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CENTRAL LIMIT THEOREMS FOR
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MICHAEL C. MACKEY (Montréal) and MARTA TYRAN-KAMINSKA (Katowice)

Abstract. Using the Perron—Frobenius operator we establish a new functional central
limit theorem for non-invertible measure preserving maps that are not necessarily ergodic.
We apply the result to asymptotically periodic transformations and give a specific example
using the tent map.

1. Introduction. This paper is motivated by the question “How can we
produce the characteristics of a Wiener process (Brownian motion) from a
semidynamical system?”. This question is intimately connected with central
limit theorems for non-invertible maps and various invariance principles.
Many results on central limit theorems and invariance principles for maps
have been proved (see e.g. the surveys by Denker [5] and Mackey and Tyran-
Kaminska [17]). These results extend back over some decades, and include
the work of Boyarsky and Scarowsky [3|, Gouézel |8], Jabloriski and Malczak
[12], Rousseau-Egele [25], and Wong [32] for the special case of maps of the
unit interval. Martingale approximations, developed by Gordin [7], were used
by Keller [13], Liverani [16], Melbourne and Nicol [19], Melbourne and T6rok
[20], and Tyran-Kaminska [27] to give more general results.

Throughout this paper, (Y,B,v) denotes a probability measure space
and T : Y — Y a non-invertible measure preserving transformation. Thus
v is invariant under T, i.e. v(T71(A)) = v(A) for all A € B. The transfer
operator Pr : LY(Y, B,v) — LY(Y,B,v), by definition, satisfies

VPrf(w)g(y) vdy) = f(y)9(T(y)) v(dy)

for all f € LY(Y,B,v) and g € L>=(Y, B,v).
Let h € L*(Y, B,v) with {h(y) v(dy) = 0. Define the process {w,(t) : t €
[0, 1]} by
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[nt]—1
1 ,
(1.1) wp(t) = 7 jzo hoT? forte0,1],n>1

(the sum from 0 to —1 is set equal to 0), where [z] denotes the integer part
of z. For each y, wy(-)(y) is an element of the Skorokhod space D0, 1] of
all functions which are right continuous and have left-hand limits, equipped
with the Skorokhod metric

0s(¢,9) = nf (sup [¢p(t) —¢(s(t))|+ sup [t —s(t)]), ¢, ¢ € D0, 1],

5€5 tefo,1] te[0,1]
where S is the family of strictly increasing, continuous mappings s of [0, 1]
onto itself such that s(0) = 0 and s(1) =1 [1, Section 14].
Let {w(t) : t € [0,1]} be a standard Brownian motion. Throughout the
paper the notation
TUn_ﬁd\/ﬁU%

where 7 is a random variable independent of the Brownian process w, denotes
the weak convergence of the sequence w,, in the Skorokhod space DI0, 1].

Our main result, which is proved using techniques similar to those of
Peligrad and Utev [22]| and Peligrad et al. [23], is the following:

THEOREM 1. Let T be a non-invertible measure preserving transforma-
tion on the probability space (Y,B,v) and let T be the o-algebra of all T-
invariant sets. Suppose h € L*(Y,B,v) with {h(y) v(dy) = 0 is such that

12 S92 S P < oo
n=1 k=0

Then

(1.3) w, =4 \/nw,

where n = E,(h*|T) and h € L*(Y, B,v) is such that Prh =0 and

1 n—1 _

lim H— (h—h)oT’
Recall that T is ergodic (with respect to v) if, for each A € B with

T71(A) = A, we have v(A) € {0,1}. Thus if T is ergodic then Z is a

trivial o-algebra, so 7 in (1.3) is a constant random variable. Consequently,

Theorem 1 significantly generalizes [27, Theorem 4], where it was assumed

that T is ergodic and there is o < 1/2 such that

=0.
2

|5 P, = ot
k=0

(we use the notation b(n) = O(a(n)) if limsup,, ., b(n)/a(n) < o).
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Usually, in proving central limit theorems for specific examples of trans-
formations one assumes that the transformation is mixing. For non-invertible
ergodic transformations for which the transfer operator is quasi-compact on
some subspace F' C L?(v) with norm | - | > ||-||2, the central limit theorem
and its functional version was given in Melbourne and Nicol [19]. Since qua-
sicompactness implies exponential decay of the L? norm, our result applies,
thus extending the results of [19] to the non-ergodic case. For examples of
transformations in which the decay of the L? norm is slower than exponential
and our results apply, see [27].

In the case of invertible transformations, non-ergodic versions of the cen-
tral limit theorem and its functional generalizations were studied by Volny
[28—-31] using martingale approximations. In a recent review by Merlevéde
et al. [21], the weak invariance principle was studied for stationary sequences
(X1 )rez which, in particular, can be described as X;, = X o T*, where T
is a measure preserving invertible transformation on a probability space and
Xy is measurable with respect to a o-algebra Fy such that Fy C T_l(]:o).
Choosing a g-algebra Fy for a specific example of invertible transformation
is not an easy task and the requirement that X is Fp-measurable may some-
times be too restrictive (see [4, 16]). Sometimes, it is possible to reduce an
invertible transformation to a non-invertible one (see [20, 27]). Our result in
the non-invertible case extends |22, Theorem 1.1], which is also to be found in
[21, Theorem 11], where a condition introduced by Maxwell and Woodroofe
[18] is assumed. In [27] the condition was transformed to equation (1.2). In
the proof of our result we use Theorem 4.2 in Billingsley [1] and approxima-
tion techniques which were motivated by [22]. The corresponding maximal
inequality in our non-invertible setting is stated in Proposition 1, and its
proof, based on ideas of [23], is provided in Appendix A for completeness.
As in [22], the random variable 1 in Theorem 1 can also be obtained as a
limit in L', which we state in Appendix B.

The outline of the paper is as follows. After the presentation of some
background material in Section 2, we turn to a proof of our main Theorem 1
in Section 3. Section 4 introduces asymptotically periodic transformations
as a specific example of a system to which Theorem 1 applies. We analyze
the specific example of an asymptotically periodic family of tent maps in
Section 4.4.

2. Preliminaries. The definition of the Perron—Frobenius (transfer) op-
erator for T' depends on a given o-finite measure 1 on the measure space
(Y,B) with respect to which T is non-singular, i.e. u(T~1(A4)) = 0 for
all A € B with u(A) = 0. Given such a measure the transfer operator
P: LYY,B,u) — LY(Y,B, ) is defined as follows. For any f € L*(Y,B, ),
there is a unique element Pf in L'(Y, B, i) such that



170 M. C. MACKEY AND M. TYRAN-KAMINSKA

(2.1) VPrw)udy)= | fly)u(dy) forall A€B.
A T-1(A)

This in turn gives rise to different operators for different underlying measures
on B. Thus if v is invariant for T, then T is non-singular and the transfer
operator Pr : LY(Y,B,v) — L'(Y, B,v) is well defined. Here we write Pr to
emphasize that the underlying measure v is invariant under 7.

The Koopman operator is defined by

Upf=foT

for every measurable f : Y — R. In particular, Ur is also well defined
for f € LY(Y,B,v) and is an isometry of L'(Y,B,v) into L'(Y,B,v), i.e.
NUrflli = |||l for all f € LY(Y,B,v). Since the measure v is finite, we
have LP(Y,B,v) c L'(Y,B,v) for p > 1. The operator Ur : LP(Y,B,v) —
LP(Y, B, v) is also an isometry on LP(Y, B,v).

The following relations hold between the operators Ur, Pr: L'(Y, B,v)
— LYY, B,v):

(2.2) PTUTf = f and UTPTf = Eu(f|T_1(B))

for f € LYY, B,v), where E,(-|T~Y(B)) : L\(Y,B,v) — LYY, T~Y(B),v) is
the operator of conditional expectation. Note that if the transformation T
is invertible then UpPrf = f for f € LY(Y,B,v).

THEOREM 2. Let T be a non-invertible measure preserving transforma-
tion on the probability space (Y,B,v) and let T be the o-algebra of all T-
invariant sets. Suppose that h € L*(Y,B,v) is such that Prh = 0. Then

Wn —>d \/ﬁwa

where n = E,(h?|T) is a random variable independent of the Brownian mo-
tion {w(t) : t € [0,1]}.

Proof. When T is ergodic, a direct proof based on the fact that the family

NG

is a martingale difference array is given in |17, Appendix A| and uses the
martingale central limit theorem (cf. [2, Theorem 35.12]) together with the
Birkhoff ergodic theorem. This can be extended to the case of non-ergodic T'
by using a version of the martingale central limit theorem due to Eagleson
[6, Corollary p. 561]. =

. 1 .
{T"“(B),—hoT"]:lgjgn,nz 1}
n

EXAMPLE 1. We illustrate Theorem 2 with an example. Let T': [0,1] —
[0,1] be defined by
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2y, y €0,1/4),
2—1, yel[3/41].

Observe that the Lebesgue measure on ([0,1], B(]0,1])) is invariant for T

and that T is not ergodic since T71([0,1/2]) = [0,1/2] and T~1([1/2,1]) =

[1/2,1]. The transfer operator is given by

Pt =5 (50 oam@) + 57 (50 3) + 57 (50 3 ) 1)

Consider the function

L, yel0,1/4),
) -1 ye[1/4,1/2),
MW= oy e nyas),
2,  ye3/4,1].

A straightforward calculation shows that Prh = 0 and E, (h%|T) = Lo,/ +
4 - 1[1/2,1)- Thus Theorem 2 shows that

wy, =% /E,(h?|T) w.

In particular, the one-dimensional distribution of the process v/ E, (h?|Z) w

has a density equal to

11 <x2>+1 1 (ﬁ) cR
= exp| —— = expl —— |, = .
2 Vart T\ 2) 2 Rat P\ 8t
In general, for a given h the equation Prh = 0 may not be satisfied.
Then the idea is to write h as a sum of two functions, one of which satisfies
the assumptions of Theorem 2 while the other is irrelevant for the conver-

gence to hold. At least a part of the conclusions of Theorem 1 is given in the
following

THEOREM 3 (Tyran-Kaminska [27, Theorem 3|). Let T' be a non-invert-
ible measure preserving transformation on the probability space (Y,B,v).

Suppose h € L*(Y, B,v) with {h(y)v(dy) = 0 is such that (1.2) holds. Then

there exists h € L2(Y, B, v) such that Pph =0 and

|
—

1 < ~ ,
— Y (h—h)oT? =0
n

J

Il
=)

in L*(Y,B,v) as n — oc.

We will use the following two results for subadditive sequences.
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LEMMA 1 (Peligrad and Utev [22, Lemma 2.8]). Let V;, be a subadditive
sequence of non-negative numbers. Suppose that y 7 n~=3/2V,, < oo. Then

. m2J
i 3 o

LEMMA 2. Let V,, be a subadditive sequence of non-negative numbers.
Then for every integer r > 2 there exist two positive constants Cp,Cy (de-
pending on r) such that

Clz 3/2 Z 3/2—022 2

Proof. When r = 2, the result follows from Lemma 2.7 of [22], the proof
of which can be easily extended to the case of arbitrary r > 2.

3. Maximal inequality and the proof of Theorem 1. We start by
first stating our key maximal inequality which is analogous to Proposition 2.3
in |22].

PROPOSITION 1. Let n,q be integers such that 2971 < n < 29. If T is
a non-invertible measure preserving transformation on the probability space

(Y,B,v) and f € L*(Y,B,v), then

E:foTﬂ

(3.1) max

1<k<n

<V B\ f — UrPrfl +4V2 Ay(F)),
2

where

(3.2) Aylf) = qz_jlz—j/QH ipé‘ifHQ-
§=0 k=1

In what follows we assume that 7" is a non-invertible measure preserving
transformation on the probability space (Y, B,v).
PROPOSITION 2. Let h € L?(Y,B,v). Define

m—1 [kt]—1
(3.3) hm—u——EZhOTV and  wy (1) = E:h o™
vm =

for mk € N and t € [0,1]. Let us take an m such that the sequence
|lmaxi<j< |Wkm(l/k)| |2 is bounded. Then

fim || sup. Iwnl(t) Winmlm (8)] |2 = 0.

n—od 0
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Proof. Let ky,, = [n/m]. We have
[nt]—1

|wn71(t)—wkm < ‘ Z hOT]“" (

j=m|knt]

a\a

)‘ Z B 0T |,

which leads to the estimate

(3-4) | sup fwn,1(t) = wk, m(t)] |2
0<t<1

knm
sxlo Tl + (1= /54 ) o, im0/ Lz

|| max
f
Since h € L*(Y, B, V) we have
1
Jim =l e o T |12 = 0.

Furthermore, since the sequence ||max;<;<g |wg m({/k)]||2 is bounded by as-
sumption, and lim,, o (1—+/k,m/n) = 0, the second term on the right-hand
side of (3.4) also tends to zero. m

Proof of Theorem 1. From Theorem 3 it follows that there exists h e
L2(Y,B,v) such that Prh = 0 and

n—1

(3.5) lim HT > (h—h)oT

=0.
2

For each m € N, define

m— [
]:

7=0
for k € N and t € [0,1]. We have Ppmhy, = 0 for all m. Thus Theorem 2
implies
(3.6) Whn —* Ey(h2, | L) w

as k — oo, where Z,, is the o-algebra of T™-invariant sets. Proposition 1,
applied to T and h,,, gives

<
| 0 (@ (/0] [z < 3

Therefore, by Proposition 2, we obtain

fim [} sup {@n1(t) = Winmpm (t)] ll2 = 0

n—oo 0

for all m € N, which 1mp11es, by Theorem 4.1 of [1], that the limit in (3.6)
does not depend on m and is thus equal to \/ E, (h?|T)w
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To prove (1.3), using Theorem 4.2 of [1] we have to show that

(3.7) i Tim supf] sup fwn(t) = Wn/myn(®)] ll2 = 0

n—oo  0<t<
Let hy, and wy, ,, be defined as in (3.3). We have
(3-8) [l sup |wn(t) = W /m)m (B! 12
0<t<1
< | sup |wn(t) = W /m)m (B)] 12
0<t<1

+ || su wnmmt—wnmmt )
590 10/ (8) = D 0 2

Making use of Proposition 1 with 7" and h,,, we obtain

1<I<

oo 27
| 1023 [t (182 < 3o — U P |2 +4v/2 z—f/QH Zpg'pmhmH2.
j=0 i=1
However,
1 m—1 1 m ]
mBpy = —— mUpjh = — Jh
Pr NG ]Z; PrmUr; NG ;PT
by (2.2), and thus
00 27 1 00 m27
3.9 22| 3P| = = D272 > Py
(3.9) JZZ:O ; | \/m;o ; T

and the series is convergent by Lemma 1, which implies that the sequence
|lmaxi<j<i|wk,m(l/k)] |2 is bounded for all m. From Proposition 2 it follows
that

lim || sup |wp(t) — Wi /m)m ()] |2 = 0.
n—00 <<

We next turn to estimating the second term in (3.8). We have

- Tt < ]z met
||05§1221’wk,m() Whm ()] |2 112?22 )e

< 3|/ hm — hun — U Pron (hy — hi) |2
%) 27
+ 42D 22| S Pl )
j=0 i=1

by Proposition 1. Combining this with (3.9) and the fact that Prmhy, = 0
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leads to the estimate

N m—1 _ . 1 m
I e, e ()~ wz<3——HZ%w—mOI%L+yﬁH§;mek

V2Nl KA
+\/mjz;2 H;PT

which completes the proof of (3.7), because all terms on the right-hand side
tend to zero as m — oo, by (3.5) and Lemma 1. =

4. Asymptotically periodic transformations. The dynamical prop-
erties of what are now known as asymptotically periodic transformations
seem to have first been studied by Ionescu Tulcea and Marinescu [10]. These
transformations form a perfect example of the central limit theorem results
we have discussed in earlier sections, and here we consider them in detail.

Let (X,.A,u) be a o-finite measure space. Write L!(u) = LY(X, A, p).
The elements of the set

D) = {f € L) : £ > 0 and | f(x) plde) =1}

are called densities. Let T : X — X be a non-singular transformation and
P : LY(u) — L'(u) be the corresponding Perron-Frobenius operator. Then
(Lasota and Mackey [15]) (T, p) is called asymptotically periodic if there

exists a sequence of densities ¢g1,..., g, and a sequence of bounded linear
functionals A1, ..., A, such that
.
1 n —_ . . —
(4.1) Tim |[P2(f g;&umﬂlﬂm 0

for all f € D(p). The densities g; have disjoint supports (g;g; = 0 for i # j)
and Pgj = go(;), where a is a permutation of {1,...,r}.

If (T, p) is asymptotically periodic and = 1 in (4.1) then (7', u) is called
asymptotically stable or exact by Lasota and Mackey [15].

Observe that if (T, i) is asymptotically periodic then

1 T
r 29
7j=1
is an invariant density for P, i.e. Pg, = g.. The ergodic structure of asymp-

totically periodic transformations was studied by Inoue and Ishitani [9].

REMARK 1. Let p(X) < oo. Recall that P is a constrictive Perron—
Frobenius operator if there exist § > 0 and x < 1 such that for every density
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f we have
lim sup S P"f(x)u(dz) < k

n—o00
A

for all A € A with p(A) < 4. It is known that if P is a constrictive op-
erator then (7', ) is asymptotically periodic (|15, Theorem 5.3.1], see also
Komornik and Lasota [14]), and (T, ) is ergodic if and only if the permu-
tation {«(1),...,a(r)} of the sequence {1,...,r} is cyclical ([15, Theorem
5.5.1]). In this case we call r the period of T.

Let (T, ) be asymptotically periodic and let g, be an invariant density
for P. Let Y = supp(g«) = {x € X : g«(x) >0}, B={ANY : A€ A}, and

v(A) = | gu(2) p(dz), Ac A
A

The measure v is a probability measure invariant under T'. In what follows we
write LP(v) = LP(Y,B,v) for p = 1,2. The transfer operator Pr : L'(v) —
L'(v) is given by

(4.2) 9:Pr(f) = P(fg.) for fe L'(v).

We now turn to the study of weak convergence of the sequence of processes
1 [nt]—1
R

where h € L?(v) with {h(y) v(dy) = 0, by considering first the ergodic and
then the non-ergodic case.

1. (T, ) ergodic and asymptotically periodic. Let the transformation
(T, ) be ergodic and asymptotically periodic with period r. The unique
invariant density of P is given by

1 T
r 29
7j=1
and (T",g;) is exact for every j = 1,...,r. Let Y; = supp(g;) for j =
1,...,r. Note that the set B; = |J;—,T~""(Y;) is (almost) T"-invariant and
v(Bj\Y;) =0for j=1,...,r. Since the Y are pairwise disjoint, we have

r

E(f1T) = —— | fy) vidy) 1y, for f € L(v),

= V) 5

where Z, is the o-algebra of T"-invariant sets. But v(Y;) = 1/r, and thus

T

4.3)  E(f|T.) = rz V f)v(dy) 1y, =D | FW)g(y) pldy) 1y,

k=1Y; k=1Y;
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THEOREM 4. Suppose that h € L*(v) with \h(y) v(dy) = 0 is such that

0 n—1 r—1
_ . 1
(4.4) E n 3/2H E PTkhT“Q < oo, where h, = 7 E hoT".
n=1 k=0 k=0

Then

d
wy, — ow,

where w is a standard Brownian motion and o > 0 is a constant. Moreover,

if Z]Oil f \he(y) Ry (T (y))| v(dy) < 0o then o is given by

(4.5) 02:7»( | h2(y) v(dy) +2Z | A ()b (T (y ))V(dy)).

Y1 =1y
Proof. We have h, € L*(v) and { h,(y) v(dy) = 0. Let

[kt]—1

1 .
— Y heoT” forkeN, tel0,1]
vk =

We can apply Theorem 1 to deduce that

Wk r (t) =

Wy, —* E,(h2|T,)w as k — oo,

where 7, is the g-algebra of all T"-invariant sets and
- 1 n—l N2
(4.6) E,(h?|Z,) = lim —E,,((Zm o T”) (I)
n—oo N 0
J_

On the other hand, we also have

- i rit+1 o) rJ
S S-S el -S| Sl
=0 k=1 J=0 o =
Thus the series 1

S Pl

n=1 k=0 2

is convergent by Lemma 2. From Theorem 1 we conclude that there exists

h € L?(v) such that
—||h[|zw
since T is ergodic. But

IRllz = VB, (h| T;),

by Proposition 2. Hence E,(h2|Z,) is a constant and from (4.3) it follows
that for each k = 1,...,r the integral SYk h2(y) v(dy) does not depend on k.
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Thus

o = b3 =r | hZ(y) v(dy).
Y1

Since v is T"-invariant, we have

n—1
% S (Z hr(T”j(y)))zu(dy) = | 1} (y) v(dy)
Yi j=0 Ye
l

HiZZS he (T () v(dy).

=1 j=1Y;

By assumption the sequence (3_7_; SY he(y)he (T77 (y)) v(dy))n>1 is conver-
gent to > 2%, SYk hy(y)he(T™ (y)) v(dy), which completes the proof when
combined with (4.6) and (4.3). =

4.2. (T, p) asymptotically periodic but not necessarily ergodic. Now let us
consider (T, ) asymptotically periodic but not ergodic, so that the permu-
tation « is not cyclical and we can represent it as a product of permutation
cycles. Thus we can rephrase the definition of asymptotic periodicity as fol-
lows.

Let there exist a sequence of densities

(47) 91,17"'791,7"17'"79[,17"'791,7"1
and a sequence of bounded linear functionals A1 1,..., A1 p,- s Ap1, -0, Ay,
such that
l r;
(48)  lim ‘P” (f - Ai,j(f)gi,j)‘ pigy =0 forall f e L),

i=1 j=1

where the densities g; ; have mutually disjoint supports and, for each i,
sz"j = gi,j—i—l for 1 S j S r; — 1, and Pgi,n- =3i1- Then

= — gZ,
i 2 !
J=1

is an invariant density for P and (7, g;') is ergodic for every i =1,...,[. Let
g« be a convex combination of g7, i.e.

!
= Z aig;
i=1

where «; > 0 and Zlizl a; = 1. For simplicity, assume that a; > 0.
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Let Y; = supp(g;) and Y; j = supp(gij), j=1,...,r, i =1,..., . If T is
the o-algebra of all T-invariant sets, then

l

l
E,(f|T)= ZV Vr)yvidy) 1y, =Y | F()gr(v) w(dy) 1y,

i=1 Y i=1Y;

l

Now, if Z, is the o-algebra of all T"-invariant sets with r = [[,_; r;, then

Ti

l
BT =Y 755 2 ) I vidn 1y,

=1 =1Y;;

for f € L'(v), which leads to

I r

B, (f1T,) ZZU Y) i (y) u(dy) Ly,

=1 j=1Y; ;

!

Using similar arguments to those in the proof of Theorem 4 we obtain

THEOREM 5. Suppose that h € L*(v) with {h(y)v(dy) = 0 is such that
condition (4.4) holds. Then
wn — 1w,
where w s a standard Brownian motion and n > 0 is a random variable

independent of w. Moreover, if 3322, {12 () he (T (y)) | v(dy) < oo then n
s given by

! .
1= ow) (YS R )+ 23§ e (00 ()

Jj=1Yi1

REMARK 2. Observe that condition (4.4) holds if

S PPl
n=1 \/ﬁ
The operator Pr is a contraction on L>(v). Therefore

1PEfll2 < IFIX2IPRFIL? for f e L), n>1,

which allows us to easily check condition (4.4) for specific examples of trans-
formations 7. It should also be noted that, by (4.2), we have

IPEfll = 1P (fgllLrqy  for f e L), n>1.

4.3. Piecewise monotonic transformations. Let X be a totally ordered,
order complete set (usually X is a compact interval in R). Let B be the
o-algebra of Borel subsets of X and let u be a probability measure on X.
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Recall that a function f: X — R is said to be of bounded variation if
var(f —supZ\f (ric1) — fzi)| < o0,

where the supremum is taken over all finite ordered sequences (z;) with
x; € X. The bounded variation norm is given by

1fllBv = [1f L2y + var(f)

and it makes BV = {f : X — R : var(f) < oo} into a Banach space.
Let T : V — X be a continuous map, V' C X be open and dense with
w(V) =1. We call (T, u) a piecewise uniformly expanding map if:

(1) There exists a countable family Z of closed intervals with disjoint
interiors such that V' C |J,.z Z and for any Z € Z theset ZN(X\V)
consists exactly of the endpoints of Z.

(2) For any Z € Z, T|zny admits an extension to a homeomorphism
from Z to some interval.

(3) There exists a function g : X — [0,00), with bounded variation,
gix\v = 0 such that the Perron-Frobenius operator P : L' (p) —

L'(u) is of the form
Pf(x)= Y  9(x)f().
z€T—1(z)
(4) T is expanding: sup,cy g(z) < 1.
The following result is due to Rychlik [26]:

THEOREM 6. If (T, p) is a piecewise uniformly expanding map then it
satisfies (4.8) with g;; € BV. Moreover, there exist constants C > 0 and
0 € (0,1) such that, for every function f of bounded variation and allm > 1,

1P f = QN L1y < CO"[|flIBV,

where r = H§:1 r; and

T

l
= Z S f dSC) 9i,5-

=1 j=1Y;;
This result and Remark 2 imply

COROLLARY 1. Let (T, ) be a piecewise uniformly expanding map and
v an invariant measure which is absolutely continuous with respect to p. If
h is a function of bounded variation with E,(h|Z) =0 then (4.4) holds.

REMARK 3. AFU-maps (uniformly expanding maps satisfying Adler’s
condition with a finite image condition, which are interval maps with a
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finite number of indifferent fixed points), studied by Zweimiiller [35], are
asymptotically periodic when they have an absolutely continuous invariant
probability measure. However, the decay of the L' norm may not be ex-
ponential. For Holder continuous functions h one might use the results of
Young [34] to obtain bounds on this norm and then apply our results.

4.4. Calculation of variance for the family of tent maps using Theorem /.
Let T be the generalized tent map on [—1, 1] defined by

(4.9) To(x) =a—1—alz| forxe[-1,1],

where a € (1,2]. The Perron-Frobenius operator P : L'(u) — L'(u) is given
by

(110)  Pf) = - (FWr @) + 0 )10 (@),
where 1, and 1 are the inverse branches of T,:

_ r+1-a r+1—-a
(4.11) Py () = T a by (z) = T

and p is the normalized Lebesgue measure on [—1,1].

Ito et al. [11] have shown that the tent map (4.9) is ergodic, thus having
a unique invariant density g,. Provatas and Mackey [24| have proved the
asymptotic periodicity of (4.9) with period r = 2™ for

V2™ g < 212" form=0,1,....

Thus, for example, (T, ) has period 1 for 2'/2 < a < 2, period 2 for 21/* <
a < 2172, period 4 for 21/8 < a < 2V/4 ete.

Let Y = supp(gq) and v,(dy) = ga(y)p(dy). For all 1 < a < 2 we have
T.(A) = A with A = [T2(0),7,(0)] and g4(z) = 0 for = € [-1,1] \ A. If
V2 < a < 2 then g, is strictly positive in A, thus Y = A in this case. For
a <2 we have Y C A. The transfer operator P,: L'(v,) — L'(v,) is given
by
P(fga)

a

Pof = for f € Ll(l/a),

where P is the Perron—Frobenius operator (4.10).

If h is a function of bounded variation on [—1, 1] with 81_1 h(y) ve(dy) =0
and

[nt]—1
1 .
Wn, (t) = % E ho Tg,
=0

then there exists a constant o(h) > 0 such that

w, —% o(h)w,
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where w is a standard Brownian motion. In particular, we are going to study
o(h) for the specific example of h = h, for a € (1,2], where

ha(y) =y—ma, ye[-1L1], and my= | yga(y)dy.
[_171]

PROPOSITION 3. Let m > 1 and 2/2""" < a < 212" Then

m—1

(4.12) o(ha) = j;_zi;)?gm__li) I:gl_[() @ 19,

where

(4.13) o (hgem)® =2\ hyom (y) fazm () vaam (dy) — {B2om (y) vgem (dy),
farm =3 Plymhyom.
n=0

In general, an explicit representation for (4.13) is not known. Hence,
before turning to a proof of Proposition 3, we first give the simplest example
in which o(h,2m)? can be calculated exactly.

EXAMPLE 2. For a = 2 the invariant density for the transformation T,

is go =1 11_11] and the transfer operator Py : L*(r2) — L'(12) has the

same form as P in (4.10):
1
Pof = 5 (f oty + 1 ouf).

Since 81_1 ydy = 0, we have ha(y) = y. We also have Pyho = 0. Thus

1

S yidy =1/3
—1

0(h2)2 =

and Proposition 3 gives o(hg) for a = 21/2" m > 1.

We now summarize some properties of the tent map [33], which will
allow us to prove Proposition 3. Let Iy = [z*(a),2*(a)(1 + 2/a)] and I; =
[—z*(a),2*(a)], where x*(a) is the fixed point of Tj other than —1, i.e.

N a—1
(@) = a+1
Define transformations ¢;, : I; — [—1,1] by
1 a
o) = ——— d o) = ——xz—a-—1.
$1a(T) (@) z and  ¢oa(x) (@) r—a
We have
*(a)

(4.14) 61/ (2) = —a"(a)a and ¢yl (a) = —= (@ +a+1).
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Then for 1 < a < v/2 the map T2 : I; — I; is conjugate to T2 : [-1,1] —
[—1,1]:

(4.15) T2 = ¢ia 0Ty 0 ¢7',
and the invariant density of T, is given by
1
(4.16) 9ay) = 207(a) (aga2(00a(¥)) 11 (y) + ga2(¢1a(y))11, ()

LEMMA 3. Ifa € (1,V?2] then
a—1 (a—1)z*(a)

4.17 0= - .
( ) m 2a 2a Ma?
and
1 _ *
(4.18) (ha + ha 0 Ty) 0 by, = (1 —a)z*(a) hys.
a

Proof. Equation (4.17) follows from (4.16) and (4.14), while (4.18) is a
direct consequence of the definition of ¢aa1, the fact that Iy C [0,1], and
(4.17). =

Let m > 1. For 21/2™ 1 < 21/2™ there exist 2™ disjoint intervals in
which g, is strictly positive and they are defined by

Y/ = &0 (T2 (0), Tpem (0))),

where
Pjm = ¢z’ma2m_l © ¢im71a2m_2 O+ 0 Pixe2 © Pira

and j = 14y + 2ig + -+ 2™ Vi, i, = 0,1, k = 1,...,m. We have
To(Y[") = Y[}, for 1 <j <2™ —1and T,(Ygn) = Y{™. In particular,

(4.19) Y = g (i) for m >0,
where Y = [T%(0), T,2(0)].

LEMMA 4. Define
1 r—1
(4.20) Py = WZhaon forr>1,a¢(1,2].
k=0

Let m >0 and r = 2™. If 24 < q < 2Y/2" then
(4'21) S h?r,a(y)hQT,a(Tgrn(y)) Va(dy)
Y1m+1
(1—a)’z*(a)®

= 92,2 S hr,zﬂ (y)hr,a2 (TJQn (y)) Vg2 (dy)
ym

for all n > 0.
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Proof. First observe that

1 r—1
(4.22) hora = —= Y hgaoTe".
\/F k=0

Let n > 0. Since qbaal(qboa(y)) =y for y € [-1, 1], a change of variables using
(4.19) and (4.16) gives

(4.23) S h2r,a(y)h2r,a(Ta2m(y)) Va(dy)

m+1
Yl

= 2§ hona(0g) () hara (T2 (05, () v (d)

Yy

We have 725 0 ¢y} = ¢, OT:Q for all k > 0 by (4.15). Thus T2™ o ¢, =
bon © T3 and from (4.22) it follows that

—1
h2r,a © ¢Oa = Z ha a © ¢Oa a2

By Lemma 3 we obtain

1 _ (1—a)z*(a)
h,a © doq = e haz.
Hence ( 2+ (a)
_ 1—a)x*(a
h2r,a o ¢0a1 = T h'r,a27
which, when substituted into equation (4.23), completes the proof. m
Proof of Proposition 3. First, we show that if m > 1 and 21/2™H ¢ <

21/2™ then
m—1

O'(ha2m) * k k
N kHOa; (a®)(a® —1).

Let m > 1 and 2V/2"™"" < ¢ < 21/2™ Since the transformation T, is asymp-
totically periodic with period 2", Theorem 4 gives

(4.24) o(h) =

wwzwmhwz%@+QjUWamwmmwmm)
ym j=1rym

We have a? € (21/2" 2/ Qm_l] and the transformation 72 is asymptotically
periodic with period r = 27!, From (4.21) with 7 = 2™~! and Theorem 4

it follows that ) )
a—1)*z*(a
o(ha)? = CT T 2
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Thus equation (4.24) follows immediately by an induction argument on m.

Finally, for eachk‘:O,...,m—lwe have
k
o 2k ok _ F-1 _ (a* —1)°
z*(a” )(a _1)— +1( _1)_a2k+1_1

and equation (4.12) holds. Since a2 > /2 the function f,om is well defined
and

o0

S hg2m (y)fan (y) Vg2m (dy) = Z S hg2m (y)han (ngm (y)) Vg2m (dy)7

n=0

which completes the proof. m

Appendix A. Proof of the maximal inequality

Proof of Proposition 1. We will prove (3.1) inductively. If n = 1 and
q = 1 then we have

Ifll2 < If = UrPrfllz + lUrPrflle = [If = UrPrfll2 + Au(f)
by the invariance of v under T. Now assume that (3.1) holds for all n < 2971,
Fix n, 2971 < n < 249, By the triangle inequality
k—1

S (f = UrPrf)o T

(A.1) max
1<k<n

1<k<n

k—1
ZfoTJ < max
—

k—1
J
+1Iia]?x ‘ZDUTPTfoT ‘

We first show that

??‘

-1

(A.2) H max | S°(f - UrPrf) oTJ‘H <3vVn|f — UrPrflls.

1<k<n

<.
I
o

Observe that

k—1 n—1
> (f = UrPrf) e TI| < |3(f = UrPry) o T7)
i=0 =0

J=

max
1<k<n

+ max
1<k<n

k
S (f =~ UrPrf)o T,
j=1
Since Pr(f — UrPrf) = 0, we see that

IS~ UrPrpyo |, = Vi ls - UrPesl
5=0
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For every n the family {Z?Zl(f—UTPTf)OT”_j : 1 <k < n}isamartingale
with respect to {T-"**(B) : 1 < k < n}. Thus by the Doob maximal
inequality

‘ max
1<k<n

k n

St - vrpe) o1 | <2 S - UrPrpy o

j:1 j:1
=2vn||f —UrPrfl2

which completes the proof of (A.2).

Now consider the second term on the right-hand side of (A.1). Writing
n:2morn:2m+1yie1ds

(A.3) max

-1
max. ZUTPTfoT] < max ‘ZfloTQJ 4+ max ’UTPTfoTQl

1<l<m |4 0<i<m
]:

where fi = Up2Prf + UrPrf. To estimate the norm of the second term on
the right-hand side of (A.3), observe that

max \UrPrfoT?? < ZZ;UTPT foT??,

which leads to
(A.4) | e [UrPrf o T2 12 < Vi & 1| Prfl,
since v is invariant under 7. Further, since m < 297!, the measure v is in-

variant under 72, and f; € L?(Y,B,v), we can use the induction hypothesis.
We thus obtain

| max (lifl o T%|||, < Vi Gllfi ~ UrsPrafilla + 4V2 A ().

1<i<m
J=0

We have fi — Up2Pr2fi = UrPrf — Up2Pr2 f, by (2.2), which implies
1f1 = Ur2Pr2fill2 < [[Prfll2 + [[Pr2fll2 < 2([Prfll2,

since Pr is a contraction. We also have

Agrlf) = S0 Z%le S ”21‘2 al,
7=0
:qiw'/? ip%k(UTQPTf+UTPTf)“2
§=0 k=1
2 Jj+1
:% 9-i/? QX:PTfH () = IPr S l2).
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Therefore

| max \Z froT| | < Vi (844(5) ~ 2/Pr 1)

1<l<m

which combined with (A.1) through (A.4) and the fact that vvm+1 <
V2m < /n leads to

k
‘ max Zf o Tn_j‘ H2 < 3vn |f — UrPrflle + vVm+1|Prfle

1<k<n
<k<n| &
+V2m (4V2 Ag(f) = V2| Prfll2)
<V B\ f = UrPrflla +4vV2 Ay(f)). =

Appendix B. The limiting random variable 7. Finally, we give a
series expansion of E,(h?|Z) in Theorem 1 in terms of h and iterates of T.

PROPOSITION 4. Suppose h € L*(Y,B,v) with {h(y)v(dy) = 0 is such
that

o0 27

(B.1) ZQ‘J’”HZP%H < .
7=0 k=1 2

Then the following limit exists in L':

2
(B.Z) lim M h2’I +Z SQJSQJ OT ‘I)

n—oo n

)

where I is the o-algebra of all T-invariant sets and Sy, = Zj;& hoTJ, n € N.
Moreover, if h € LY, B,v) is such that Prh =0 and

— (h — h oT|| =0 asn— oo
Hf; 2
then
~ E, (S?|T
(B.3) E,(h*|I) = lim E(5,1T)
n—oo n

Proof. We first prove that the series on the right-hand side of (B.2) is
convergent in L'(Y, B,v). Since T C T~?'(B) for all j, we see that

Ey(S5iS5; 0 T? |I) = B, (E,(85i S5 o T? | T~% (B)) | T).
As Sy; 0 T is 7% (B)-measurable and integrable we have

Ey(S9iSys o T? | T~% (B)) = Sos 0 T¥ E,(Sy; | T~ (B)).



188 M. C. MACKEY AND M. TYRAN-KAMINSKA

However, E,(Sy; | T~% (B)) = U2 P2 S,; from (2.2). Consequently,
(B.4) E, (8383 o T% |T) = E, (SQJ' Z Prh ‘I>
k=1
Since the conditional expectation operator is a contraction in L', we have

27
1Bu(S2:S5 0 T | DIy < || 80 > P
k=1

which, by the Cauchy—Schwarz inequality, leads to
|@@@wﬂmmm&wgﬁm.

Since ||Syll2 < [[max;<;<oi]Si| |2, the sequence ||Sy;(|2/27/2 is bounded,
by (B.1), Lemma 2, and Proposition 1. Hence

S HSQJ'IIQH 1 PEhl> |2 PRl
Z < CZ 2]/2 < 00,

which proves the convergence in L! of the series in (B.2).

We now prove the equality in (B.2). Since
S%m — (S2m—1 + S2m—1 o T2m_1)2
= ngfl + S%m,1 oT?"" ' + 259m-1S9m-1 0T

2'm1

we obtain
E,(S3m |T) = 2E,(S3n-11T) + 2E,(Som-1Som-10T
which leads to

2m—1 |

1),

E(Sin|D) _ 12 mwwwam
j=0

Thus the limit on the left-hand side of (B.2) exists for the subsequence

n = 2™ and the equality holds. An analysis similar to that in the proof of

Proposition 2.1 of [22] shows that the whole sequence is convergent, which

completes the proof of (B.2).

We now turn to the proof of (B.3). Let h be such that Pph = 0. Define
Sy = Z?:_ol h o T7. Substituting h into (B.1) and (B.4) gives

" <2
E,(h*|T) = lim M

n—oo n
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We have
E,(S2|T) E,(S2|1) 52 s
n n

<

n n 1

1

< i — & i + &
“vn  Vnll|lvn o Vn
by the Holder inequality, which implies (B.3) when combined with the equal-
ity

2 2

n—1
| >k = vnlhls.
§=0

and the assumption
1 «
72
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