leads to the estimate

(3.4) ‖ sup
0≤t≤1

|wn,1(t) − wkn,m(t)| ‖2

≤ 3m√
n
‖ max
1≤l≤n

|h ◦ T l|‖2 +

(
1 −

√
knm

n

)
‖ max
1≤l≤kn

|wkn,m(l/kn)| ‖2.Sin
e h ∈ L2(Y,B, ν) we have
lim

n→∞

1√
n
‖ max
1≤l≤n

|h ◦ T l| ‖2 = 0.Furthermore, sin
e the sequen
e ‖max1≤l≤k |wk,m(l/k)| ‖2 is bounded by as-sumption, and limn→∞(1−
√
knm/n) = 0, the se
ond term on the right-handside of (3.4) also tends to zero.Proof of Theorem 1. From Theorem 3 it follows that there exists h̃ ∈

L2(Y,B, ν) su
h that PT h̃ = 0 and(3.5) lim
n→∞

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

= 0.For ea
h m ∈ N, de�ne
h̃m =

1√
m

m−1∑

j=1

h̃ ◦ T j and w̃k,m(t) =
1√
k

[kt]−1∑

j=0

h̃m ◦ Tmj

for k ∈ N and t ∈ [0, 1]. We have PT m h̃m = 0 for all m. Thus Theorem 2implies(3.6) w̃k,m →d
√
Eν(h̃2

m | Im)was k → ∞, where Im is the σ-algebra of Tm-invariant sets. Proposition 1,applied to Tm and h̃m, gives
‖max
1≤l≤k

|w̃k,m(l/k)| ‖2 ≤ 3‖h̃m‖2.Therefore, by Proposition 2, we obtain
lim

n→∞
‖ sup
0≤t≤1

|w̃n,1(t) − w̃[n/m],m(t)| ‖2 = 0for all m ∈ N, whi
h implies, by Theorem 4.1 of [1℄, that the limit in (3.6)does not depend on m and is thus equal to √
Eν(h̃2 | I)w.



174 M. C. MACKEY AND M. TYRAN-KAMI�SKATo prove (1.3), using Theorem 4.2 of [1℄ we have to show that(3.7) lim
m→∞

lim sup
n→∞

‖ sup
0≤t≤1

|wn(t) − w̃[n/m],m(t)| ‖2 = 0.Let hm and wk,m be de�ned as in (3.3). We have
(3.8) ‖ sup

0≤t≤1
|wn(t) − w̃[n/m],m(t)| ‖2

≤ ‖ sup
0≤t≤1

|wn(t) − w[n/m],m(t)| ‖2

+ ‖ sup
0≤t≤1

|w[n/m],m(t) − w̃[n/m],m(t)| ‖2.Making use of Proposition 1 with Tm and hm we obtain
‖max
1≤l≤k

|wk,m(l/k)|‖2 ≤ 3‖hm−UT mPT mhm‖2+4
√

2
∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T mhm

∥∥∥
2
.

However,
PT mhm =

1√
m

m−1∑

j=0

PT mUT jh =
1√
m

m∑

j=1

Pj
Thby (2.2), and thus

(3.9) ∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T mhm

∥∥∥
2

=
1√
m

∞∑

j=0

2−j/2
∥∥∥

m2j∑

i=1

P i
Th

∥∥∥
2
,

and the series is 
onvergent by Lemma 1, whi
h implies that the sequen
e
‖max1≤l≤k|wk,m(l/k)| ‖2 is bounded for all m. From Proposition 2 it followsthat

lim
n→∞

‖ sup
0≤t≤1

|wn(t) − w[n/m],m(t)| ‖2 = 0.

We next turn to estimating the se
ond term in (3.8). We have
‖ sup
0≤t≤1

|wk,m(t) − w̃k,m(t)| ‖2 ≤ 1√
k

∥∥∥ max
1≤l≤k

∣∣∣
l−1∑

j=0

(hm − h̃m) ◦ Tmj
∣∣∣
∥∥∥

2

≤ 3‖hm − h̃m − UT mPT m(hm − h̃m)‖2

+ 4
√

2
∞∑

j=0

2−j/2
∥∥∥

2j∑

i=1

P i
T m(hm − h̃m)

∥∥∥
2by Proposition 1. Combining this with (3.9) and the fa
t that PT m h̃m = 0
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‖ sup
0≤t≤1

|wk,m(t)−w̃k,m(t)| ‖2 ≤ 3
1√
m

∥∥∥
m−1∑

j=0

(h−h̃) ◦ T j
∥∥∥

2
+

1√
m

∥∥∥
m∑

j=1

PT jh
∥∥∥

2

+
4
√

2√
m

∞∑

j=0

2−j/2
∥∥∥

m2j∑

i=1

P i
Th

∥∥∥
2
,

whi
h 
ompletes the proof of (3.7), be
ause all terms on the right-hand sidetend to zero as m→ ∞, by (3.5) and Lemma 1.4. Asymptoti
ally periodi
 transformations. The dynami
al prop-erties of what are now known as asymptoti
ally periodi
 transformationsseem to have �rst been studied by Iones
u Tul
ea and Marines
u [10℄. Thesetransformations form a perfe
t example of the 
entral limit theorem resultswe have dis
ussed in earlier se
tions, and here we 
onsider them in detail.Let (X,A, µ) be a σ-�nite measure spa
e. Write L1(µ) = L1(X,A, µ).The elements of the set
D(µ) =

{
f ∈ L1(µ) : f ≥ 0 and \f(x)µ(dx) = 1

}

are 
alled densities. Let T : X → X be a non-singular transformation and
P : L1(µ) → L1(µ) be the 
orresponding Perron�Frobenius operator. Then(Lasota and Ma
key [15℄) (T, µ) is 
alled asymptoti
ally periodi
 if thereexists a sequen
e of densities g1, . . . , gr and a sequen
e of bounded linearfun
tionals λ1, . . . , λr su
h that(4.1) lim

n→∞

∥∥∥Pn
(
f −

r∑

j=1

λj(f)gj

)∥∥∥
L1(µ)

= 0

for all f ∈ D(µ). The densities gj have disjoint supports (gigj = 0 for i 6= j)and Pgj = gα(j), where α is a permutation of {1, . . . , r}.If (T, µ) is asymptoti
ally periodi
 and r = 1 in (4.1) then (T, µ) is 
alledasymptoti
ally stable or exa
t by Lasota and Ma
key [15℄.Observe that if (T, µ) is asymptoti
ally periodi
 then
g∗ =

1

r

r∑

j=1

gjis an invariant density for P , i.e. Pg∗ = g∗. The ergodi
 stru
ture of asymp-toti
ally periodi
 transformations was studied by Inoue and Ishitani [9℄.Remark 1. Let µ(X) < ∞. Re
all that P is a 
onstri
tive Perron�Frobenius operator if there exist δ > 0 and κ < 1 su
h that for every density
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f we have

lim sup
n→∞

\
A

Pnf(x)µ(dx) < κfor all A ∈ A with µ(A) ≤ δ. It is known that if P is a 
onstri
tive op-erator then (T, µ) is asymptoti
ally periodi
 ([15, Theorem 5.3.1℄, see alsoKomorník and Lasota [14℄), and (T, µ) is ergodi
 if and only if the permu-tation {α(1), . . . , α(r)} of the sequen
e {1, . . . , r} is 
y
li
al ([15, Theorem5.5.1℄). In this 
ase we 
all r the period of T .Let (T, µ) be asymptoti
ally periodi
 and let g∗ be an invariant densityfor P . Let Y = supp(g∗) = {x ∈ X : g∗(x) > 0}, B = {A ∩ Y : A ∈ A}, and
ν(A) =

\
A

g∗(x)µ(dx), A ∈ A.The measure ν is a probability measure invariant under T . In what follows wewrite Lp(ν) = Lp(Y,B, ν) for p = 1, 2. The transfer operator PT : L1(ν) →
L1(ν) is given by(4.2) g∗PT (f) = P (fg∗) for f ∈ L1(ν).We now turn to the study of weak 
onvergen
e of the sequen
e of pro
esses

wn(t) =
1√
n

[nt]−1∑

j=0

h ◦ T j ,

where h ∈ L2(ν) with Th(y) ν(dy) = 0, by 
onsidering �rst the ergodi
 andthen the non-ergodi
 
ase.4.1. (T, µ) ergodi
 and asymptoti
ally periodi
. Let the transformation
(T, µ) be ergodi
 and asymptoti
ally periodi
 with period r. The uniqueinvariant density of P is given by

g∗ =
1

r

r∑

j=1

gjand (T r, gj) is exa
t for every j = 1, . . . , r. Let Yj = supp(gj) for j =
1, . . . , r. Note that the set Bj =

⋃∞
n=0 T

−nr(Yj) is (almost) T r-invariant and
ν(Bj \ Yj) = 0 for j = 1, . . . , r. Sin
e the Yj are pairwise disjoint, we have

Eν(f | Ir) =
r∑

k=1

1

ν(Yk)

\
Yk

f(y) ν(dy) 1Yk
for f ∈ L1(ν),where Ir is the σ-algebra of T r-invariant sets. But ν(Yk) = 1/r, and thus(4.3) Eν(f | Ir) = r

r∑

k=1

\
Yk

f(y) ν(dy) 1Yk
=

r∑

k=1

\
Yk

f(y)gk(y)µ(dy) 1Yk
.



CENTRAL LIMIT THEOREMS 177Theorem 4. Suppose that h ∈ L2(ν) with Th(y) ν(dy) = 0 is su
h that(4.4) ∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Prk
T hr

∥∥∥
2
<∞, where hr =

1√
r

r−1∑

k=0

h ◦ T k.Then
wn →d σw,where w is a standard Brownian motion and σ ≥ 0 is a 
onstant. Moreover ,if ∑∞

j=1

T
|hr(y)hr(T

rj(y))| ν(dy) <∞ then σ is given by(4.5) σ2 = r
( \

Y1

h2
r(y) ν(dy) + 2

∞∑

j=1

\
Y1

hr(y)hr(T
rj(y)) ν(dy)

)
.

Proof. We have hr ∈ L2(ν) and TY hr(y) ν(dy) = 0. Let
wk,r(t) =

1√
k

[kt]−1∑

j=0

hr ◦ T rj for k ∈ N, t ∈ [0, 1].We 
an apply Theorem 1 to dedu
e that
wk,r →d

√
Eν(h̃2

r | Ir)w as k → ∞,where Ir is the σ-algebra of all T r-invariant sets and(4.6) Eν(h̃2
r | Ir) = lim

n→∞

1

n
Eν

(( n−1∑

j=0

hr ◦ T rj
)2 ∣∣∣ Ir

)
.On the other hand, we also have

∞∑

j=0

r−j/2
∥∥∥

rj∑

k=1

Prkhr

∥∥∥
2

=

∞∑

j=0

r−j/2 1√
r

∥∥∥
rj+1∑

k=1

Pkh
∥∥∥

2
=

∞∑

j=1

r−j/2
∥∥∥

rj∑

k=1

Pkh
∥∥∥

2
.Thus the series

∞∑

n=1

n−3/2
∥∥∥

n−1∑

k=0

Pkh
∥∥∥

2is 
onvergent by Lemma 2. From Theorem 1 we 
on
lude that there exists
h̃ ∈ L2(ν) su
h that

wn →d ‖h̃‖2wsin
e T is ergodi
. But
‖h̃‖2 =

√
Eν(h̃

2
r | Ir),by Proposition 2. Hen
e Eν(h̃2

r | Ir) is a 
onstant and from (4.3) it followsthat for ea
h k = 1, . . . , r the integral TYk
h̃2

r(y) ν(dy) does not depend on k.
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σ2 = ‖h̃‖2

2 = r
\

Y1

h̃2
r(y) ν(dy).Sin
e ν is T r-invariant, we have

1

n

\
Yk

(n−1∑

j=0

hr(T
rj(y))

)2
ν(dy) =

\
Yk

h2
r(y) ν(dy)

+ 2
1

n

n−1∑

l=1

l∑

j=1

\
Yk

hr(y)hr(T
rj(y)) ν(dy).

By assumption the sequen
e (
∑n

j=1

T
Yk
hr(y)hr(T

rj(y)) ν(dy))n≥1 is 
onver-gent to ∑∞
j=1

T
Yk
hr(y)hr(T

rj(y)) ν(dy), whi
h 
ompletes the proof when
ombined with (4.6) and (4.3).4.2. (T, µ) asymptoti
ally periodi
 but not ne
essarily ergodi
. Now let us
onsider (T, µ) asymptoti
ally periodi
 but not ergodi
, so that the permu-tation α is not 
y
li
al and we 
an represent it as a produ
t of permutation
y
les. Thus we 
an rephrase the de�nition of asymptoti
 periodi
ity as fol-lows.Let there exist a sequen
e of densities(4.7) g1,1, . . . , g1,r1
, . . . , gl,1, . . . , gl,rland a sequen
e of bounded linear fun
tionals λ1,1, . . . , λ1,r1

, . . . , λl,1, . . . , λl,rlsu
h that(4.8) lim
n→∞

∥∥∥Pn
(
f −

l∑

i=1

ri∑

j=1

λi,j(f)gi,j

)∥∥∥
L1(µ)

= 0 for all f ∈ L1(µ),

where the densities gi,j have mutually disjoint supports and, for ea
h i,
Pgi,j = gi,j+1 for 1 ≤ j ≤ ri − 1, and Pgi,ri

= gi,1. Then
g∗i =

1

ri

ri∑

j=1

gi,j

is an invariant density for P and (T, g∗i ) is ergodi
 for every i = 1, . . . , l. Let
g∗ be a 
onvex 
ombination of g∗i , i.e.

g∗ =

l∑

i=1

αig
∗
i

where αi ≥ 0 and ∑l
i=1 αi = 1. For simpli
ity, assume that αi > 0.



CENTRAL LIMIT THEOREMS 179Let Yi = supp(g∗i ) and Yi,j = supp(gi,j), j = 1, . . . , ri, i = 1, . . . , l. If I isthe σ-algebra of all T -invariant sets, then
Eν(f | I) =

l∑

i=1

1

ν(Yi)

\
Yi

f(y) ν(dy) 1Yi
=

l∑

i=1

\
Yi

f(y)g∗i (y)µ(dy) 1Yi
.

Now, if Ir is the σ-algebra of all T r-invariant sets with r =
∏l

i=1 ri, then
Eν(f | Ir) =

l∑

i=1

ri
ν(Yi)

ri∑

j=1

\
Yi,j

f(y) ν(dy) 1Yi,j

for f ∈ L1(ν), whi
h leads to
Eν(f | Ir) =

l∑

i=1

ri∑

j=1

\
Yi,j

f(y)gi,j(y)µ(dy) 1Yi,j
.

Using similar arguments to those in the proof of Theorem 4 we obtainTheorem 5. Suppose that h ∈ L2(ν) with Th(y) ν(dy) = 0 is su
h that
ondition (4.4) holds. Then
wn →d ηw,where w is a standard Brownian motion and η ≥ 0 is a random variableindependent of w. Moreover , if ∑∞

j=1

T
|hr(y)hr(T

rj(y))| ν(dy) < ∞ then ηis given by
η =

l∑

i=1

ri
ν(Yi)

( \
Yi,1

h2
r(y) ν(dy) + 2

∞∑

j=1

\
Yi,1

hr(y)hr(T
rj(y)) ν(dy)

)
1Yi
.

Remark 2. Observe that 
ondition (4.4) holds if
∞∑

n=1

‖Prn
T hr‖2√
n

<∞.The operator PT is a 
ontra
tion on L∞(ν). Therefore
‖Pn

T f‖2 ≤ ‖f‖1/2
∞ ‖Pn

T f‖
1/2
1 for f ∈ L∞(ν), n ≥ 1,whi
h allows us to easily 
he
k 
ondition (4.4) for spe
i�
 examples of trans-formations T . It should also be noted that, by (4.2), we have

‖Pn
T f‖1 = ‖Pn(fg∗)‖L1(µ) for f ∈ L1(ν), n ≥ 1.4.3. Pie
ewise monotoni
 transformations. Let X be a totally ordered,order 
omplete set (usually X is a 
ompa
t interval in R). Let B be the

σ-algebra of Borel subsets of X and let µ be a probability measure on X.
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all that a fun
tion f : X → R is said to be of bounded variation if
var(f) = sup

n∑

i=1

|f(xi−1) − f(xi)| <∞,where the supremum is taken over all �nite ordered sequen
es (xj) with
xj ∈ X. The bounded variation norm is given by

‖f‖BV = ‖f‖L1(µ) + var(f)and it makes BV = {f : X → R : var(f) <∞} into a Bana
h spa
e.Let T : V → X be a 
ontinuous map, V ⊂ X be open and dense with
µ(V ) = 1. We 
all (T, µ) a pie
ewise uniformly expanding map if:(1) There exists a 
ountable family Z of 
losed intervals with disjointinteriors su
h that V ⊂ ⋃

Z∈Z Z and for any Z ∈ Z the set Z∩(X\V )
onsists exa
tly of the endpoints of Z.(2) For any Z ∈ Z, T|Z∩V admits an extension to a homeomorphismfrom Z to some interval.(3) There exists a fun
tion g : X → [0,∞), with bounded variation,
g|X\V = 0 su
h that the Perron�Frobenius operator P : L1(µ) →
L1(µ) is of the form

Pf(x) =
∑

z∈T−1(x)

g(z)f(z).

(4) T is expanding: supx∈V g(x) < 1.The following result is due to Ry
hlik [26℄:Theorem 6. If (T, µ) is a pie
ewise uniformly expanding map then itsatis�es (4.8) with gi,j ∈ BV. Moreover , there exist 
onstants C > 0 and
θ ∈ (0, 1) su
h that , for every fun
tion f of bounded variation and all n ≥ 1,

‖P rnf −Q(f)‖L1(µ) ≤ Cθn‖f‖BV,where r =
∏l

i=1 ri and
Q(f) =

l∑

i=1

ri∑

j=1

\
Yi,j

f(x)µ(dx) gi,j.This result and Remark 2 implyCorollary 1. Let (T, µ) be a pie
ewise uniformly expanding map and
ν an invariant measure whi
h is absolutely 
ontinuous with respe
t to µ. If
h is a fun
tion of bounded variation with Eν(h | I) = 0 then (4.4) holds.Remark 3. AFU-maps (uniformly expanding maps satisfying Adler's
ondition with a finite image 
ondition, whi
h are interval maps with a



CENTRAL LIMIT THEOREMS 181�nite number of indi�erent �xed points), studied by Zweimüller [35℄, areasymptoti
ally periodi
 when they have an absolutely 
ontinuous invariantprobability measure. However, the de
ay of the L1 norm may not be ex-ponential. For Hölder 
ontinuous fun
tions h one might use the results ofYoung [34℄ to obtain bounds on this norm and then apply our results.4.4. Cal
ulation of varian
e for the family of tent maps using Theorem 4.Let T be the generalized tent map on [−1, 1] de�ned by(4.9) Ta(x) = a− 1 − a|x| for x ∈ [−1, 1],where a ∈ (1, 2]. The Perron�Frobenius operator P : L1(µ) → L1(µ) is givenby(4.10) Pf(x) =
1

a
(f(ψ−

a (x)) + f(ψ+
a (x)))1[−1,a−1](x),where ψ−

a and ψ+
a are the inverse bran
hes of Ta:(4.11) ψ−
a (x) =

x+ 1 − a

a
, ψ+

a (x) = −x+ 1 − a

a
,and µ is the normalized Lebesgue measure on [−1, 1].Ito et al. [11℄ have shown that the tent map (4.9) is ergodi
, thus havinga unique invariant density ga. Provatas and Ma
key [24℄ have proved theasymptoti
 periodi
ity of (4.9) with period r = 2m for

21/2m+1

< a ≤ 21/2m for m = 0, 1, . . . .Thus, for example, (T, µ) has period 1 for 21/2 < a ≤ 2, period 2 for 21/4 <
a ≤ 21/2, period 4 for 21/8 < a ≤ 21/4, et
.Let Y = supp(ga) and νa(dy) = ga(y)µ(dy). For all 1 < a ≤ 2 we have
Ta(A) = A with A = [T 2

a (0), Ta(0)] and ga(x) = 0 for x ∈ [−1, 1] \ A. If√
2 < a ≤ 2 then ga is stri
tly positive in A, thus Y = A in this 
ase. For

a ≤
√

2 we have Y ⊂ A. The transfer operator Pa : L1(νa) → L1(νa) is givenby
Paf =

P (fga)

ga
for f ∈ L1(νa),where P is the Perron�Frobenius operator (4.10).If h is a fun
tion of bounded variation on [−1, 1] with T1−1 h(y) νa(dy) = 0and

wn(t) =
1√
n

[nt]−1∑

j=0

h ◦ T j
a ,then there exists a 
onstant σ(h) ≥ 0 su
h that

wn →d σ(h)w,



182 M. C. MACKEY AND M. TYRAN-KAMI�SKAwhere w is a standard Brownian motion. In parti
ular, we are going to study
σ(h) for the spe
i�
 example of h = ha for a ∈ (1, 2], where

ha(y) = y − ma, y ∈ [−1, 1], and ma =
\

[−1,1]

yga(y) dy.

Proposition 3. Let m ≥ 1 and 21/2m+1

< a ≤ 21/2m. Then(4.12) σ(ha) =
σ(ha2m )a(a− 1)√
2m a2m(a2m − 1)

m−1∏

k=0

(a2k − 1)2,where
σ(ha2m )2 = 2

\
ha2m (y)fa2m (y) νa2m (dy) −

\
h2

a2m (y) νa2m (dy),(4.13)
fa2m =

∞∑

n=0

Pn
a2mha2m .In general, an expli
it representation for (4.13) is not known. Hen
e,before turning to a proof of Proposition 3, we �rst give the simplest examplein whi
h σ(ha2m )2 
an be 
al
ulated exa
tly.Example 2. For a = 2 the invariant density for the transformation Tais g2 = 1

2 · 1[−1,1] and the transfer operator P2 : L1(ν2) → L1(ν2) has thesame form as P in (4.10):
P2f =

1

2
(f ◦ ψ−

2 + f ◦ ψ+
2 ).Sin
e T1−1 y dy = 0, we have h2(y) = y. We also have P2h2 = 0. Thus

σ(h2)
2 =

1

2

1\
−1

y2 dy = 1/3

and Proposition 3 gives σ(ha) for a = 21/2m , m ≥ 1.We now summarize some properties of the tent map [33℄, whi
h willallow us to prove Proposition 3. Let I0 = [x∗(a), x∗(a)(1 + 2/a)] and I1 =
[−x∗(a), x∗(a)], where x∗(a) is the �xed point of Ta other than −1, i.e.

x∗(a) =
a− 1

a+ 1
.De�ne transformations φia : Ii → [−1, 1] by

φ1a(x) = − 1

x∗(a)
x and φ0a(x) =

a

x∗(a)
x− a− 1.We have(4.14) φ−1

1a (x) = −x∗(a)x and φ−1
0a (x) =

x∗(a)

a
(x+ a+ 1).
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√

2 the map T 2
a : Ii → Ii is 
onjugate to Ta2 : [−1, 1] →

[−1, 1]:(4.15) Ta2 = φia ◦ T 2
a ◦ φ−1

ia ,and the invariant density of Ta is given by(4.16) ga(y) =
1

2x∗(a)
(aga2(φ0a(y))1I0(y) + ga2(φ1a(y))1I1(y)).Lemma 3. If a ∈ (1,

√
2] then(4.17) ma =
a− 1

2a
− (a− 1)x∗(a)

2a
ma2and(4.18) (ha + ha ◦ Ta) ◦ φ−1

0a =
(1 − a)x∗(a)

a
ha2 .Proof. Equation (4.17) follows from (4.16) and (4.14), while (4.18) is adire
t 
onsequen
e of the de�nition of φ−1

0a , the fa
t that I0 ⊂ [0, 1], and(4.17).Let m ≥ 1. For 21/2m+1

< a ≤ 21/2m there exist 2m disjoint intervals inwhi
h ga is stri
tly positive and they are de�ned by
Y m

j = Φ−1
jm([T 2

a2m (0), Ta2m (0)]),where
Φjm = φ

ima2m−1 ◦ φ
im−1a2m−2 ◦ · · · ◦ φi2a2 ◦ φi1aand j = 1 + i1 + 2i2 + · · · + 2m−1im, ik = 0, 1, k = 1, . . . ,m. We have

Ta(Y
m
j ) = Y m

j+1 for 1 ≤ j ≤ 2m − 1 and Ta(Y
m
2m) = Y m

1 . In parti
ular,(4.19) Y m+1
1 = φ−1

0a (Y m
1 ) for m ≥ 0,where Y 0

1 = [T 2
a2(0), Ta2(0)].Lemma 4. De�ne(4.20) hr,a =

1√
r

r−1∑

k=0

ha ◦ T k
a for r ≥ 1, a ∈ (1, 2].

Let m ≥ 0 and r = 2m. If 21/4r < a ≤ 21/2r then(4.21) \
Y m+1

1

h2r,a(y)h2r,a(T
2rn
a (y)) νa(dy)

=
(1 − a)2x∗(a)2

22a2

\
Y m
1

hr,a2(y)hr,a2(T rn
a2 (y)) νa2(dy)

for all n ≥ 0.



184 M. C. MACKEY AND M. TYRAN-KAMI�SKAProof. First observe that(4.22) h2r,a =
1√
r

r−1∑

k=0

h2,a ◦ T 2k
a .

Let n ≥ 0. Sin
e φ−1
0a (φ0a(y)) = y for y ∈ [−1, 1], a 
hange of variables using(4.19) and (4.16) gives(4.23) \

Y m+1

1

h2r,a(y)h2r,a(T
2rn
a (y)) νa(dy)

=
1

2

\
Y m
1

h2r,a(φ
−1
0a (y))h2r,a(T

2rn
a (φ−1

0a (y))) νa2(dy).

We have T 2k
a ◦φ−1

0a = φ−1
0a ◦T k

a2 for all k ≥ 0 by (4.15). Thus T 2rn
a ◦φ−1

0a =

φ−1
0a ◦ T rn

a2 and from (4.22) it follows that
h2r,a ◦ φ−1

0a =
1√
r

r−1∑

k=0

h2,a ◦ φ−1
0a ◦ T k

a2 .By Lemma 3 we obtain
h2,a ◦ φ−1

0a =
(1 − a)x∗(a)√

2a
ha2 .Hen
e

h2r,a ◦ φ−1
0a =

(1 − a)x∗(a)√
2a

hr,a2 ,whi
h, when substituted into equation (4.23), 
ompletes the proof.Proof of Proposition 3. First, we show that if m ≥ 1 and 21/2m+1

< a ≤
21/2m then(4.24) σ(ha) =

σ(ha2m )√
2m a2m−1

m−1∏

k=0

x∗(a2k

)(a2k − 1).

Let m ≥ 1 and 21/2m+1

< a ≤ 21/2m . Sin
e the transformation Ta is asymp-toti
ally periodi
 with period 2m, Theorem 4 gives
σ(ha)

2 = 2m
( \

Y m
1

h2
2m,a(y) νa(dy)+2

∞∑

j=1

\
Y m
1

h2m,a(y)h2m,a(T
2mj
a (y)) νa(dy)

)
.

We have a2 ∈ (21/2m

, 21/2m−1

] and the transformation Ta2 is asymptoti
allyperiodi
 with period r = 2m−1. From (4.21) with r = 2m−1 and Theorem 4it follows that
σ(ha)

2 =
(a− 1)2x∗(a)2

2a2
σ(ha2)2.



CENTRAL LIMIT THEOREMS 185Thus equation (4.24) follows immediately by an indu
tion argument on m.Finally, for ea
h k = 0, . . . ,m− 1 we have
x∗(a2k

)(a2k − 1) =
a2k − 1

a2k
+ 1

(a2k − 1) =
(a2k − 1)3

a2k+1 − 1and equation (4.12) holds. Sin
e a2m

>
√

2 the fun
tion fa2m is well de�nedand \
ha2m (y)fa2m (y) νa2m (dy) =

∞∑

n=0

\
ha2m (y)ha2m (Tn

a2m (y)) νa2m (dy),whi
h 
ompletes the proof.Appendix A. Proof of the maximal inequalityProof of Proposition 1. We will prove (3.1) indu
tively. If n = 1 and
q = 1 then we have

‖f‖2 ≤ ‖f − UTPT f‖2 + ‖UTPT f‖2 = ‖f − UTPT f‖2 +∆1(f)by the invarian
e of ν under T . Now assume that (3.1) holds for all n < 2q−1.Fix n, 2q−1 ≤ n < 2q. By the triangle inequality
max

1≤k≤n

∣∣∣
k−1∑

j=0

f ◦ T j
∣∣∣ ≤ max

1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣(A.1)

+ max
1≤k≤n

∣∣∣
k−1∑

j=0

UTPT f ◦ T j
∣∣∣.We �rst show that(A.2) ∥∥∥ max

1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣
∥∥∥

2
≤ 3

√
n ‖f − UTPT f‖2.Observe that

max
1≤k≤n

∣∣∣
k−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣ ≤

∣∣∣
n−1∑

j=0

(f − UTPT f) ◦ T j
∣∣∣

+ max
1≤k≤n

∣∣∣
k∑

j=1

(f − UTPT f) ◦ Tn−j
∣∣∣.

Sin
e PT (f − UTPT f) = 0, we see that
∥∥∥

n−1∑

j=0

(f − UTPT f) ◦ T j
∥∥∥

2
=

√
n ‖f − UTPT f‖2.
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For every n the family {

∑k
j=1(f−UTPT f)◦Tn−j : 1 ≤ k ≤ n} is a martingalewith respe
t to {T−n+k(B) : 1 ≤ k ≤ n}. Thus by the Doob maximalinequality

∥∥∥ max
1≤k≤n

∣∣∣
k∑

j=1

(f − UTPT f) ◦ Tn−j
∣∣∣
∥∥∥

2
≤ 2

∥∥∥
n∑

j=1

(f − UTPT f) ◦ Tn−j
∥∥∥

2

= 2
√
n ‖f − UTPT f‖2,whi
h 
ompletes the proof of (A.2).Now 
onsider the se
ond term on the right-hand side of (A.1). Writing

n = 2m or n = 2m+ 1 yields(A.3) max
1≤k≤n

∣∣∣
k−1∑

j=0

UTPT f ◦T j
∣∣∣ ≤ max

1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣+ max

0≤l≤m

∣∣∣UTPT f ◦T 2l
∣∣∣,where f1 = UT 2PT f + UTPT f . To estimate the norm of the se
ond term onthe right-hand side of (A.3), observe that

max
0≤l≤m

|UTPT f ◦ T 2l|2 ≤
m∑

l=0

|UTPT f ◦ T 2l|2,whi
h leads to(A.4) ‖ max
0≤l≤m

|UTPT f ◦ T 2l| ‖2 ≤
√
m+ 1 ‖PT f‖2,sin
e ν is invariant under T . Further, sin
e m < 2q−1, the measure ν is in-variant under T 2, and f1 ∈ L2(Y,B, ν), we 
an use the indu
tion hypothesis.We thus obtain

∥∥∥ max
1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣
∥∥∥

2
≤

√
m (3‖f1 − UT 2PT 2f1‖2 + 4

√
2∆q−1(f1)).We have f1 − UT 2PT 2f1 = UTPT f − UT 2PT 2f , by (2.2), whi
h implies

‖f1 − UT 2PT 2f1‖2 ≤ ‖PT f‖2 + ‖PT 2f‖2 ≤ 2‖PT f‖2,sin
e PT is a 
ontra
tion. We also have
∆q−1(f1) =

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
T 2f1

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

P2k
T f1

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j∑

k=1

P2k
T (UT 2PT f + UTPT f)

∥∥∥
2

=

q−2∑

j=0

2−j/2
∥∥∥

2j+1∑

k=1

Pk
T f

∥∥∥
2

=
√

2 (∆q(f) − ‖PT f‖2).
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∥∥∥ max

1≤l≤m

∣∣∣
l−1∑

j=0

f1 ◦ T 2j
∣∣∣
∥∥∥

2
≤

√
m (8∆q(f) − 2‖PT f‖2),whi
h 
ombined with (A.1) through (A.4) and the fa
t that √

m+ 1 ≤√
2m ≤ √

n leads to
∥∥∥ max

1≤k≤n

∣∣∣
k∑

j=1

f ◦ Tn−j
∣∣∣
∥∥∥

2
≤ 3

√
n ‖f − UTPT f‖2 +

√
m+ 1 ‖PT f‖2

+
√

2m (4
√

2∆q(f) −
√

2‖PT f‖2)

≤
√
n (3‖f − UTPT f‖2 + 4

√
2∆q(f)).

Appendix B. The limiting random variable η. Finally, we give aseries expansion of Eν(h̃
2 | I) in Theorem 1 in terms of h and iterates of T .Proposition 4. Suppose h ∈ L2(Y,B, ν) with Th(y) ν(dy) = 0 is su
hthat(B.1) ∞∑

j=0

2−j/2
∥∥∥

2j∑

k=1

Pk
Th

∥∥∥
2
<∞.

Then the following limit exists in L1:(B.2) lim
n→∞

Eν(S
2
n | I)

n
= Eν(h2 | I) +

∞∑

j=0

Eν(S2jS2j ◦ T 2j | I)

2j
,

where I is the σ-algebra of all T -invariant sets and Sn =
∑n−1

j=0 h◦T j , n ∈ N.Moreover , if h̃ ∈ L2(Y,B, ν) is su
h that PT h̃ = 0 and
∥∥∥∥

1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

→ 0 as n→ ∞then(B.3) Eν(h̃2 | I) = lim
n→∞

Eν(S2
n | I)

n
.Proof. We �rst prove that the series on the right-hand side of (B.2) is
onvergent in L1(Y,B, ν). Sin
e I ⊂ T−2j

(B) for all j, we see that
Eν(S2jS2j ◦ T 2j | I) = Eν(Eν(S2jS2j ◦ T 2j |T−2j

(B)) | I).As S2j ◦ T 2j is T−2j

(B)-measurable and integrable we have
Eν(S2jS2j ◦ T 2j |T−2j

(B)) = S2j ◦ T 2j

Eν(S2j |T−2j

(B)).
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However, Eν(S2j |T−2j

(B)) = U2j

T P2j

T S2j from (2.2). Consequently,
(B.4) Eν(S2jS2j ◦ T 2j | I) = Eν

(
S2j

2j∑

k=1

Pk
Th

∣∣∣ I
)
.

Sin
e the 
onditional expe
tation operator is a 
ontra
tion in L1, we have
‖Eν(S2jS2j ◦ T 2j | I)‖1 ≤

∥∥∥S2j

2j∑

k=1

Pk
Th

∥∥∥
1
,whi
h, by the Cau
hy�S
hwarz inequality, leads to

‖Eν(S2jS2j ◦ T 2j | I)‖1 ≤ ‖S2j‖2

∥∥∥
2j∑

k=1

Pk
Th

∥∥∥
2
.

Sin
e ‖S2j‖2 ≤ ‖max1≤l≤2j |Sl| ‖2, the sequen
e ‖S2j‖2/2
j/2 is bounded,by (B.1), Lemma 2, and Proposition 1. Hen
e

∞∑

j=0

‖S2j‖2‖
∑2j

k=1 Pk
Th‖2

2j
≤ C

∞∑

j=0

‖
∑2j

k=1 Pk
Th‖2

2j/2
<∞,

whi
h proves the 
onvergen
e in L1 of the series in (B.2).We now prove the equality in (B.2). Sin
e
S2

2m = (S2m−1 + S2m−1 ◦ T 2m−1

)2

= S2
2m−1 + S2

2m−1 ◦ T 2m−1

+ 2S2m−1S2m−1 ◦ T 2m−1

,we obtain
Eν(S

2
2m | I) = 2Eν(S2

2m−1 | I) + 2Eν(S2m−1S2m−1 ◦ T 2m−1 | I),whi
h leads to
Eν(S

2
2m | I)

2m
= Eν(h2 | I) +

m−1∑

j=0

Eν(S2jS2j ◦ T 2j | I)

2j
.

Thus the limit on the left-hand side of (B.2) exists for the subsequen
e
n = 2m and the equality holds. An analysis similar to that in the proof ofProposition 2.1 of [22℄ shows that the whole sequen
e is 
onvergent, whi
h
ompletes the proof of (B.2).We now turn to the proof of (B.3). Let h̃ be su
h that PT h̃ = 0. De�ne
S̃n =

∑n−1
j=0 h̃ ◦ T j . Substituting h̃ into (B.1) and (B.4) gives

Eν(h̃2 | I) = lim
n→∞

Eν(S̃2
n | I)

n
.
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∥∥∥∥
Eν(S̃2

n | I)

n
− Eν(S2

n | I)

n

∥∥∥∥
1

≤
∥∥∥∥
S̃2

n

n
− S2

n

n

∥∥∥∥
1

≤
∥∥∥∥
S̃n√
n
− Sn√

n

∥∥∥∥
2

∥∥∥∥
S̃n√
n

+
Sn√
n

∥∥∥∥
2by the Hölder inequality, whi
h implies (B.3) when 
ombined with the equal-ity

∥∥∥
n−1∑

j=0

h̃ ◦ T j
∥∥∥

2
=

√
n ‖h̃‖2,and the assumption

∥∥∥∥
1√
n

n−1∑

j=0

(h− h̃) ◦ T j

∥∥∥∥
2

→ 0 as n→ ∞.
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