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A NOTE ON THE THEOREMS OF

LUSTERNIK–SCHNIRELMANN AND BORSUK–ULAM

BY
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Abstract. Let p be a prime number and X a simply connected Hausdorff space
equipped with a free Zp-action generated by fp : X → X. Let α : S2n−1

→ S2n−1 be
a homeomorphism generating a free Zp-action on the (2n − 1)-sphere, whose orbit space
is some lens space. We prove that, under some homotopy conditions on X, there exists
an equivariant map F : (S2n−1, α) → (X, fp). As applications, we derive new versions of
generalized Lusternik–Schnirelmann and Borsuk–Ulam theorems.

1. Introduction. Let X be a simply connected Hausdorff space
equipped with a free Zp-action (p is a prime number) generated by fp :
X → X. Given l = (l1, . . . , ln) ∈ Z

n such that for each j = 1, . . . , n, p
does not divide lj , consider the free Zp-action on S2n−1 generated by αp,l :
S2n−1 → S2n−1,

αp,l(z1, . . . , zn) = (e2πil1/p · z1, . . . , e
2πiln/p · zn).

We recall that a path connected space Y is j-simple (for j ≥ 1) if the
canonical action of the fundamental group of Y on the group πj(Y ) is trivial.
Our main result is the following

Theorem 1. Suppose that for all j with 2 ≤ j < m = 2n − 1 the orbit

space X/fp is j-simple and

(i) πj(X) = p · πj(X) if j is odd ,
(ii) πj(X) does not have elements of order p if j is even.

Then there exists an equivariant map F : (Sm, αp,l) → (X, fp).

If p = 2, Theorem 1 remains valid for any m odd or even (α2,l is the
antipodal map for any choice of l). This theorem provides the following
versions of the Borsuk–Ulam and Lusternik–Schnirelmann theorems.

Theorem 2. Let X, fp : X → X and m satisfy the hypotheses of The-

orem 1. Then for each family F = {C0, . . . , Ck} of k + 1 sets covering X,
each of which is either open or closed , and such that either
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(1) p = 2 and k ≤ m, or

(2) p = 3, m is odd and k ≤ m + 1, or

(3) p > 3, m is odd and (p − 1)(k − 2)/2 + 2 ≤ m,

there exists Cj0 ∈ F such that fp(Cj0) ∩ Cj0 6= ∅.

Theorem 3. Let X, fp : X → X and m satisfy the hypotheses of The-

orem 1.

(i) If m ≥ k(p − 1), then for each continuous map f : X → R
k there

exists x ∈ X such that f(x) = f ◦ (fp)
j(x) for all 1 ≤ j ≤ p − 1.

(ii) If m ≥ (k− 1)(p− 1) +1, then for each continuous map f : X → R
k

there exists x ∈ X such that f(x) = f ◦ fp(x).

Theorem 4. Let X be a paracompact , Hausdorff and simply connected

space and let f2 : X → X be an involution without fixed points, both sat-

isfying the hypotheses of Theorem 1. If Y is a separable metric space with

topological dimension dim(Y ) ≤ (m − 1)/2, then for any map f : X → Y ,
there exists x ∈ X such that f(x) = f ◦ f2(x).

In [6] M. Izydorek and J. Jaworowski constructed for each k and n ≤
2k − 1 a map f from the n-sphere Sn into a specific contractible k-dimen-
sional complex Y such that f(x) 6= f(−x) for all x ∈ Sn. Thus the upper
bound for the dimension in Theorem 4 is sharp in the general case.

Theorem 3 generalizes, in a certain sense, the result of Cohen–Connet [4].
Generalizations of the same nature of the Borsuk–Ulam theorem with
“nice” topological spaces X and Y satisfying some homological conditions
can be found in [8] and [3].

Acknowledgements. The authors thank the referee for valuable sug-
gestions that improved our results as well as the proof of the main theorem.
We also thank Professors P. L. Q. Pergher and P. Zvengrowski for helpful
discussions and suggestions.

2. Proof of Theorem 1. Let us consider the free action of Zp on the
sphere S2n−1 generated by the map αp,l as defined in the Introduction. If X is
a simply connected Hausdorff space equipped with a free Zp-action, then the
diagonal action Zp×(S2n−1×X) → (S2n−1×X), given by g·(q, x) = (g·q, g·x)
is a free Zp-action. The projection π : S2n−1 × X → S2n−1 onto the first
coordinate is an equivariant map and induces a map

ξn,l : S2n−1 ×Zp
X → Lp(l)

on orbit spaces. Since the Zp-action over S2n−1 is free, the quotient map

πS : S2n−1 → Lp(l) is a covering map. If Ũ ⊂ Lp(l) and U ⊂ S2n−1 are

open sets such that π−1
S (Ũ) =

⋃
g∈Zp

g · U (disjoint union) and πS |g·U is a
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homeomorphism from g · U onto Ũ , then the map φ
Ũ

: Ũ × X → ξ−1
n,l (Ũ)

given by φŨ ([q], x) = [(q, g ·x)], where g ∈ Zp is such that q ∈ g ·U , provides
a local trivialization of ξn,l. Thus ξn,l is a locally trivial fibration over the
lens space Lp(l) with X as typical fiber.

With these notations we have the following

Lemma 1. There exists an equivariant map F : S2n−1 → X if and only

if there exists a cross-section of the fibration ξn,l.

Proof. If F : S2n−1 → X is equivariant, then σF : Lp(l) → S2n−1 ×Zp
X

defined by σF ([q]) = [(q, F (q))] is a cross-section of ξn,l.
Conversely, given a cross-section σ : Lp(l) → S2n−1 ×Zp

X, we have
σ([q]) = [(q, Fσ(q))] for some continuous map Fσ : S2n−1 → X. The con-
tinuity of Fσ follows from the fact that for q ∈ g · U we have Fσ(q) =

g ◦ πX ◦ φ−1

Ũ
◦ σ ◦ πS(q), where πX : Ũ × X → X is the projection onto X

and we identify the element g ∈ Zp with the homeomorphism g : X → X
induced by the action over X.

Finally, to see that Fσ is equivariant, let q′ = g · q for some g ∈ Zp. Then
for the element [g · q, Fσ(g · q)] ∈ S2n−1 ×Zp

X we have

[g · q, Fσ(g · q)] = [q′, Fσ(q′)] = σ([q′]) = σ([q]) = [q, Fσ(q)] = [g · q, g ·Fσ(q)].

Thus there exists h ∈ Zp such that q′ = h · q′ and Fσ(g · q) = h · (g · Fσ(q)).
But the action on S2n−1 is free, therefore h = 1 and Fσ(g · q) = g · Fσ(q).

In the light of the above lemma, to prove Theorem 1 it is enough to
prove the existence of a cross-section of ξn,l : S2n−1 ×Zp

X → Lp(l). To
do this, let us consider the fibration ξn+1,l′ : S2n+1 ×Zp

X → Lp(l
′), where

l′ = (l, 1) ∈ Z
n+1. Then it can be easily checked that ξn,l is isomorphic to the

pull-back fibration of ξn+1,l′, induced by the inclusion J : Lp(l) → Lp(l
′),

J([z1, . . . , zn]) = [z1, . . . , zn, 0]. A lift σ̃ : Lp(l) → S2n+1 ×Zp
X of J is a

partial cross-section of ξn+1,l′ , defined on the (2n − 1)-skeleton of Lp(l
′). If

we succeed in constructing σ̃, then by the universal property of the pull-back,
there exists a unique continuous map σ : Lp(l) → S2n−1 ×Zp

X such that

ξn,l ◦ σ = 1Lp(l) and Ĵ ◦ σ = σ̃.

S2n+1 ×Zp
XS2n−1 ×Zp
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In particular, σ is a cross-section of ξn,l.



38 T. E. BARROS AND C. BIASI

Let us now prove the existence of σ̃. Since the fiber X of the fibration
ξn+1,l′ is path connected, there exists a cross-section over the 1-skeleton of
Lp(l

′). The hypothesis that X is simply connected implies X is j-simple for
all positive integers j, so the obstruction to the existence of a cross-section
over the j-skeleton of Lp(l

′) is an element of the cohomology with local
coefficients, Hj(Lp(l

′); πj−1); here the system of local coefficients is formed
by the groups πj−1(X[q]), where X[q] is the fiber over [q], and [q] runs over
all points of the base space Lp(l

′). The assumption that X/fp is j-simple for
all 2 ≤ j < 2n − 1 (together with the 1-connectedness of X) guarantees
that the local system of groups πj−1 is simple for 2 ≤ j ≤ 2n − 1, i.e., the
cohomology with local coefficients Hj(Lp(l

′); πj−1) reduces to the ordinary
singular cohomology Hj(Lp(l

′); πj−1(X)) for all 2 ≤ j ≤ 2n − 1 (cf. [10]).
Now to compute the cohomology groups we use the universal coefficient

theorem to conclude that

Hj(Lp(l
′); πj−1(X)) ∼=

{
HomZ(Zp, πj−1(X)) if j is odd,

Ext(Zp, πj−1(X)) if j is even.

But from the definitions of Hom and Ext we have

HomZ(Zp, πj−1(X)) ∼= {α ∈ πj−1(X) : pα = 0},

Ext(Zp, πj−1(X)) ∼= πj−1(X)/pπj−1(X)

Hence, as X satisfies hypotheses (i) and (ii), we have Hj(Lp(l
′); πj−1(X))=0

for all 2 ≤ j ≤ 2n − 1. Therefore there exists a lift of J restricted to Lp(l),
the (2n − 1)-skeleton of Lp(l

′), and Theorem 1 follows.

Remark 1. Given integers m > n, it is well known that there is no
equivariant map F : (Sm, am) → (Sn, an), where am and an are the an-
tipodal maps. We note that for n even (Sn, an) satisfies all hypotheses of
Theorem 1 except that Sn/an = RPn is j-simple for each 2 ≤ j < m. Thus
the assumption that the orbit space X/fp is j-simple cannot be dropped.

Remark 2. The procedure of extending the cross-section performed
above does not apply directly to the fibration ξn,l, because in this case the
obstruction to extending the cross-section σ to the (2n−1)-skeleton is an ele-
ment of H2n−1(Lp(l); π2n(X)) but this is isomorphic to HomZ(H2n−1(Lp(l)),
π2n(X)), and since H2n−1(Lp(l)) = Z we have H2n−1(Lp(l); π2n(X)) =
HomZ(Z, π2n(X)), which, upon our assumptions about X, is not zero in
general.

3. Proof of Theorem 2. The classical Lusternik–Schnirelmann theo-
rem says the following:

Theorem LS. Let m ≥ k and let H0, H1, . . . , Hk be closed subsets of

the sphere Sm such that Sm =
⋃k

j=0 Hj. Then there exists j0 ∈ {0, 1, . . . , k}
with Hj0 ∩ −Hj0 6= ∅.
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In 1979, Steinlein [11] proved the following

Theorem S. Let p be a prime number and αp : Sm → Sm a continuous

map generating a free Zp-action on Sm. Let m, k ∈ N be such that m is odd

and

m ≥

{
k − 1 if p = 3,

(p − 1)(k − 2)/2 + 2 if p > 3.

Then for each covering Sm =
⋃k

j=0 Hj by k + 1 closed sets, there exists Hj0

such that Hj0 ∩ αp(Hj0) 6= ∅.

In [5], J. E. Greene proved that in Theorem LS each set Hj can be either
open or closed. With a similar reasoning Theorem S can be improved to

Theorem SG. Let p be a prime number and αp : Sm → Sm a continu-

ous map generating a free Zp-action on Sm. Let m, k ∈ N be such that m is

odd and

m ≥

{
k − 1 if p = 3,

(p − 1)(k − 2)/2 + 2 if p > 3.

Then for each covering Sm =
⋃k

j=0 Hj by k + 1 sets, each of which is either

open or closed , there exists Hj0 such that Hj0 ∩ αp(Hj0) 6= ∅.

Proof. Following the reasoning of Greene we prove Theorem SG by in-
duction on the number t of closed sets in the cover of Sm. The case t = 0
corresponds to a cover of Sm by open sets H0, H1, . . . , Hk. Select a Lebesgue
number for this cover, that is, a positive number λ such that for all x ∈ Sm,
the closed ball B̄(x, λ) is contained in some Hj . By compactness, there exists
a finite collection of points {xi} such that the open balls B(xi, λ) cover Sm.
For each j, let Fj denote the union of those B̄(xi, λ) contained in Hj . Then
Fj is closed, Fj ⊂ Hj for each j, and together the Fj cover Sm. Therefore,
Theorem S implies that there exists Fj0 such that Fj0 ∩ αp(Fj0) 6= ∅, and
hence there exists Hj0 such that Hj0 ∩ αp(Hj0) 6= ∅.

Thus we may assume that 0 < t < k+1 and the assertion holds for fewer
than t closed sets. We now show that it holds for t closed sets. Let C be a
cover of Sm with k +1 sets, of which exactly t are closed and the remaining
ones are open. Fix a closed set F in C, and suppose that F ∩ αp(F ) = ∅.
By normality, there exist open sets A and B such that F ⊂ A, αp(F ) ⊂
B and A ∩ B = ∅. Let U = A ∩ α−1

p (B). Then U is open, F ⊂ U and
U ∩ αp(U) = ∅. Therefore C′ = (C − {F})∪ {U} is a cover of Sm with k + 1
sets, of which exactly t − 1 are closed and the remaining ones are open, so
by the induction hypothesis some set H in the cover satisfies H ∩αp(H) 6= ∅
and by construction this H must be different from U , and hence some set
H in the original cover must satisfy H ∩ αp(H) 6= ∅. This completes the
inductive step.
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Now we are ready to prove Theorem 2. Suppose that X =
⋃k

j=0 Cj is a
covering by k + 1 sets, each of which is either open or closed, and k satisfies
condition (1), (2) or (3) of Theorem 2.

By Theorem 1 for each αp,l : Sm → Sm generating a free Zp-action
on Sm, and for each fp : X → X generating a free Zp-action on X, there
exists an equivariant continuous map from (Sm, αp,l) to (X, fp). Note that
(fp)

−1 = (fp)
p−1 also generates a free Zp-action on X, and analogously

if l = (l1, . . . , ln) then α−1
p,l = αp,l′ (l′ = (p − l1, . . . , p − ln)) generates

a free Zp-action on Sm. Then there exists an equivariant continuous map

F : (Sm, αp,l) → (X, (fp)
−1). Thus Sm =

⋃k
j=0 F−1(Cj) is a covering by

k + 1 sets, each of which is either open or closed.

If p ≥ 3 it follows from Theorem SG that there exists Cj0 such that

F−1(Cj0) ∩ αp,l′(F
−1(Cj0)) 6= ∅.

This together with the facts that αp,l′ = α−1
p,l and F : (Sm, αp,l) → (X, fp)

is equivariant implies that Cj0 ∩ fp(Cj0) 6= ∅.

If p = 2, m can be even or odd, and in any case α2 is the antipodal map.
The same reasoning applies to Greene’s version of Theorem LS.

4. Proof of Theorem 3. Here we need the following theorem, which
follows from the works of H. J. Munkholm [9] and E. L. Lusk [7].

Theorem ML. Let p be a prime number , k, m ∈ N and α : Sm → Sm

a continuous map generating a free Zp-action on Sm.

(a) If m ≥ k(p − 1), then for each continuous map h : Sm → R
k, there

exists an x ∈ Sm with h(x) = h(αj(x)) for all 1 ≤ j ≤ p − 1.
(b) If m ≥ (k−1)(p−1)+1, then for each continuous map h : Sm → R

k,
there exists an x ∈ Sm with h(x) = h(α(x)).

Now, to prove Theorem 3 let (X, fp) be a pair satisfying the hypotheses
of Theorem 3 and let f : X → R

k be a continuous map. Then by Theorem 1
there exists a continuous equivariant map F : (Sm, αp,l) → (X, fp). Thus
h = f ◦ F : Sm → R

k is a continuous map.

If m ≥ (k − 1)(p − 1) + 1, it follows from item (b) of Theorem ML that
there exists y ∈ Sm such that h(y) = h(αp,l(y)). Then if x = F (y) ∈ X we
have

f(x) = h(y) = h(αp,l(y)) = f(F (αp,l(y))) = f(fp(F (y))) = f(fp(x)).

If m ≥ k(p−1), it follows from item (a) of Theorem ML that there exists
y ∈ Sm such that h(y) = h((αp,l)

j(y)) for all j = 0, 1, . . . , p − 1. Then if
x = F (y) ∈ X we deduce in a similar way that f(x) = f((fp)

j(x)) for all
j = 1, . . . , p − 1.
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5. Proof of Theorem 4. Here we use the following theorem due to
Aarts, Fokkink and Vermeer [1]:

Theorem AFV. Let W be a paracompact , Hausdorff space such that

dim(W ) ≤ m. Suppose that α is a fixed point free involution of W . Then

there exists a closed cover C = {C0, C1, . . . , Ck} of W with k ≤ m + 1 sets

such that Cj ∩ α(Cj) = ∅ for each j = 0, 1, . . . , m + 1.

To prove Theorem 4, suppose by contradiction that f(x) 6= f(f2(x)) for
all x ∈ X. Let (W, τ) be a pair such that W = Y × Y −△ where △ is the
diagonal, and τ is the involution τ(x, y) = (y, x). Then W is paracompact,
Hausdorff, dim(W ) ≤ m− 1 and τ is a free continuous involution of W . By

Theorem AFV there exists a covering W =
⋃k

j=0 Hj by k + 1 closed sets
such that Hj ∩ τ(Hj) = ∅ for all j = 0, 1, . . . , k and k ≤ m. By Theorem 1
there exists an equivariant map F : (Sm, α2) → (X, f2), and the map g :
(X, f2) → (W, τ) given by g(x) = (f(x), f(f2(x))) is also equivariant, so

h = g◦F : (Sm, α2) → (W, τ) is equivariant; therefore Sm =
⋃k

j=0 h−1(Hj) is
a covering by k+1 closed sets and since Hj∩τ(Hj) = ∅ for all j = 0, 1, . . . , k,
it follows that h−1(Hj) ∩ α2(h

−1(Hj)) = ∅ for all j = 0, 1, . . . , k. This
contradicts the classical Lusternik–Schnirelmann theorem (Theorem LS).
Thus we conclude that there exists x ∈ X such that f(x) 6= f(f2(x)).
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