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SELF-SIMILARITY IN CHEMOTAXIS SYSTEMS

BY

YŪKI NAITO (Kobe) and TAKASHI SUZUKI (Osaka)

Abstract. We consider a system which describes the scaling limit of several chemo-
taxis systems. We focus on self-similarity, and review some recent results on forward and
backward self-similar solutions to the system.

1. Introduction. Self-similarity is one of the fundamental properties
of chemotaxis systems, particularly in the study of blowup solutions. For
example, n = 2 is selected for the formation of collapse by the dimen-
sional analysis [14], and the quantized blowup mechanism is obtained by the
self-similarity of the limit equation derived from the backward self-similar
transformation [42]. The present paper is devoted to the study of

(1)
ut = ∇ · (∇u− u∇v),
τvt = ∆v + u, x ∈ R

n, t > 0,

where τ ≥ 0 is a constant. It describes the scaling limit of several chemotaxis
systems, or one of their simplified forms, or motion of the mean field of many
self-gravitational particles in astrophysics, and so forth.

System (1) is invariant under the transformation

(u, v) 7→ (uµ, vµ) = (µ2u(µx, µ2t), v(µx, µ2t)),

and a solution (u, v) invariant under this transformation is called a self-
similar solution:

(u, v) = (uµ, vµ), µ > 0.

Consequently, we obtain the forward self-similar solution of the form

(2)

u(x, t) =
1

t
φ

(
x√
t

)
,

v(x, t) = ψ

(
x√
t

)
, x ∈ R

n, t > 0,
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a solution to (1) global in time, and the backward self-similar solution,

u(x, t) =
1

T − t
φ

(
x√
T − t

)
,(3)

v(x, t) = ψ

(
x√
T − t

)
,(4)

a blowup solution to (1) with blowup time t = T > 0, where φ and ψ are
some functions on R

n. Studies on these solutions and their applications are
described in §2 and §3, respectively.

2. Forward self-similar solution

General existence. If the initial values

u0(x) = lim
t↓0

1

t
φ

(
x√
t

)
, v0(x) = lim

t↓0
ψ

(
x√
t

)

are taken in (2), then

u0(µx) = µ−2u0(x), v0(µx) = v0(x), µ > 0,(5)

and conversely, the forward self-similar solution is obtained by showing
unique existence of a solution to (1) satisfying

u( · , 0) = u0 and v( · , 0) = v0 if τ > 0

for such u0, v0. This approach is taken in [2, 3, 4, 32, 33, 6, 19], and hence-
forth, the solution to (1) is said to be strong (resp. weak) if it is strongly
(resp. weakly) continuous in time in the specified function space.

First, the problem (1) with τ = 0 is formulated as

(6) u(t) = et∆u0 −
t\
0

∇e(t−s)∆ · u(s)(Γ ∗ u)(s) ds

for

(et∆f)(x) =
\

R2

G(x− y, t)f(y) dy,

G(x, t) =
1

(4πt)n/2
e−|x|2/4t,

Γ (x) =






1

2π
log

1

|x| (n = 2),

1

(n− 2)ωn
|x|2−n (n = 3),

where ωn is the (n − 1)-dimensional volume of the boundary of the unit
ball in R

n. This problem has a unique strong solution in Mp
q (Rn) with

n/2 < p ≤ n, 2 − p/n ≤ q ≤ p, locally in time for large initial data,
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and also globally in time for small initial data, where

Mp
q (Rn) = {f ∈ Lqloc(R

n) | ‖f ;Mp
q ‖ <∞},

‖f ;Mp
q ‖q = sup

x∈Rn, 0<R≤1
Rn(q/p−1)

\
B(x,R)

|f |q,

denotes the Morrey space. In the limiting case p = n/2 with n ≥ 3, we
obtain a unique strong solution local in time in the space

X = {u ∈ C([0, T ];Mn/2
p ) | sup

0<t≤T
t1/4‖u(t);M2n/3

4q/3 ‖ <∞},

provided that

ℓ(u0) = lim sup
t↓0

‖et∆u0;M
2n/3
4q/3 ‖ ≪ 1,

where n ≥ 3, 3/2 ≤ q ≤ n/2 ([2]). If n ≥ 4, there is a unique weak solution
global in time for small initial data in PMn−2(Rn), where

PMa(Rn) = {v ∈ S ′(Rn) | v̂ ∈ L1
loc(R

n), ‖v‖PMa <∞},
‖v‖PMa = ess sup

ξ∈Rn
|ξ|a|v̂(ξ)|,

with S ′(Rn) and v̂ standing for the space of tempered distributions and the
Fourier transformation of v ∈ S ′(Rn), respectively [6, 32]. This is also the
case of Ln/2,∞(Rn), the Marcinkiewicz space defined by

Lp,∞ = {v ∈ L1
loc(R

n) | ‖v‖p,∞ <∞},
‖v‖p,∞ = sup

{
|E|−1+1/p

\
E

|v|
∣∣∣E ⊂ R

n a Borel set with 0 < |E| <∞
}
,

and if n ≥ 3, there is a unique weak solution global in time for small initial
data [33]. These results guarantee the existence of the forward self-similar
solution to (1) with τ = 0, n ≥ 3.

In the other case of τ > 0, n ≥ 3, similarly, there is a unique weak solution
global in time for small initial data in u0 ∈ Ln/2,∞(Rn) and v0 ∈ BMO(Rn),
which ensures the existence of the forward self-similar solution [4, 19].

In the case n = 2, the problem (1) has the stability property with the
parameter τ ≥ 0, i.e., solutions of the parabolic-parabolic system (with
τ > 0) converge to the solution of the parabolic-elliptic system (with τ = 0)
as τ → 0 in a subset of the space of pseudomeasures [34].

L1-Solution. For u(x, t) given by (2), we have\
Rn

u(x, t) dx = t(n−2)/2
\

Rn

φ(y) dy,

and therefore, ‖u( · , t)‖1 = constant if and only if n = 2. Since the L1-norm
of u = u( · , t) is expected to be preserved in (1), only in this case can the
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forward self-similar solution describe the ultimate profile of the L1-solution
to (1) globally in time.

The profile functions φ, ψ, on the other hand, solve

(7)
∇ · (∇φ− φ∇ψ) +

1

2
x · ∇φ+ φ = 0,

∆ψ +
τ

2
x · ∇ψ + φ = 0 in R

n,

and therefore, either φ > 0 or φ ≡ 0 by the maximum principle. In the case
of n = 2 and φ > 0, furthermore, the first equation is equivalent to

(8) ∇ · φ∇
(

logφ− ψ +
|x|2
4

)
= 0.

This relation holds if

(9) φ(x) = σe−|x|2/4eψ(x)

with a constant σ > 0, and then (7) is reduced to

(10) ∆ψ +
τ

2
x · ∇ψ + σe−|x|2/4eψ = 0, x ∈ R

2.

Radially symmetric self-similar solution. Let n = 2. Assuming radial
symmetry, φ = φ(r) > 0, ψ = ψ(r), r = |x| in (7), we obtain

(logφ− ψ)′ +
r

2
= 0

by (8). Thus, it follows that

logφ− ψ = −r
2

4
+ c

with a constant c, and therefore, (9) holds with σ = ec > 0:

(11)
ψ′′ +

(
1

r
+
τ

2
r

)
ψ′ + σe−r

2/4eψ = 0, r > 0,

ψ′(0) = 0.

Equation (7) with τ = 0 is invariant under adding constants to ψ, and
this induces the same property for (11). In view this, we adopt the normal-
ization ψ(0) = 0 in this case, and then σ = φ(0) follows. The solution ψ(r)
exists for all r > 0, and satisfies limr↑∞ ψ(r) = −∞. The structure of the
solution set is clear in this case, and will be described in Theorems 3 and 5.

If τ > 0, on the contrary,
T∞
0 rψ(r) dr <∞ follows from

(12) lim
r↑∞

ψ(r) = 0.

Existence of a positive solution to (11) with (12) is discussed in this case
[24, 23], and in particular, the following result is obtained in [25].
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Theorem 1. For (11)–(12), given 0 < τ < 2 there is σ∗ > 0 such that
if σ > σ∗ then there is no positive solution, if 0 < σ < σ∗ then there are at
least two positive solutions, and if σ = σ∗, then there is a unique positive
solution.

Two problems arise here; radial symmetry and L1-behavior of the solu-
tion.

Radial symmetry of self-similar solution. The relation (9) and radial
symmetry of the solution are proven by a Liouville type theorem [22] and
the moving plane method [28], respectively. We obtain the following theorem
[30, 29].

Theorem 2. Let (φ, ψ) ∈ C2(R2)×C2(R2) be a solution to (7), n = 2.

(i) If τ = 0, φ ≥ 0, φ ∈ L1(R2) ∩ L∞(R2), and ψ+ = max{ψ, 0} ∈
L∞(R2), then (9) holds with a constant σ > 0, and φ = φ(r), ψ =
ψ(r) are decreasing functions of r = |x| > 0.

(ii) The same conclusion holds if τ > 0, ϕ, ψ ≥ 0, and φ(x), ψ(x) → 0
as |x| → ∞. In this case, φ, ψ ∈ L1(R2).

L1-norms of radially symmetric self-similar solutions. Given profile func-
tions φ = φ(r), ψ = ψ(r) satisfying (7), we define the volume functions [1, 2]

Φ(s) =
1

2

s\
0

φ(
√
t) dt =

√
s\

0

rφ(r) dr,

Ψ(s) =
1

2

s\
0

ψ(
√
t) dt =

√
s\

0

rφ(r) dr,

and obtain
r\
0

φ(y) dy = 2π

∞\
0

rφ(r) dr = 2πΦ(∞),

r\
0

su(s, t) ds =

r\
0

s

t
φ

(
s√
t

)
ds =

1

2

r2/τ\
0

φ(
√
s) ds = Φ

(
r2

t

)
,

r\
0

sv(s, t) ds = tΨ

(
r2

t

)
,

where

u(r, t) =
1

t
φ

(
r√
t

)
, v(r, t) = ψ

(
r√
t

)
.

Since (u, v) solves (1), we see that

rut = (rur)r − rurvr − u(rvr)r, τrvt = (rvr)r + ru,

and hence
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r\
0

sut(s, t) ds = rur − ruvr, τ

r\
0

svt(s, t) ds = rvr +

r\
0

su(s, t) ds.

This means

Ut = r(r−1Ur)r − Ur(r
−1Vr)r, τVt = r(r−1Vr)r + U

for

U(r, t) =

r\
0

su(s, t) ds = Φ

(
r2

r

)
, V (r, t) =

r\
0

sv(s, t) ds = tΨ

(
r2

t

)
,

and then it follows that

(13) Φ′′ +
1

4
Φ′ − 2Φ′Ψ ′′ = 0, 4sΨ ′′ + τsΨ ′ − τΨ + Φ = 0, s > 0,

where ′ = d/ds.
In the case of τ = 0, this relation is reduced to

(14) Φ′′ +
1

4
Φ′ +

ΦΦ′

2s
= 0, s > 0,

as 4sΨ ′′ = −Φ. Since φ ≥ 0, we have

(15) Φ(0) = 0, Φ′(s) ≥ 0, s > 0, Φ(∞) = lim
s↑∞

Φ(s) =
λ

2π

for λ = ‖φ‖1. Studies on (14) with (15) are summarized as follows [1, 2, 8],
where λ = ‖φ‖1 acts as a control parameter instead of σ = φ(0).

Theorem 3. In the case of τ = 0, n = 2, the problem (7) has a non-
trivial radially symmetric solution (φ, ψ) satisfying φ ≥ 0, ‖φ‖1 = λ if and
only if 0 < λ < 8π, and it is unique for each λ ∈ (0, 8π).

To treat the case τ > 0, we put W (s) = −4sΦ′′(s). Then, by the second
equation of (13),

Φ′ = (−4sΨ ′′)′ − τsΨ ′′ = W ′ +
τ

4
W.

Since sΨ ′′(s) =
√
sψ′(

√
s)/4, we have W (0) = lims↓0W (s) = 0, and

W (s) = e−τs/4
s\
0

eτt/4Φ′(t) dt.

This means

−sΨ ′′(s) =
1

4
e−τs/4

s\
0

eτt/4Φ′(t) dt,

and putting this into the first equation of (13), we obtain

Φ′′ +
1

4
Φ′ +

1

2s
e−τs/4Φ′

s\
0

eτt/4Φ′(t) dt = 0.

From this relation, we obtain an a priori L1-estimate of the solution [30].
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Theorem 4. If (φ, ψ) is a radially symmetric solution to (7) with τ > 0,
n = 2, satisfying φ, ψ ∈ L1(R2), φ, ψ ≥ 0, then

‖φ‖1 ≤ max

{
4

3
π3,

4

3
π3τ2

}
.

If 0 < τ ≤ 1/2, we obtain ‖φ‖1 < 8π.

The above estimate can be improved as follows (cf. [5]):

‖φ‖1 ≤ min

{
4

3
π3 max{τ, 1}, 8π(τ + 1)

}
.

Structure of the solution set. Let S be the set of all solutions (φ, ψ) ∈
C2(R2) × C2(R2) to (7) satisfying

(16)
φ ≥ 0, φ ∈ L1(R2) ∩ L∞(R2), ψ+ ∈ L∞(R2), ψ(0) = 0 if τ = 0,

φ, ψ ≥ 0, φ(x), ψ(x) → 0 as |x| → ∞ if τ > 0.

By Theorem 2, this set is composed of radially symmetric solutions to (10)
satisfying (9), and furthermore, the problem is formulated as

(17) ∆ψ +
τ

2
x · ∇ψ +

λe−|x|2/4eψT
R2 e−|x|2/4eψ dx

= 0, x ∈ R
2,

using λ = ‖φ‖1. Then, the following results [30, 29] are obtained by the
blowup analysis [11, 21].

Theorem 5. If n = 2, the above set S of solutions to (7) forms a one-
parameter family denoted by {(φ(s), ψ(s)) | s ∈ R} with

s 7→ (φ(s), ψ(s)) ∈ Cloc(R
2) × Cloc(R

2),

s 7→ λ(s) = ‖φ(s)‖1

continuous. Moreover , λ(s) → 0 as s ↓ −∞ and λ(s) → 8π, φ(s) ⇀ 8πδ0 as
s ↑ ∞ in the sense of measures.

If τ = 0, then s 7→ λ(s) is strictly increasing by Theorem 3, while
Theorem 4 guarantees the upper bound of λ(s), e.g., 0 < λ(s) < 8π in the
case of 0 < τ ≤ 1/2.

Convergence to the self-similar solution. If (u, v) is a radially symmetric
solution to (1) with τ = 0,

(18)

ut = ∇ · (∇u− u∇v),
0 = ∆v + u, x ∈ R

2, t > 0,

u( · , 0) = u0,

and if we define

M(s, t) = Q(
√
s, t), Q(r, t) =

\
B(0,r)

u(x, t) dx, r > 0,
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then

Mt = 4sMss +
1

π
MMs, s ∈ (0,∞), t > 0,

M(0, t) = 0, M(∞, t) = lim
s↑∞

M(s, t) = λ,

M(s, 0) = M0(s),

where λ = ‖u0‖1 and

M0(s) = Q0(
√
s), Q0(r) =

\
B(0,r)

u0(x) dx.

By Theorem 3, for each λ ∈ (0, 8π) there exists a unique radially sym-
metric self-similar solution (φ, ψ) = (φλ, ψλ) to (7) satisfying ‖φλ‖1 = λ.
Then, defining Mλ = Mλ(s, t) by

Mλ(s, t) = Qλ(
√
s, t), Qλ(r, t) =

\
B(0,r)

uλ(x, t) dx,

uλ(x, t) =
1

t
φλ

( |x|√
t

)
,

we obtain the following theorem [9].

Theorem 6. For each λ ∈ (0, 8π),

lim
t↑∞

‖M( · , t) −Mλ( · , t)‖∞ = 0.

Similar problems to (18) with λ = 8π for Ω = B(0, R) or Ω = R
2 without

radial symmetry are also studied [9, 8, 10].

Convergence to the self-similar solution (continued). To describe the
case τ > 0 of this convergence problem, we assume τ = 1 for simplicity:

ut = ∇ · (∇u− u∇v),
vt = ∆v + u, x ∈ R

2, t > 0,

u( · , 0) = u0, v( · , 0) = v0.

(19)

This is transformed into

(20)

u(t) = et∆u0 −
t\
0

(∇e(t−s)∆) · (u(s)∇v(s)) ds,

v(t) = et∆v0 +

t\
0

e(t−s)∆u(s) ds.

First, applying the contraction mapping principle in the space

Xp={u : (0,∞) → Lp(R2) Bochner measurable |sup
t>0

t1−1/p‖u( · , t)‖p <∞},
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‖u‖Xp = sup
t>0

t1−1/p‖u( · , t)‖p

for 4/3 < p < 2, we obtain the following fact [4, 27].

Proposition 2.1. There are M > 0, λ0 > 0, β0 ≥ 0 sufficiently small
such that ‖u0‖1 < λ0, ‖∇v0‖2 ≤ β0 implies the existence of a unique solution
(u, v) to (20) satisfying u ∈ Xp and ‖u‖Xp ≤M .

The expected self-similar solution describing the asymptotic behavior of
the above solution is defined by u0 = λδ0 and v0 = 0 in (5):

(21)

u(t) = λG( · , t) −
t\
0

(∇e(t−s)∆) · (u(s)∇v(s)) ds,

v(t) =

t\
0

e(t−s)∆u(s) ds.

Similarly, we obtain the following fact:

Proposition 2.2. Given M > 0, λ0 > 0, β0 prescribed in the previous
proposition, for each λ ∈ (0, λ0) there exists a self-similar solution (u, v)
to (21) satisfying ‖u‖Xp ≤M , ‖u( · , t)‖1 = λ.

The above self-similar solution has the profile functions (φ, ψ) satisfy-
ing (2), and hence

t1−1/p‖u( · , t)‖p = ‖φ‖p = constant, t > 0.

Next, we obtain convergence to the self-similar solution for small initial data
in the following sense [27]. It is an open question whether λ0 = 8π is valid
or not.

Theorem 7. Let (u0, v0) satisfy the assumptions of Proposition 2.1 and

(1 + |x|2)u0 ∈ L1(R2), ∇v0 ∈ L1(R2),

and define (uλ, vλ) of Proposition 2.2 for λ = ‖u0‖1 < λ0. Then

t1−1/p‖u( · , t) − uλ( · , t)‖p = O(t−σ) as t→ ∞,

where σ ∈ (0, 1/2).

3. Backward self-similar solution. The profile functions (φ, ψ) of the
backward self-similar solution defined by (4) satisfy

∇ · (∇φ− φ∇ψ) − 1

2
x · ∇φ− φ = 0,

∆ψ − τ

2
x · ∇ψ + φ = 0, x ∈ R

n.
(22)

Such a solution induces self-similar blowup to (1), while its actual existence
depends on the dimension n. In more detail, the cases n = 2, 3 ≤ n ≤ 9,
and n ≥ 10 are distinguished.
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Non-existence. This subsection is mostly devoted to the case of n = 2.
First, a radially symmetric solution to (22) satisfies

(φ′ − φψ′)′ +
1

r
(φ′ − φψ′) − r

2
φ′ − φ = 0,

ψ′′ +

(
1

r
− τ

2
r

)
ψ′ + φ = 0, r > 0,

(23)

and similarly to the forward self-similar case, the first equation reduces to

(24) φ = σer
2/4eψ,

where σ > 0 is a constant. It follows that

ψ′′ +

(
1

4
− τ

2
r

)
ψ′ + σer

2/4eψ = 0, r > 0,

ψ′(0) = 0,
(25)

while (25) admits no positive solution in the case of τ > 0 ([24]).

To describe the case τ = 0, we recall that a solution (u, v) to (1) is
reasonable if the L1-norm of u( · , t) is preserved. If (u, v) is defined by (4),
then

Q(r, t) =
\

B(0,r)

u(x, t) dx =
\

|y|≤r/
√
T−t

φ(y) dy,

which implies

lim
t↑T

\
B(0,r)

u(x, t) dx

{
<∞ if φ ∈ L1(R2),

= ∞ if φ 6∈ L1(R2).

Putting

Q(r, t) = Φ(s), s =
r√
T − t

,

we obtain

Φ(∞) = lim
s↑∞

Φ(s) =
‖φ‖1

2π
<∞

in the case φ ∈ L1(R2). On the other hand,

(26) Φss −
s

2
Φs +

(
Φ

2π
− 1

)
Φs
s

= 0, s > 0,

by (23) similarly to (14). Since (26) admits no bounded non-trivial solu-
tion [15], we obtain the following theorem.

Theorem 8. If n = 2, τ > 0, there is no non-trivial radially symmetric
solution to (22) satisfying ψ > 0. If n = 2, τ = 0, there is no non-trivial
radially symmetric solution to (22) satisfying φ ∈ L1.
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The reduction to (24) is valid similarly to the forward self-similar solu-
tion [30]. First, writing

∇ · [e|x|2/4eψ∇(φe−|x|2/4e−ψ)] = 0

for the first equation of (22), we obtain

∆ζ + ∇b · ∇ζ = 0, x ∈ R
2,

where
ζ = −φe−|x|2/4e−ψ ≤ 0, b = −|x|2/4 − ψ.

It follows that
x · ∇b ≤ 0, |x| ≫ 1,

if

(27) ∇ψ(x) = o(|x|), |x| → ∞,

and then Lemma 2.1 of [30] is applicable. Thus, ζ is a constant denoted by
−σ, and it follows that

φ = σe|x|
2/4eψ.

First, we consider the case τ = 0. If λ = ‖φ‖1 <∞, it follows that

φ =
λeψ+|x|2/4T
R2 eψ+|x|2/4

and then

−∆ψ =
λeψ+|x|2/4T
R2 eψ+|x|2/4 , x ∈ R

2,

by the second equation of (22). Putting

w = ψ + |x|2/4 + log λ− log
(\

R2

eψ+|x|2/4
)
,

we obtain

(28) −∆w = ew − 1, x ∈ R
2,

\
R2

ew = λ,

while we have the following fact.

Proposition 3.1. The problem (28) admits no solution.

Proof. Suppose w = w(x) is such a solution, and put

w(r) =
1

2πr

\
|x|=r

w(x) ds.

Then

(29)
\

R2

ew = 2π

∞\
0

r dr · 1

2πr

\
|x|=r

ew ds ≥ 2π

∞\
0

ew(r)r dr
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by Jensen’s inequality, while

(rwr)r = r − 1

2π

\
|x|=r

ew ds, r > 0,

from (28). This implies

rwr ≥
r2

2
− λ

2π
,

and hence wr(r) ≥ r/4 for r sufficiently large. We obtain w(r) ≥ r2/8 − C
and hence

T
Ω e

w = ∞ by (29). The proof is complete.
In the case of τ > 0, we set

ψ(r) =
1

2πr

\
|x|=r

ψ(x) ds.

Then the equation

∆ψ − τ

2
x · ∇ψ + σe|x|

2/4eψ = 0, x ∈ R
2,

implies

(30) r−1(rψr)r −
τ

2
rψr +

σer
2/4

2πr

\
|x|=r

eψ ds = 0, r > 0,

and therefore,

(re−(τ/4)r2ψr)r + re−(τ/4)r2 · σe
r2/4

2πr

\
|x|=r

eψ ds = 0.

We obtain

re−(τ/4)r2ψr(r) = −
r\
0

ξe−(τ/4)ξ2 dξ · σe
ξ2/4

2πξ

\
|x|=ξ

eψ ds < 0.

In the case of ψ > 0, this implies

(rψr)r =
τ

2
r2ψr −

σrer
2/4

2πr

\
|x|=r

eψ ds < −σrer2/4, r > 0,

and therefore,

rψr(r) < 2σ(1 − er
2/4) < −2σ · r

2

4
= −σ

2
r2.

We obtain
ψr(r) < −σ

2
r, r > 0,

and hence
ψ(r) < ψ(0) − σ

4
r2 → −∞, r ↑ ∞,

a contradiction. Thus, the following theorem is proven.
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Theorem 9. If n = 2, τ = 0, there is no non-trivial solution (φ, ψ) to
(22) satisfying (27) and φ ∈ L1(R2). If n = 2, τ > 0, there is no non-trivial
solution (φ, ψ) to (22) satisfying (27) and ψ > 0.

Aggregation rate. Backward self-similar transformation describes local
behavior of the blowup solution, in particular, the quantized blowup mech-
anism in the simplified system of chemotaxis [18, 31, 17, 26, 42],

ut = ∇ · (∇u− u∇v),

−∆v = u− 1

|Ω|
\
Ω

u, x ∈ Ω, t > 0,(31)

∂u

∂ν
− u

∂v

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

where Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω. First, if the

solution u = u(x, t) has a blowup time T <∞, then there is a collapse [38],

(32) u(x, t) ⇀
∑

x0∈S
m(x0)δx0

+ f(x)

as t ↑ T in the sense of measures on Ω, where S is the blowup set,

m(x0) ≥ m∗(x0) =

{
8π (x0 ∈ Ω),

4π (x0 ∈ ∂Ω),

and 0 ≤ f = f(x) ∈ L1(Ω) ∩ C(Ω \ S). Next, we obtain mass quantization
m(x0) = m∗(x0) ([42]), using the backward self-similar transformation,

(33)
z(y, s) = (T − t)u(x, t), w(y, s) = v(x, t),

y = (x− x0)/(T − t)1/2, s = − log(T − t).

More precisely, first, we have

(34) lim
b↑∞

lim sup
t↑T

∣∣∣
\

B(x0,b(T−t)1/2)∩Ω
u(x, t) dx−m(x0)

∣∣∣ = 0,

which is referred to as the effect of “parabolic envelope”. Then any sk ↑ ∞
admits {s′k}⊂{sk} such that z(y, s′k+s) converges in Cweak(−∞,∞;M(R2))
as k → ∞, where the 0-extension of z(y, s′k + s) is taken where the latter
is not defined. If we take even reflection in case x0 ∈ ∂Ω, furthermore, the
limit measure ζ = ζ(dy, s) is a weak solution to

zs = ∇ · (∇z − z∇(w + |y|2/4)),

∇w = ∇Γ ∗ z in R
2 × (−∞,∞).

(35)

Then, similarly to the pre-scaled case [20], we obtain µ ≤ 8π as a necessary
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condition for the existence of a solution global in time, where

(36) µ = ζ(R2, s) =

{
m(x0) (x0 ∈ Ω),

2m(x0) (x0 ∈ ∂Ω).

Since µ ≥ 8π is obtained by (34), this implies m(x0) = m∗(x0). In more
detail, first, we show that the assumption ζ(R2, 0) > 8π with sufficient con-
centration of ζ(dy, 0) at the origin implies the blowup of ζ(dy, s) in finite
time, a contradiction, and then we remove this condition using self-similarity
of (35). Actually, this concentration condition is described by the local sec-
ond moment, which results in µ ≤ 8π in the limit of the scaling parameter.

There is, on the other hand, convergence of the global second moment,
and this, combined with mass quantization, implies that a type (I) blowup
point is impossible [37]. To prove this, we use the key inequality to de-
rive (34), ∣∣∣∣

d

dt

\
Ω

u(x, t)ϕ(x) dx

∣∣∣∣ ≤ C‖ϕ‖C2(Ω)

with a constant C > 0 independent of ϕ ∈ C2(Ω). More precisely, in (34) we
applied this to ϕ = ϕx0,R, a smooth cut-off function supported by B(x0, R),
while now we take the second moment, ϕ = |x− x0|2ϕx0,R. This results in

∣∣∣∣
d

dt

\
Ω

|x− x0|2ϕx0,R(x)u(x, t) dx

∣∣∣∣ ≤ C.

Operating with
TT
t · dt, we obtain\

Ω

|x− x0|2ϕx0,R(x)u(x, t) dx ≤ C(T − t) +
\
Ω

|x− x0|2ϕx0,R(x)f(x) dx

by (32), and therefore, for R(t) = (T − t)1/2,

1

R(t)2

\
Ω

|x− x0|2ϕx0,bR(t)(x)u(x, t) dx

≤ C +
1

R(t)2

\
Ω

|x− x0|2ϕx0,bR(t)(x)f(x) dx ≤ C + b2〈ϕx0,bR(t), f〉.

Given tk ↑ T , now we take {s′k} ⊂ {sk} with s′k ↑ ∞, where sk = − log(T−tk)
and then let b ↑ ∞. This implies

(37) 〈|y|2, ζ(dy, s)〉 ≤ C, −∞ < s <∞.

Putting

I(s) = 〈|y|2, ζ(dy, s)〉,
we obtain

dI

ds
= 4µ− µ2

2π
+ I
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by (35), and then from (37) it follows that

(38) I(s) = 〈|y|2, ζ(dy, s)〉 =
µ2

2π
− 4µ, −∞ < s <∞.

This ζ(dy, s), derived from sk = − log(T − tk), takes the form

(39) ζ(dy, s) =
∑

y0∈Bs

8πδy0(dy) + g(y, s) dy

for each s ∈ R, similarly to the quantized blowup mechanism arising in
the blowup solution in infinite time [39, 40]. Here, Bs is a finite set and
0 ≤ g = g( · , s) ∈ L1(R2) ∩ C(R2 \ Bs). Since µ = 8π, (38) implies I(s) ≡ 0,
and therefore, we obtain g(y, s) dy = 0, ♯(Bs) = 1, and y0 = 0. Thus,

(40) z(y, s′ + s) ⇀m∗(x0)δ0

in Cweak(−∞,∞;M(R2)) as s′ ↑ ∞, where z(y, s) is the backward self-
similar transformation of u(x, t) defined by (33) with 0-extension taken
where u is not defined. (It is not the scaling limit ζ(dy, s), where the even
extension is taken with respect to the line parallel to the tangent in case
x0 ∈ ∂Ω.)

We say that x0 ∈ S is of type (II) if

(41) lim sup
t↑T

R(t)2‖u( · , t)‖L∞(B(x0,bR(t))∩Ω) = ∞

for some b > 0, and of type (I) in the other case, i.e.,

(42) lim sup
t↑T

R(t)2‖u( · , t)‖L∞(B(x0,bR(T ))∩Ω) <∞

for any b > 0. The relation (40) says that the total blowup mechanism
is enclosed by parabolic shape hypersurfaces in arbitrarily small parabolic
regions. Thus, we obtain

lim
t↑T

R(t)2‖u( · , t)‖L∞(B(x0,bR(t))∩Ω) = ∞

for any b > 0.

Theorem 10. Every x0 ∈ S is of type (II), and what is more, the rela-
tion (40) holds in Cweak(−∞,∞;M(R2)) as s′ ↑ ∞.

The above asymptotic profile has been first observed in the family of
blowup solutions constructed by matched asymptotic expansion [16]. These
solutions are provided with a super-self-similar blowup rate 0 < r(t) ≪ R(t),
and obey the profile of emergence [42],

lim
t↑T

Fx0,br(t)(u(t)) = ∞
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for any b > 0, where

Fx0,R(u) =
\

Ω∩B(x0,R)

u(log u− 1)

− 1

2

\ \
Ω∩B(x0,R)×Ω∩B(x0,R)

G(x, x′)u(x)u(x′) dx dx′

is the local free energy defined by the Green function G = G(x, x′) for

−∆v = u− 1

|Ω|
\
Ω

u in Ω,
\
Ω

v = 0,
∂v

∂ν
= 0 on ∂Ω.

Thus, emergence is a consequence of mass quantization and blowup envelope.
There is an alternative proof of the collapse mass quantization, assuming

type (II) blowup with residual vanishing [41]. For the reader’s convenience,
we describe the argument to conclude this subsection. First, we use the
reverse second moment and show that

d

ds
〈(4 − |y|2)+, ζ(dy, s)〉

≥ 〈(4 − |y|2)+, ζ(dy, s)〉 − 8ζ(B2, s) +
1

2π
ζ(B2, s)

2,

where B2 = B(0, 2). This implies

d

ds
〈(4 − |y|2)+, ν(dy, s)〉 ≥ 〈(4 − |y|2)+, ν(dy, s)〉 + I(s)

for

ν(dy, s) = ζ(dy, s) − 8πδ0(dy), I(s) = 32π − 8ζ(B2, s) +
1

2π
ζ(B2, s)

2.

Next, we note that

(43) 〈(4 − |y|2)+, ν(dy, 0)〉 > 0

implies ζ(B2, 0) > 8π, and consequently, I(0) > 0. Then, using a continua-
tion argument, we infer that (43) implies

lim
s↑∞

〈(4 − |y|2)+, ν(dy, s)〉 = ∞,

a contradiction. If 0 ∈ B0, this implies ν(dy, 0) = 0, and hence F (y, 0) = 0
on B2. Since F (y, s) satisfies a parabolic equation in the residual open set⋃
s(R

2 \ Bs) × {s}, we obtain F ≡ 0 by the unique continuation theorem.
To treat the other case of 0 6= y0 ∈ B0, we take the moving (reverse

second) moment (4 − |y − y0(s)|2)+, where y0(s) = y0e
s. Using ζ ′(dy, s) =

ζ(dy + {y0(s)}, s), we can argue similarly, and obtain F (y, s) ≡ 0 with
B0 ∩B(y0, 2) = ∅. Since B0 6= ∅ if x0 ∈ S is of type (II), this results in

ζ(dy, s) =

n∑

i=1

8πδyi(s)(dy),
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with

(44) |yi(s) − yj(s)| ≥ 2 (i 6= j, −∞ < s <∞).

The movement of yi(s) is detected again by the reverse second moment (cf.
[42, p. 318]), and it follows that

yi(s) = yi(0)es, −∞ < s <∞,

which, however, contradicts (44) as s ↓ −∞.

Aggregation rate (continued). Proposition 3.1 indicates the non-existence
of a classical L1-stationary solution to (35), and this induces an alternative
proof of the non-existence of a type (I) blowup point. Since the argument
uses the Lyapunov function, we have to put an additional condition

(45) lim
b↑∞

lim sup
t↑T

R(t)2‖u( · , t)‖L∞(B(x0,bR(t))∩Ω) <∞.

We say that x0 ∈ S is uniformly of type (II ) in this case, and then any
sk ↑ ∞ admits {s′k} ⊂ {sk} generating a classical solution z = z(y, s) ≥ 0
to (35) satisfying

(46) ‖z( · , s)‖1 = 8π, ‖z( · , s)‖∞ ≤ C.

We now show this is impossible.
In fact, first, the maximum principle guarantees z > 0, and therefore,

(47) lim inf
t↑T

inf{R(t)2u(x, t) | x ∈ B(x0, bR(t)) ∩Ω} > 0

for any b > 0. Next, we apply the transformation [42]

z(y, s) = e−sA(y′, s′), w(y, s) = B(y′, s′),

y′ = e−s/2y, s′ = −e−s,
(48)

and obtain

As′ = ∇′ · (∇′A−A∇′B), ∇′B = ∇′Γ ∗A, y′ ∈ R
2, s′ < 0.(49)

This is nothing but (1) with τ = 0, n = 2. The transformation (48), inci-

dentally, preserves the homogeneous Morrey space Ṁ
n/2
q (Rn), where

Ṁp
q (Rn) = {f ∈ Lqloc(R

n) | ‖f ; Ṁp
q ‖ <∞},

‖f ; Ṁp
q ‖q = sup

x∈Rn, 0<R<∞
Rn(q/p−1)

\
B(x,R)

|f |q,

and this suggests the threshold phenomenon concerning the existence of
self-similar solutions.

Here, A = A(dy′, s′) is regarded as an element in C∗(−∞, 0;M(R2)). We
have A(R2, s′) = 8π by ζ(R2, s) = 8π and also A( · , s′) ∈ X0, where

X0 =
{
f ∈ X

∣∣∣ f ≥ 0,
\

R2

f(y)(1 + |y|2) dy <∞
}



28 Y. NAITO AND T. SUZUKI

for X=L1(R2)∩L∞(R2). For the moment, we simplify the notation and take

ut = ∇ · (∇u− u∇v), ∇v = ∇Γ ∗ u in R
2 × (0, T )(50)

in X, i.e., we study the solution u = u( · , t) > 0 to this problem satisfying

(51) sup
t∈(0,T )

‖u(t)‖X0
<∞.

First, (50) is interpreted via the Duhamel formula as in (6), using

‖∇Γ ∗ u‖∞ ≤ C(‖u‖∞ + ‖u‖1),

and then it follows that

(52) ‖∆1/4u(t)‖2 ≤ Ct−1/4, 0 < t < T.

Since Calderón–Zygmund’s estimate guarantees [44]

‖DαΓ ∗ u‖p ≤ Cp‖u‖p (|α| = 2, 1 < p <∞),

it follows that

‖∆1/2(u1 · ∇Γ ∗ u2)‖2 ≤ C‖(1 −∆)1/2u1‖2‖u2‖X
and then the interpolation theorem implies

(53) ‖∆1/4(u · ∇Γ ∗ u)‖2 ≤ C‖(1 −∆)1/4u‖2‖u‖X
since

‖u1 · ∇Γ ∗ u2‖2 ≤ C‖u1‖2‖u2‖X .
From (6), (51), (52), (53), we obtain

‖∇u(t)‖2 ≤ Ct−1/2, 0 < t < T,

and hence
d

dt
(u, ϕ) = −(∇u− u∇v,∇ϕ)

for ϕ ∈ H1(R2) and t > 0. Then ‖u(t)‖1 = ‖u0‖1 = λ is obtained by
approximating ϕ ≡ 1. Similarly, we obtain

‖∆3/4u(t)‖2 ≤ Ct−3/4, ‖∆u(t)‖2 ≤ Ct−1, ‖ut(t)‖2 ≤ Ct−1, 0 < t < T,

which provides sufficient regularity to z = z(y, s).

The logarithmic HLS inequality [12], on the other hand, guarantees

−
\\

R2×R2

f(x) log |x− y|f(y) dx dy ≤ λ

2

\
R2

f log f dx+ Cλ,

Cλ = −λ
2

2
(1 + log π + log λ)

for f ∈ X0 with ‖f‖1 = λ. Since

1

2

d

dt
〈Γε ∗ z, z〉 = (zt, Γε ∗ z)
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for Γε ∈ C∞
0 (R2), we can justify

1

2

d

dt
〈Γ ∗ z, z〉 = (zt, w).

Next, we use

(zt, H(z) − |y|2/4) = −(∇z − z∇(|y|2/4),∇(H(z) + |y|2/4))

for H ∈ C∞
0 [0,∞) and approximate log u by this H(z). Thus, we obtain

∇√
z ∈ L2(R2 × (−s0, s0)) for any s0 > 0, and also

s\
−s
ds
\

R2

|2∇√
z −√

z∇(w + |y|2/4)|2 dy ≤ F(z(−s)) −F(z(s))

for s > 0, where

F(z) =
\

R2

z(log z − 1) − 1

2
〈Γ ∗ z, z〉 +

1

4

\
R2

|y|2z.

Then the uniform estimate (46) guarantees

∞\
−∞

ds
\

R2

|2∇√
z −√

z∇(w + |y|2/4)|2 dy <∞

and in particular, there is sk → ∞ satisfying

(54)
\

R2

|2∇√
z −√

z∇(w + |y|2/4)|2( · , sk) dy → 0.

Finally, parabolic regularity is applicable to (35) by (46), and there are
{s′k} ⊂ {sk} and z∞, w∞ such that

z( · , s′k) → z∞, ∇w( · , s′k) → ∇w∞

locally uniformly in R
2 such that

‖z∞‖1 ≤ 8π, z∞ ∈ L∞(R2), ∇w∞ = ∇Γ ∗ z∞.
Furthermore, we obtain z∞ > 0 by (47), and therefore (54) yields

log z∞ − w∞ − |y|2/4 = constant in R
2.

This implies

−∆w∞ =
λe|y|

2/4ew∞T
R2 e|y|

2/4ew∞

, y ∈ R
2,

λ = ‖z∞‖1 ≤ 8π,
\

R2

e|y|
2/4ew∞ <∞,

which is impossible by Proposition 3.1.
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The assumption (45) may be weakened in this argument, but at least
z log z( · , s) ∈ L1(R2) is necessary.

Existence. The case τ = 0 is mostly studied for (22) with n ≥ 3. If
n = 3, there is a family of radially symmetric backward self-similar solutions
{(uk, vk)} to (1) satisfying uk(r, T ) ∼ ckr

−2 as r ↓ 0 for ck ↓ 2. It is obtained
formally by the method of matched asymptotic expansion [15]. Here, we
describe the method of phase plane, first adopted in the study of stationary
solutions [7].

In fact, a radially symmetric stationary solution to (1) satisfies

0 = ∇ · (∇u− u∇v),
0 = ∆v + u, x ∈ R

n.

If u = u(r) is such a solution, then

Φ(r) =
1

rn−2

r\
0

sn−1u(s) ds

solves

Φ′′ +
n− 3

r
Φ′ − 2(n− 2)

r2
Φ+

Φ

r2
{(n− 2)Φ+ rΦ′} = 0, r > 0,

Φ(0) = Φ′(0) = 0.
(55)

Using V (s) = Φ(r) − 2, s = log r, we obtain

V ′′ + (n− 2)V ′ + (n− 2)(V + 2)V + V V ′ = 0, s ∈ R,

V (−∞) = 2, V ′(−∞) = 0.

This is written as

V ′ = −(n− 2)V +W, W ′ = −2(n− 2)V −WV,(56)

where W = (n− 2)V + V ′. Equilibrium points of this system are

(V,W ) = (0, 0), (V,W ) = (−2,−2(n− 2)),

and

L(V,W ) =
1

2
V 2 +W + log

W + 2(n− 2)

2(n− 2)

is a Lyapunov function:

d

ds
L(V,W ) = −(n− 2)V 2 ≤ 0.

Then (56) with V (−∞) = −2, V ′(−∞) = 0 generates a heteroclinic orbit O,
and the linearized eigenvalues around (0, 0) are

µ± = −n− 2

2
±

√
(n− 2)(n− 10)

2
.

Thus, O spirals to (0, 0) if and only if 2 < n < 10.
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We apply an analogous argument for the backward self-similar solution
(u, v) defined by (4) using the profile functions (φ, ψ). More precisely, we
introduce

Φ(r, t) =
1

rn−2

r\
0

sn−1u(s, t) ds =
1

rn−2(T − t)

r\
0

sn−1φ

(
s√
T − t

)
ds

=

(
r√
T − t

)2−n r/
√
T−t\
0

ξn−1φ(ξ) dξ

and define

Ψ(s) = Φ(r, t), s =
r√
T − t

.

This means

Ψ(s) =
1

sn−2

s\
0

tn−2φ(t) dt

and then it follows that

Ψ ′′+

(
n− 3

2
− s

2

)
Ψ ′− 2(n− 2)

s2
Ψ+

Ψ

s2
{(n− 2)Ψ+sΨ ′} = 0, s > 0,

Ψ(0) = Ψ ′(0) = 0.

(57)

These relations are summarized by

r2u(r, t) =
r2√
T − t

φ

(
r√
T − t

)
= s2φ(s), s =

r√
T − t

,

s2φ(s) = sΦ′(s) + (n− 2)Φ(s),

(58)

and s ↑ ∞ if and only if t ↑ T for fixed r > 0.

Equation (57) has the exact solution [35]

Ψ(s) =
4s2

2(n− 2) + s2

and from this we obtain the following fact.

Proposition 3.2. If n ≥ 3, τ = 0, then (1) admits a backward self-
similar solution

u(r, t) =
1

T − t
φ

(
r√
T − t

)
, φ(r) =

16(n− 2)

(2(n− 2) + r2)2
+

4(n− 2)

2(n− 2) + r2
.

Here,

r2u(r, t) → 4(n− 2) as t ↑ T.

To detect other solutions, we put Ψ(s) = W (t) for s = αt, where α > 0.
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Then (57) reads

W ′′ +

(
n− 3

t
− α2t

2

)
W ′ − 2(n− 2)

t2
W

+
W

t2
{(n− 2)W + tW ′} = 0, t > 0,

W (0)=W ′(0) = 0,

and (55) is regarded as the limiting equation as α ↓ 0. If 3 ≤ n ≤ 9, we
obtain αk ↓ 0 and the corresponding Wk = Wk(t) such that

Wk(t) > 0, t > 0,

Wk(t) − 2 has 2k zeros in t ∈ (0,∞),

lim
t↑∞

Wk(t) = ck ∈ (0, 2).

Then the following theorem is obtained [35].

Theorem 11. In the case of 3 ≤ n ≤ 9, there is a family {(uk, vk)} of
radially symmetric backward self-similar solutions to (1) such that

r2u(r, t) → (n− 2)ck as t ↑ T ,
where 0 < ck < 2.

If n ≥ 10, there is a blowup rate higher than the backward self-similar
solution, i.e., type (II) blowup rate [36].
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