VOL. 111

2008

NO. 1

LIFTING VECTOR FIELDS TO THE rTH ORDER FRAME BUNDLE

ВY

J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Dedicated to Professor Witold Roter on the occasion of his 75th birthday with respect and gratitude

Abstract. We describe all natural operators \mathcal{A} lifting nowhere vanishing vector fields X on m-dimensional manifolds M to vector fields $\mathcal{A}(X)$ on the rth order frame bundle $L^r M = \operatorname{inv} J_0^r(\mathbb{R}^m, M)$ over M. Next, we describe all natural operators \mathcal{A} lifting vector fields X on m-manifolds M to vector fields on $L^r M$. In both cases we deduce that the spaces of all operators \mathcal{A} in question form free $(m(C_r^{m+r}-1)+1)$ -dimensional modules over algebras of all smooth maps $J_0^{r-1} \widetilde{T} \mathbb{R}^m \to \mathbb{R}$ and $J_0^{r-1} T \mathbb{R}^m \to \mathbb{R}$ respectively, where $C_k^n = n!/(n-k)!k!$. We explicitly construct bases of these modules. In particular, we find that the vector space over \mathbb{R} of all natural linear operators lifting vector fields X on m-manifolds M to vector fields on $L^r M$ is $(m^2 C_{r-1}^{m+r-1}(C_r^{m+r}-1)+1)$ -dimensional.

0. Introduction. Let $\mathcal{M}f_m$ denote the category of *m*-dimensional manifolds and their embeddings (i.e. diffeomorphisms onto open subsets), and $\mathcal{F}\mathcal{M}$ denote the category of fibered manifolds and their fibered map.

In this note we describe how a nowhere vanishing vector field X on an m-dimensional manifold M can induce a vector field $\mathcal{A}(X)$ on the rth order frame bundle $L^r M = \operatorname{inv} J_0^r(\mathbb{R}^m, M) = \{j_0^r \psi \mid \psi : \mathbb{R}^m \to M \text{ is an } \mathcal{M}f_m\text{-map}\}$ over M. This problem is reflected in the concept of $\mathcal{M}f_m$ -natural operators $\mathcal{A} : \widetilde{T} \to TL^r$ in the sense of [4], where $T : \mathcal{M}f_{\dim(L\mathbb{R}^m)} \to \mathcal{FM}$ is the natural bundle of tangent vectors (the tangent functor) and $\widetilde{T} : \mathcal{M}f_m \to \mathcal{FM}$ is the natural bundle of non-zero tangent vectors.

We recall that an $\mathcal{M}f_m$ -natural operator $\mathcal{A} : \widetilde{T} \rightsquigarrow TL^r$ is a family of $\mathcal{M}f_m$ -invariant regular operators (functions)

$$\mathcal{A} = \mathcal{A}_M : \Gamma T M \to \Gamma T(L^r M)$$

from the set $\Gamma \widetilde{T}M$ of all nowhere vanishing vector fields on M (sections of the bundle $\widetilde{T}M$) into the set $\Gamma T(L^rM)$ of all vector fields on L^rM (sections

²⁰⁰⁰ Mathematics Subject Classification: Primary 58A20.

Key words and phrases: natural bundle, natural operator, jet.

of the tangent bundle $TL^r M \to L^r M$ of $L^r M$) for any *m*-manifold M. (Of course, for some *m*-manifolds M one can have $\Gamma \widetilde{T}M = \emptyset$; then $\mathcal{A}_M = \emptyset$.) The invariance means that if $X_1 \in \Gamma \widetilde{T}M$ and $X_2 \in \Gamma \widetilde{T}N$ are two related nowhere vanishing vector fields on *m*-manifolds M and N (respectively) by a $\mathcal{M}f_m$ -map $\varphi : M \to N$ then $\mathcal{A}_M(X_1)$ and $\mathcal{A}_N(X_2)$ are related by $L^r \varphi$, where $L^r \varphi : L^r M \to L^r N$ is the induced map (defined by the composition of *r*-jets, $L^r \varphi(j_0^r \psi) = j_0^r (\varphi \circ \psi), j_0^r \psi \in L^r M$). The regularity means that \mathcal{A} transforms smoothly parametrized families of nowhere vanishing vector fields into smoothly parametrized families of vector fields. Replacing $\widetilde{T} : \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ by $T : \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ we obtain the concept of $\mathcal{M}f_m$ -natural operators $\mathcal{A}: T \rightsquigarrow TL^r$.

An $\mathcal{M}f_m$ -natural operator $\mathcal{A} : T \rightsquigarrow TL^r$ is said to be *linear* if $\mathcal{A}_M : \Gamma TM \to \Gamma T(L^rM)$ is \mathbb{R} -linear for any *m*-manifold *M*.

An $\mathcal{M}f_m$ -natural operator $\mathcal{A}: \widetilde{T} \to TL^r$ is said to be of *vertical type* if $\mathcal{A}_M(X)$ is a vertical vector field on $L^r M \to M$ for any nowhere vanishing vector field X on an arbitrary m-manifold M.

Let k be a non-negative integer. An $\mathcal{M}f_m$ -natural operator $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ is said to be of order $\leq k$ if for any nowhere vanishing vector fields X_1 and X_2 on M and $x \in M$ the equality of k-jets $j_x^k(X_1) = j_x^k(X_2)$ implies $\mathcal{A}_M(X_1) = \mathcal{A}_M(X_2)$ on the fiber $(L^r M)_x$ of $L^r M$ over x.

An example of an $\mathcal{M}f_m$ -natural operator $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ of order $\leq r$ is the flow operator \mathcal{L}^r sending a (nowhere vanishing) vector field X on an *m*-manifold M into the complete lift $\mathcal{L}^r X$ of X to $L^r M$. We recall that $\mathcal{L}^r X$ is the vector field on $L^r M$ such that if $\{\varphi_t\}$ is the flow of X then $\{L^r \varphi_t\}$ is the flow of $\mathcal{L}^r X$.

Because of the $\mathcal{M}f_m$ -invariance of $\mathcal{M}f_m$ -operators with respect to (inverse) manifold charts, any $\mathcal{M}f_m$ -natural operator $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ is fully determined by its "restriction" $\mathcal{A}_{\mathbb{R}^m} : \Gamma \widetilde{T} \mathbb{R}^m \rightsquigarrow \Gamma T(L^r \mathbb{R}^m)$. Conversely, by a chart argument, any $\mathcal{M}f_m$ -invariant regular operator (function) $\mathcal{A}: \Gamma \widetilde{T} \mathbb{R}^m \to \Gamma T(L^r \mathbb{R}^m)$ can be extended uniquely to an $\mathcal{M}f_m$ -natural operator $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ with $\mathcal{A}_{\mathbb{R}^m} = \mathcal{A}$. That is why all $\mathcal{M}f_m$ -natural operators $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ form a set.

In this note we classify all $\mathcal{M}f_m$ -natural operators $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$. Next we classify all $\mathcal{M}f_m$ -natural operators $\mathcal{A}: T \rightsquigarrow TL^r$. In both cases we deduce (see Theorems 1 and 2 for detailed formulation)

THEOREM A. The set of all $\mathcal{M}f_m$ -natural operators $\mathcal{A} : \widetilde{T} \rightsquigarrow TL^r$ (resp. $\mathcal{A} : T \rightsquigarrow TL^r$) is a free $(m(C_r^{m+r} - 1) + 1)$ -dimensional module over the algebra of smooth maps $J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$ (resp. $J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$), where $C_k^n = n!/k!(n-k)!$. In particular, the vector space over \mathbb{R} of all linear $\mathcal{M}f_m$ natural operators $T \rightsquigarrow TL^r$ is $(m^2C_{r-1}^{m+r-1}(C_r^{m+r} - 1) + 1)$ -dimensional. In this paper we introduce the module structures and construct explicitly the bases of the modules.

We shall use the following notations: $G_m^r = \operatorname{inv} J_0^r(\mathbb{R}^m, \mathbb{R}^m)_0$ is the differential group of order $r, T : \mathcal{M}f_m \to \mathcal{FM}$ is the tangent bundle, $\widetilde{T} : \mathcal{M}f_m \to \mathcal{FM}$ is the natural bundle over *m*-manifolds of non-zero tangent vectors, $L^r : \mathcal{M}f_m \to \mathcal{FM}$ is the natural bundle of frames of order r, J^r is the functor of r-jet prolongation of fibered manifolds.

It is well-known (see [4]) that G_m^r is a Lie group, and the Lie algebra $\mathcal{L}ie(G_m^r)$ of G_m^r is the Lie algebra $(J_0^r T \mathbb{R}^m)_0$ of r-jets at $0 \in \mathbb{R}^m$ of vector fields on \mathbb{R}^m vanishing at $0 \in \mathbb{R}^m$.

Some natural operators transforming vector fields to natural bundles were used in many papers where the problem of prolongation of geometric structures was studied (see e.g. [6], [8]). That is why natural operators $\mathcal{A}: T \rightsquigarrow$ TF transforming vector fields to some natural bundles $F: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ where studied by many authors ([1]–[5], [7]). For example, I. Kolář [3] classified all $\mathcal{M}f_m$ -natural operators $\mathcal{A}: T \rightsquigarrow TT^A$, where T^A is the Weil functor corresponding to a Weil algebra A. In [2], J. Gancarzewicz studied natural linear operators $\mathcal{A}: T \rightsquigarrow TF$ for many natural bundles $F: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$.

In what follows, all manifolds and maps are assumed to be smooth (of class \mathcal{C}^{∞}).

1. The $\mathcal{M}f_m$ -natural operators $\mathcal{B}: \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$. If (in the definition of natural operators $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$) we replace $T: \mathcal{M}f_{\dim(L^r\mathbb{R}^m)} \to \mathcal{F}\mathcal{M}$ by the natural bundle $T^{(0,0)}: \mathcal{M}f_{\dim(L^r\mathbb{R}^m)} \to \mathcal{F}\mathcal{M}$ of tensor fields of type (0,0)we obtain the concept of $\mathcal{M}f_m$ -natural operators $B: \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ lifting nowhere vanishing vector fields on M into maps $L^rM \to \mathbb{R}$.

We have the following general example of $\mathcal{M}f_m$ -natural operators $\widetilde{T} \rightsquigarrow T^{(0,0)}L^r$. Suppose we have a map $\lambda : J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$, where $J_0^{r-1}\widetilde{T}\mathbb{R}^m$ is the manifold of all (r-1)-jets at 0 of nowhere vanishing vector fields on \mathbb{R}^m (the fiber at $0 \in \mathbb{R}^m$ of the (r-1)-jets prolongation of $\widetilde{T}\mathbb{R}^m$). Then given a nowhere vanishing vector field X on M we have $\mathcal{B}^{\langle \lambda \rangle}(X) : L^r M \to \mathbb{R}$ given by

$$\mathcal{B}^{\langle\lambda\rangle}(X)(j_0^r\varphi) = \lambda(j_0^{r-1}(\varphi_*^{-1}X))$$

for all $j_0^r \varphi \in (L^r M)_x$, $x \in M$, where $\varphi : \mathbb{R}^m \to M$ is an $\mathcal{M}f_m$ -map with $\varphi(0) = x$. The correspondence $\mathcal{B}^{\langle \lambda \rangle} : \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ is an $\mathcal{M}f_m$ -natural operator of order $\leq r-1$ transforming nowhere vanishing vector fields on M into maps $L^r M \to \mathbb{R}$.

The set of all $\mathcal{M}f_m$ -natural operators $B: \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ is (in an obvious way) an algebra. Actually, given $\mathcal{M}f_m$ -natural operators $\mathcal{B}_1, \mathcal{B}_2: \widetilde{T} \rightsquigarrow$

 $T^{(0,0)}L^r$ we have the $\mathcal{M}f_m$ -natural operator $\mathcal{B}_1\mathcal{B}_2: \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ given by $(\mathcal{B}_1\mathcal{B}_2)_M(X) = (\mathcal{B}_1)_M(X)(\mathcal{B}_2)_M(X)$

for any nowhere vanishing vector field X on an *m*-manifold M, where on the right of the above formula we have the multiplication of real-valued functions. (If $\Gamma \widetilde{T}M = \emptyset$ then of course $(\mathcal{B}_1)_M = \emptyset$, $(\mathcal{B}_2)_M = \emptyset$ and $(\mathcal{B}_1\mathcal{B}_2)_M = \emptyset$.) Similarly we define the sum $\mathcal{B}_1 + \mathcal{B}_2 : \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$.

PROPOSITION 1. The map $\lambda \mapsto \mathcal{B}^{\langle \lambda \rangle}$ is an algebra isomorphism from the algebra of smooth maps $J_0^{r-1}\widetilde{T} \to \mathbb{R}$ onto the algebra of all $\mathcal{M}f_m$ -natural operators $\widetilde{T} \rightsquigarrow T^{(0,0)}L^r$.

Proof. Clearly, the map $\lambda \mapsto \mathcal{B}^{\langle \lambda \rangle}$ is an algebra monomorphism. Any $\mathcal{B}: \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ of order $\leq r-1$ defines $\lambda: J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$ by

$$\lambda(j_0^{r-1}X) = \mathcal{B}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}.$$

By an order argument λ is well-defined. It is smooth because of the regularity of \mathcal{B} (a standard argument using the Boman theorem, [4]).

Then by the invariance with respect to (inverse) manifold charts one can easily see that $\mathcal{B} = \mathcal{B}^{\langle \lambda \rangle}$.

By the same method as in [4] one can show that any \mathcal{B} in question is of order $\leq r-1$.

Thus the map $\lambda \mapsto \mathcal{B}^{\langle \lambda \rangle}$ is epimorphic.

2. The $\mathcal{M}f_m$ -natural operators $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ of vertical type. Let us denote by

$$E^i_{\alpha} = j^r_0 \left(x^{\alpha} \, \frac{\partial}{\partial x^i} \right),$$

where i = 1, ..., m and $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $1 \le |\alpha| \le r$, the usual basis in $(J_0^r T \mathbb{R}^m)_0 = \mathcal{L}ie(G_m^r).$

We denote by E^* the fundamental vector field corresponding to $E \in \mathcal{L}ie(G_m^r)$ on any principal G_m^r -bundle $L^r M$. Then all $(E_{\alpha}^i)^*$ for i and α as above form a basis over $\mathcal{C}^{\infty}(L^r M)$ of the vertical vector fields on $L^r M$ for any M. Thus we have the corresponding (constant) $\mathcal{M}f_m$ -natural operators $(E_{\alpha}^i)^* : \widetilde{T} \to TL^r$ defined by $(E_{\alpha}^i)^*_M(X) = (E_{\alpha}^i)^*$ for any nowhere vanishing vector field X on an m-manifold M. Clearly, all $\mathcal{M}f_m$ -natural operators E_{α}^i are of vertical type.

The space of all $\mathcal{M}f_m$ -natural operators $\widetilde{T} \rightsquigarrow TL^r$ transforming nowhere vanishing vector fields on *m*-manifolds M into vector fields on L^rM is (in an obvious way) a module over the algebra of $\mathcal{M}f_m$ -natural operators $\widetilde{T} \rightsquigarrow T^{(0,0)}L^r$. (Actually, given $\mathcal{M}f_m$ -natural operators $\mathcal{A} : \widetilde{T} \rightsquigarrow TL^r$ and $\mathcal{B} : \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ we have the $\mathcal{M}f_m$ -natural operator $\mathcal{B}\mathcal{A} : \widetilde{T} \rightsquigarrow TL^r$ given by

$$(\mathcal{B}\mathcal{A})_M(X) = \mathcal{B}_M(X)\mathcal{A}_M(X)$$

for any nowhere vanishing vector field X on an *m*-manifold M, where on the right of the above formula we have the multiplication of vector fields by real-valued functions.) Then by Proposition 1 it is a module over the algebra of all maps $J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$.

PROPOSITION 2. The (sub)module of all vertical type $\mathcal{M}f_m$ -natural operators $\mathcal{A} : \widetilde{T} \rightsquigarrow TL^r$ is free. The corresponding $\mathcal{M}f_m$ -natural operators $(E^i_{\alpha})^*$ form a basis over $\mathcal{C}^{\infty}(J_0^{r-1}\widetilde{T}\mathbb{R}^m)$ of this module.

Proof. Since the fundamental vector fields $(E^i_{\alpha})^*$ on $L^r M$ form a basis of the module of vertical vector fields on $L^r M$, we see that any $\mathcal{M}f_m$ -natural operator \mathcal{A} (of vertical type) in question is of the form

$$\mathcal{A}(X) = \sum \lambda_i^{\alpha}(X) (E_{\alpha}^i)^*$$

for some uniquely determined maps $\lambda_i^{\alpha}(X) : L^r M \to \mathbb{R}$, where X is a nowhere vanishing vector field on an *m*-manifold M. Because of the invariance of \mathcal{A} with respect to $\mathcal{M}f_m$ -maps, $\lambda_i^{\alpha} : \widetilde{T} \rightsquigarrow T^{(0,0)}L^r$ are $\mathcal{M}f_m$ -natural operators. \blacksquare

3. The decomposition

PROPOSITION 3. Let $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ be an $\mathcal{M}f_m$ -natural operator of order $\leq r$. There is a unique smooth map $\lambda: J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$ such that $\mathcal{A} - \mathcal{B}^{\langle \lambda \rangle}\mathcal{L}^r$ is of vertical type, where $\mathcal{L}^r: \widetilde{T} \rightsquigarrow TL^r$ is the flow operator.

Proof. Suppose that $\mathcal{A}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} = \mathcal{L}^r \widetilde{X}_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}$ and $X(0) \neq \mu \widetilde{X}(0)$ for all $\mu \in \mathbb{R}$. Then there is an $\mathcal{M}f_m$ -map $\varphi : \mathbb{R}^m \to \mathbb{R}^m$ preserving $j_0^r(\mathrm{id}_{\mathbb{R}^m})$ such that $J^r T \varphi(j_0^r X) = j_0^r X$ and $J^r T \varphi(j_0^r \widetilde{X}) \neq j_0^r \widetilde{X}$. Then

$$\mathcal{A}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} = \mathcal{L}^r(\varphi_* \tilde{X})_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} \neq \mathcal{L}^r(\tilde{X})_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} = \mathcal{A}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}.$$

This is a contradiction.

Then

$$T\pi^r \circ \mathcal{A}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} = \lambda(j_0^{r-1}X)X_0$$

for some uniquely determined smooth map $\lambda : J_0^{r-1} \widetilde{T} \mathbb{R}^m \to \mathbb{R}$ and all nowhere vanishing vector fields on \mathbb{R}^m with coefficients being polynomials of degree $\leq r-1$, where $\pi^r : L^r \mathbb{R}^m \to \mathbb{R}^m$ is the usual projection.

Then $(\mathcal{A}(X) - \mathcal{B}^{\langle \lambda \rangle}(X)\mathcal{L}^r X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}$ is vertical for all nowhere vanishing vector fields on \mathbb{R}^m with coefficients being polynomials of degree $\leq r-1$. Since the orbit with respect to the $\mathcal{M}f_m$ -maps preserving $j_0^r(\mathrm{id}_{\mathbb{R}^m})$ of the space of all $j_0^r X$ for nowhere vanishing X with coefficients being polynomials of degree $\leq r-1$ is dense in $J_0^r \widetilde{T}\mathbb{R}^m$ (see [4, Lemma 42.4]), $(\mathcal{A}(X) - \mathcal{B}^{\langle \lambda \rangle}(X)\mathcal{L}^r X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}$ is vertical for all nowhere vanishing vector fields X on \mathbb{R}^m with coefficients being polynomials of degree $\leq r$. Then $(\mathcal{A}(X) - \mathcal{B}^{\langle \lambda \rangle}(X)\mathcal{L}^r(X))_{j_0^r(\mathrm{id}_{\mathbb{R}^m})}$ is vertical for all nowhere vanishing vector fields on \mathbb{R}^m by an order argument. So $\mathcal{A} - \mathcal{B}^{\langle \lambda \rangle} \mathcal{L}^r$ is of vertical type because of the $\mathcal{M}f_m$ -invariance and the fact that L^r is a transitive natural bundle (i.e. $L^r M$ is the $\mathcal{M}f_m$ -orbit of $j_0^r(\mathrm{id}_{\mathbb{R}^m})$).

4. The classification theorem. From [4] it follows that any $\mathcal{M}f_m$ natural operator $\mathcal{A}: \widetilde{T} \rightsquigarrow TL^r$ is of order $\leq r$. Then summing up Propositions 2 and 3 we get

THEOREM 1. The space of all $\mathcal{M}f_m$ -natural operators $\widetilde{T} \rightsquigarrow TL^r$ is a free $(m(C_r^{m+r}-1)+1)$ -dimensional module over the algebra $\mathcal{C}^{\infty}(J_0^{r-1}\widetilde{T}\mathbb{R}^m)$ of maps $J_0^{r-1}\widetilde{T}\mathbb{R}^m \to \mathbb{R}$. The operators \mathcal{L}^r and $(E_{\alpha}^i)^*$ for $i = 1, \ldots, m$ and all $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $1 \leq |\alpha| \leq r$ form a basis of this module, where given $E \in \mathcal{L}ie(G_m^r) = (J_0^r T\mathbb{R}^m)_0$ we denote by E^* the fundamental vector field corresponding to E on any principal G_m^r -bundle $L^r M$.

We have the following corollary of Theorem 1.

COROLLARY 1. The fundamental vector fields E^* for $E \in \mathcal{L}ie(G_m^r)$ are the only $\mathcal{M}f_m$ -canonical vector fields on $L^r M$.

5. The complete description of all $\mathcal{M}f_m$ -natural operators $T \rightsquigarrow TL^r$. If we replace \widetilde{T} by T in Section 1 we obtain

PROPOSITION 4. There exists an algebra isomorphism between the algebra $\mathcal{C}^{\infty}(J_0^{r-1}T\mathbb{R}^m)$ of all maps $J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$ and the algebra of all $\mathcal{M}f_m$ natural operators $T \rightsquigarrow T^{(0,0)}L^r$. This isomorphism $\lambda \mapsto \mathcal{B}^{\langle \lambda \rangle}$ is defined as in Section 1 with T playing the role of \widetilde{T} .

The space of all $\mathcal{M}f_m$ -natural operators $T \rightsquigarrow TL^r$ is (in an obvious way) a module over the algebra of all $\mathcal{M}f_m$ -natural operators $T \rightsquigarrow T^{(0,0)}L^r$. Then by Proposition 4 it is a $\mathcal{C}^{\infty}(J_0^{r-1}T\mathbb{R}^m)$ -module.

Similarly to Section 2 we get

PROPOSITION 5. The (sub)module of all vertical type $\mathcal{M}f_m$ -natural operators $\mathcal{A}: T \rightsquigarrow TL^r$ is free. The corresponding operators $(E^i_{\alpha})^*$ form a basis of this module.

The next question is whether Proposition 3 with T instead of \widetilde{T} is true. The problem consists in proving that $\lambda: J_0^{r-1}T\mathbb{R}^m \to T_0\mathbb{R}^m$ given by

(*)
$$T\pi^r \circ \mathcal{A}(X)_{j_0^r(\mathrm{id}_{\mathbb{R}^m})} = \lambda(j_0^{r-1}X)X_0$$

for all vector fields X on \mathbb{R}^m with coefficients being polynomials of degree $\leq r-1$ can be chosen smoothly near points $j_0^{r-1}X$ with $X_0 = 0$.

Of course (since the left side of (*) depends smoothly on $j_0^r X$), the map $\Phi: J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$ given by

$$\Phi(j_0^{r-1}X) = \lambda(j_0^{r-1}X)X^1(0)$$

is smooth and $\Phi(j_0^{r-1}X) = 0$ if $X^1(0) = 0$, where

$$X_0 = \sum_{i=1}^m X^i(0) \frac{\partial}{\partial x^i}_0.$$

Then (this is a well-known fact from mathematical analysis) there is a smooth map $\Psi: J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$ such that $\Phi(j_0^{r-1}X) = \Psi(j_0^{r-1}X)X^1(0)$. Then we can put $\lambda = \Psi$. Thus we have

PROPOSITION 6. Let $\mathcal{A}: T \rightsquigarrow TL^r$ be an $\mathcal{M}f_m$ -natural operator. There is a uniquely determined smooth map $\lambda: J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$ such that $\mathcal{A}-\mathcal{B}^{\langle \lambda \rangle}\mathcal{L}^r$ is of vertical type, where \mathcal{L}^r is the flow operator.

Then similarly to Theorem 1 we have

THEOREM 2. The space of all $\mathcal{M}f_m$ -natural operators $T \rightsquigarrow TL^r$ is a free $(m(C_r^{m+r}-1)+1))$ -dimensional module over the algebra $\mathcal{C}^{\infty}(J_0^{r-1}T\mathbb{R}^m)$ of smooth maps $J_0^{r-1}T\mathbb{R}^m \to \mathbb{R}$. The operators \mathcal{L}^r and $(E_{\alpha}^i)^*$ for $i = 1, \ldots, m$ and $\alpha \in (\mathbb{N} \cup \{0\})^m$ with $1 \leq |\alpha| \leq r$ form a basis in this module, where given $E \in \mathcal{L}ie(G_m^r) = (J_0^r T\mathbb{R}^m)_0$ we denote by E^* the fundamental vector field corresponding to E on any principal G_m^r -bundle $L^r M$.

By the homogeneous function theorem we have the following corollary of Theorem 2:

COROLLARY 2. The vector space over \mathbb{R} of all linear $\mathcal{M}f_m$ -natural operators $T \rightsquigarrow TL^r$ is $(m^2 C_{r-1}^{m+r-1}(C_r^{m+r}-1)+1)$ -dimensional. The operators \mathcal{L}^r and $\mathcal{B}^{\langle F_j^\beta \rangle}(E_{\alpha}^i)^*$ for $i, j = 1, \ldots, m$ and $\alpha, \beta \in (\mathbb{N} \cup \{0\})^m$ with $1 \leq |\alpha| \leq r$ and $0 \leq |\beta| \leq r-1$ form a basis over \mathbb{R} in this vector space, where (F_j^β) is the usual basis in the dual space $(J_0^{r-1}T\mathbb{R}^m)^*$.

Acknowledgements. We would like to thank the referee for valuable remarks and corrections.

REFERENCES

- J. Dębecki, Linear liftings of skew-symmetric tensor fields to Weil bundles, Czechoslovak Math. J. 55 (130) (2005), 809–816.
- [2] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
- [3] I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), 109–117.
- [4] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [5] W. M. Mikulski, Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107–119.
- [6] A. Morimoto, Prolongation of connections to bundles of infinitely near points, J. Differential Geom. 11 (1976), 479-498.

- [7] J. Tomáš, Natural operators on vector fields on the cotangent bundles of the bundles of (k, r)-velocities, Rend. Math. Circ. Palermo (2) Suppl. 54 (1998), 113–124.
- [8] K. Yano and S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Dekker, New York, 1973.

Institute of Mathematics Maria Curie-Skłodowska University Pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland E-mail: kurek@golem.umcs.lublin.pl Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Received 20 October 2006; revised 10 December 2006 (48

(4813)