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Abstract. We describe all natural operators A lifting nowhere vanishing vector fields
X on m-dimensional manifolds M to vector fields A(X) on the rth order frame bundle
LM = inv J5(R™, M) over M. Next, we describe all natural operators A lifting vec-
tor fields X on m-manifolds M to vector fields on L"M. In both cases we deduce that
the spaces of all operators A in question form free (m(C;**" — 1) 4 1)-dimensional mod-
ules over algebras of all smooth maps Jg_lme — R and Jg_lT]Rm — R respectively,
where C}} = n!/(n — k)!k!l. We explicitly construct bases of these modules. In particular,
we find that the vector space over R of all natural linear operators lifting vector fields
X on m-manifolds M to vector fields on L™M is (m?>C™H"~1(C™*" — 1) + 1)-dimen-
sional.

0. Introduction. Let M f,, denote the category of m-dimensional man-
ifolds and their embeddings (i.e. diffeomorphisms onto open subsets), and
F M denote the category of fibered manifolds and their fibered map.

In this note we describe how a nowhere vanishing vector field X on an
m-dimensional manifold M can induce a vector field A(X) on the rth order
frame bundle L"M = inv J§(R™, M) = {jj¢ | ¥ : R™ — M is an M fp,-map}
over M. This problem is reflected in the concept of M f,,,-natural operators
A:T ~ TL" in the sense of [4], where T" : M fgim(zrm) — F .M is the natural
bundle of tangent vectors (the tangent functor) and T : M f,,, — FM is the
natural bundle of non-zero tangent vectors. B

We recall that an M f,-natural operator A : T ~» TL" is a family of
M fm-invariant regular operators (functions)

A=Ay : I'TM — I'T(L" M)
from the set I"'TM of all nowhere vanishing vector fields on M (sections of

the bundle T'M) into the set I'T(L"M) of all vector fields on L™ M (sections
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of the tangent bundle TL"M — L"M of L"M) for any m-manifold M. (Of
course, for some m-manifolds M one can have I' T™ = (; then Ay = 0.)
The invariance means that if X7 € I TM and Xo eI’ TN are two related
nowhere vanishing vector fields on m-manifolds M and N (respectively) by
a Mfp-map ¢ : M — N then Ay (X;) and An(X2) are related by L,
where L"¢ : L"M — L"N is the induced map (defined by the composition
of r-jets, L"¢(j4v) = jo(@ o), jow € L"M). The regularity means that A
transforms smoothly parametrized families of nowhere vanishing vector fields
into smoothly parametrized families of vector fields. Replacing T' : M f,, —
FMbyT: Mf,, — FM we obtain the concept of M f,,-natural operators
A:T ~TL".

An M f,,-natural operator A : T ~» TL" is said to be linear if Ay :
I'TM — I'T(L"M) is R-linear for any m-manifold M.

An M f,,-natural operator A : T ~ TL" is said to be of vertical type if
Ap(X) is a vertical vector field on L"M — M for any nowhere vanishing
vector field X on an arbitrary m-manifold M.

Let k be a non-negative integer. An M f,,-natural operator A : T ~TL"
is said to be of order < k if for any nowhere vanishing vector fields X;
and Xo on M and x € M the equality of k-jets j%(X;) = j¥(X5) implies
An(X1) = Ap(X2) on the fiber (L"M), of L"M over z.

An example of an M f,,-natural operator A : T ~ TL" of order < r
is the flow operator £" sending a (nowhere vanishing) vector field X on an
m~manifold M into the complete lift £ X of X to L" M. We recall that £" X
is the vector field on L"M such that if {¢;} is the flow of X then {L"p;} is
the flow of L7 X.

Because of the M f,,-invariance of M f,,-operators with respect to (in-
verse) manifold charts, any M f,,-natural operator A : T ~ TL" is fully
determined by its “restriction” Agm : I'TR™ I'T(L"R™). Conversely,
by a chart argument, any M f,,-invariant regular operator (function) A :
I'TR™ — T T(L"R™) can be extended uniquely to an M f,,,-natural opera-
tor A : T ~ TL" with Agm = A. That is why all M f,,,-natural operators
A:T ~ TL" form a set.

In this note we classify all M f,,-natural operators A : T ~» TL". Next we
classify all M f,,,-natural operators A : T' ~» TL". In both cases we deduce
(see Theorems 1 and 2 for detailed formulation)

THEOREM A. The set of all M [y, -natural operators A : T ~ TL"
(resp. A: T ~ TL") is a free (m(CM™*T" — 1) + 1)-dimensional module over
the algebra of smooth maps ngme — R (resp. JgflTRm — R), where
Cp =nl/k!(n — k)!. In particular, the vector space over R of all linear M fp,-

natural operators T ~ TL" is (m>C™ "~ 1(CF" — 1) + 1)-dimensional.
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In this paper we introduce the module structures and construct explicitly
the bases of the modules.

We shall use the following notations: G, = inv Jj(R™,R™)q is the
differential group of order r, T' : Mf,, — FM is the tangent bundle,
T : Mf, — FM is the natural bundle over m-manifolds of non-zero tan-
gent vectors, L" : M f,, — FM is the natural bundle of frames of order r,
J" is the functor of r-jet prolongation of fibered manifolds.

It is well-known (see [4]) that G}, is a Lie group, and the Lie algebra
Lie(GY,) of Gy, is the Lie algebra (JJTR™)q of r-jets at 0 € R™ of vector
fields on R™ vanishing at 0 € R™.

Some natural operators transforming vector fields to natural bundles were
used in many papers where the problem of prolongation of geometric struc-
tures was studied (see e.g. [6], [8]). That is why natural operators A : T ~~
TF transforming vector fields to some natural bundles F' : Mf,, — FM
where studied by many authors ([1]-[5], [7]). For example, I. Kolar [3] classi-
fied all M f,,-natural operators A : T ~» TT#, where T4 is the Weil functor
corresponding to a Weil algebra A. In [2|, J. Gancarzewicz studied natural
linear operators A : T~ TF for many natural bundles F' : M f,, — FM.

In what follows, all manifolds and maps are assumed to be smooth (of
class C*).

1. The M f,,-natural operators B : T ~ T(®0) ", If (in the definition
of natural operators A : T ~ TL") we replace T : M fgim(rrrm) — FM by
the natural bundle 79 M faim(rrrm) — F M of tensor fields of type (0,0)
we obtain the concept of M f,-natural operators B : T ~ TOO 7 lifting
nowhere vanishing vector fields on M into maps L"M — R.

We have the following general example of M f,,-natural operators T ~
TOO L Suppose we have a map \ : Jg_lTRm — R, where Jg_lT]Rm is
the manifold of all (r —1)-jets at 0 of nowhere vanishing vector fields on R™
(the fiber at 0 € R™ of the (r — 1)-jets prolongation of TR™). Then given a
nowhere vanishing vector field X on M we have BN (X) : L' M — R given
by

BN (X)(jge) = Mg (a1 X))
for all jop € (L"M)y, x € M, where ¢ : R™ — M is an M fp,-map with
©(0) = x. The correspondence BN : T ~» TOOL" is an M f,,-natural
operator of order < r —1 transforming nowhere vanishing vector fields on M
into maps L"M — R.

The set of all M f,-natural operators B : T ~» T(®OL" is (in an obvi-
ous way) an algebra. Actually, given M f,,-natural operators By, Ba : T ~



54 J. KUREK AND W. M. MIKULSKI

TOOL" we have the M f,,-natural operator BiBs : T ~ T 7 given by
(B1B2)m(X) = (Br)m (X)(B2)m(X)

for any nowhere vanishing vector field X on an m-manifold M, where on the
right of the above formula we have the multiplication of real-valued functions.
(If I'TM = ( then of course (BI)M = @, (BQ)M = () and (3132)]\/[ = @)
Similarly we define the sum By + By : T ~ TOO .

PROPOSITION 1. The map A — B is an algebra isomorphism from the
algebra of smooth maps JgilT — R onto the algebra of all M fp,-natural

operators T ~ TOO .

Proof. Clearly, the map A — B is an algebra monomorphism.
Any B: T ~ TOOL" of order < r — 1 defines A : Jj 'TR™ — R by
Ao~ X) = B(X) g idgm)-

By an order argument A is well-defined. It is smooth because of the regularity
of B (a standard argument using the Boman theorem, [4]).

Then by the invariance with respect to (inverse) manifold charts one can
easily see that B = BM.

By the same method as in [4] one can show that any B in question is of
order <r — 1.

Thus the map A — B™ is epimorphic. m

2. The M f,,-natural operators A : T ~» TL" of vertical type. Let

us denote by
EZ)( ]6 (xa _a Z) ’

where i = 1,...,m and a € (NU{0})™ with 1 < |a| < r, the usual basis in
(JoTR™)g = Lie(Gy,).

We denote by E* the fundamental vector field corresponding to E €
Lie(GT,) on any principal G7,-bundle L"M. Then all (E:)* for i and « as
above form a basis over C*°(L" M) of the vertical vector fields on L"M for
any M. Thus we have the corresponding (constant) M f,,-natural operators
(EL)* : T ~» TL" defined by (EL)3(X) = (EY)* for any nowhere vanishing
vector field X on an m-manifold M. Clearly, all M f,,,-natural operators E,
are of vertical type. B

The space of all M f,;,-natural operators T' ~» T'L" transforming nowhere
vanishing vector fields on m-manifolds M into vector fields on L"M is
(in an obvious way) a module over the algebra of M f,,-natural operators
T ~ TOO . (Actually, given M f,,-natural operators A : T ~~ TL" and
B:T~TOOL" we have the M f-natural operator BA : T~TL" given by

(BA)wm(X) = Bar(X) Apr(X)
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for any nowhere vanishing vector field X on an m-manifold M, where on
the right of the above formula we have the multiplication of vector fields by
real-valued functions.) Then by Proposition 1 it is a module over the algebra
of all maps Jg_lme — R.

PROPOSITION 2. The (sub)module of all vertical type M fy,-natural op-
erators A : T ~» TL" is free. The corresponding M fp,-natural operators
(EL)* form a basis over COO(Jg_lf]Rm) of this module.

Proof. Since the fundamental vector fields (E?)* on L™ M form a basis of
the module of vertical vector fields on L™ M, we see that any M f,,-natural
operator A (of vertical type) in question is of the form

AX) =Y A (X)(EL)*
for some uniquely determined maps A\¥(X) : L'M — R, where X is a
nowhere vanishing vector field on an m-manifold M. Because of the invari-
ance of A with respect to M f,,,-maps, A : T' ~~ TOOL" are M f,,-natural
operators. m

3. The decomposition

PROPOSITION 3. Let A: T ~» TL" be an M fm-natural operator of order
< r. There is a unique smooth map \ : Jg_lT]Rm — R such that A— BN LT
18 of vertical type, where L7 : T ~~ TL" is the flow operator.

Proof. Suppose that -A(X)jg(idRm) = ﬁ’")?jg( y and X (0) # ,u)Z'(O) for
all 1 € R. Then there is an M fp,-map ¢ : R — R™ preserving jj(idgm )
such that J"Tp(j5X) = j5X and J"Tp(j5X) # j5X. Then

A(X) jr dgm) = L7 (02 X) jp gm) # L7(X) 7 dgm) = AX) 5 g
This is a contradiction.
Then

idRm

Tr" o A(X)jr (iagm) = A5~ X) Xo

for some uniquely determined smooth map A : Jg_lme — R and all
nowhere vanishing vector fields on R™ with coefficients being polynomials of
degree < r — 1, where " : L"R"™ — R™ is the usual projection.

Then (A(X) — BN (X)L X) jr(idgm) 18 vertical for all nowhere vanish-
ing vector fields on R™ with coefficients being polynomials of degree <
r — 1. Since the orbit with respect to the M fy,-maps preserving jj(idgm )

of the space of all jjX for nowhere vanishing X with coefficients being

polynomials of degree < r — 1 is dense in JSTVR’” (see |4, Lemma 42.4]),
(A(X) — B<>‘>(X)E7"X)j (idgm) 18 vertical for all nowhere vanishing vector

fields X on R™ with cgefﬁcients being polynomials of degree < r. Then
(A(X) = BN (X)L (X)) jr(idgm) 1s vertical for all nowhere vanishing vector



56 J. KUREK AND W. M. MIKULSKI

fields on R™ by an order argument. So A — B L7 is of vertical type because
of the M f,,-invariance and the fact that L" is a transitive natural bundle

(i.e. L"M is the M fy,-orbit of jj(idgm)). =

4. The classification theorem. From [4] it follows that any M f,-

natural operator A : T ~ TL" is of order < 7. Then summing up Proposi-
tions 2 and 3 we get

THEOREM 1. The space of all M f,,-natural operators T ~ TL" is a free
(m(CTFT — 1) + 1)-dimensional module over the algebra C=(J; 'TR™) of
maps Jg_lf]Rm — R. The operators L and (E.)* fori=1,...,m and all
a € (NU{0}H)™ with 1 < |a] < r form a basis of this module, where given
E € Lie(G},) = (JJTR™)y we denote by E* the fundamental vector field
corresponding to E on any principal G7, -bundle L™ M.

We have the following corollary of Theorem 1.

COROLLARY 1. The fundamental vector fields E* for E € Lie(G},) are
the only M fp,-canonical vector fields on L™ M.

5. The complete description of all M f,,-natural operators T" ~
TL". If we replace T by T in Section 1 we obtain

PROPOSITION 4. There exists an algebra isomorphism between the al-
gebra C“(Jg_lTRm) of all maps Jg_lTRm — R and the algebra of all M f,, -
natural operators T ~» TOO LT This isomorphism X — BN is defined as in
Section 1 with T playing the role of T'.

The space of all M f,,-natural operators T ~» T'L" is (in an obvious way)
a module over the algebra of all M f,,-natural operators T ~» T(®9 L" Then
by Proposition 4 it is a C>°(J5 ' TR™)-module.

Similarly to Section 2 we get

PROPOSITION 5. The (sub)module of all vertical type M fy,-natural op-
erators A : T ~» TL" is free. The corresponding operators (E.)* form a basis
of this module.

The next question is whether Proposition 3 with 7T instead of T is true.
The problem consists in proving that A : J| “ITR™ — TyR™ given by
(*) Tr" o A(X)jr (idgm) = A5~ X) Xo
for all vector fields X on R™ with coefficients being polynomials of degree
< r — 1 can be chosen smoothly near points jg_lX with Xg = 0.

Of course (since the left side of (x) depends smoothly on j;X), the map
@ JT'TR™ — R given by

D5 X) = Ay X)X (0)
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is smooth and @(j5 1 X) = 0 if X'(0) = 0, where

Xo=>_ X'(0) o
=1

Then (this is a well-known fact from mathematical analysis) there is a smooth
map ¥ : Jj 'TR™ — R such that &(j5 ' X) = @(j5~ ' X)X (0). Then we
can put A = ¥. Thus we have

PROPOSITION 6. Let A:T ~ TL" be an M f,-natural operator. There
1s a uniquely determined smooth map X : Jg_lTRm — R such that A—BX "
18 of vertical type, where L is the flow operator.

Then similarly to Theorem 1 we have

THEOREM 2. The space of all M f,-natural operators T ~~ TL" is a free
(m(CTFT — 1) + 1))-dimensional module over the algebra C*®°(Jy 'TR™) of
smooth maps Jg_lTRm — R. The operators L™ and (E.)* fori=1,...,m
and o € (NU{0})™ with 1 < |a| < r form a basis in this module, where
given E € Lie(G},) = (JJTR™)y we denote by E* the fundamental vector
field corresponding to E on any principal G}, -bundle L™ M .

By the homogeneous function theorem we have the following corollary of
Theorem 2:

COROLLARY 2. The vector space over R of all linear M f,,-natural oper-
ators T ~ TL" is (m?>C™ "~ H(Cm+" —1)+1)-dimensional. The operators L"

By,
and B (BL)* fori,j=1,...,m and o, € (NU{0})™ with 1 < |a| < r
and 0 < |G| <r —1 form a basis over R in this vector space, where (Ff) is
the usual basis in the dual space (Jj 'TR™)*,
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