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ON STRONGLY lp-SUMMING m-LINEAR OPERATORS

BY

LAHCÈNE MEZRAG (M’sila)

Abstract. We introduce and study a new concept of strongly lp-summing m-linear
operators in the category of operator spaces. We give some characterizations of this notion
such as the Pietsch domination theorem and we show that an m-linear operator is strongly
lp-summing if and only if its adjoint is lp-summing.

1. Introduction. The development of the theory of polynomials and
multilinear operators can be divided into two periods. The first starts in
the thirties of the last century, essentially motivated externally through
holomorphic and differential functions on infinite-dimensional spaces. The
second begins in the eighties, mainly due to Pietsch [Pie83] where the idea
to generalize the theory of ideals to the multilinear setting appears. Motived
by the importance of this theory, several authors have developed and studied
many concepts relating to summability; see [Ale85, AM89, Dia03, Mat96,
Mat03, MT99, Sch91] among so many others. In this note we introduce a
new concept concerning summability of multilinear operators.

The concept of strongly p-summing linear operators (1 ≤ p < ∞) was
introduced by J. S. Cohen [Coh73] in order to obtain a characterization of
the conjugates of absolutely p∗-summing linear operators. In [AM07], we
have generalized this concept to the multilinear case. It is natural to try to
develop the same concept in the non-commutative case.

In the present work, we introduce a new notion of summability for
multilinear operators, which we call strongly lp-summing m-linear oper-
ators. Using this notion we prove some properties of multilinear opera-
tors in the non-commutative case. Our motivation is that the adjoint of a
strongly lp-summing m-linear operator is an lp-summing operator as studied
in [Mez02].

This paper is organized as follows.

In Section 1, we recall some basic definitions and properties concerning
the theory of operator spaces.
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In Section 2, we adapt the concept of Cohen strongly p-summing oper-
ators introduced in [AM07] to the non-commutative case. We characterize
this type of operators by giving the Pietsch domination theorem. The proof
is different from that used in [AM07] where we have used Ky Fan’s lemma.
We introduce the adjoint of a multilinear operator as in [PS05] and we
show that a multilinear operator T is strongly lp-summing if and only if
T ∗ is lp-summing. The notion of lp-summing operators has been introduced
in [Mez02].

2. Basic definitions and properties. We assume that the reader is
familiar with the class of operator spaces. If H is a Hilbert space, we let
B(H) denote the space of all bounded operators on H and for every n in N

we let Mn denote the space of all n × n matrices of complex numbers, i.e.,
Mn = B(ln2 ). If X is a subspace of some B(H) and n ∈ N, then Mn(X)
denotes the space of all n × n matrices with X-valued entries which we
consider in the natural manner as a subspace of Mn(B(H)) = B(ln2 (H)) =
B(ln2 ⊗2 H) (⊗2 is the Hilbert space tensor product).

Definition 1.1. An operator space X is a norm closed subspace of
some B(H) equipped with a matrix norm inherited by the spaces Mn(X),
n ∈ N.

Let H be a Hilbert space. We denote by Sp(H) (1 ≤ p < ∞) the Banach
space of all compact operators u : H → H such that Tr(|u|p) < ∞, equipped
with the norm

‖u‖Sp(H) = (Tr(|u|p))1/p.

If H = l2 (resp. ln2 ), we denote Sp(l2) simply by Sp (resp. Sp(l
n
2 ) by Sn

p ).
We also denote by S∞(H) (resp. S∞) the Banach space of all compact oper-
ators equipped with the norm induced by B(H) (resp. B(l2)) (Sn

∞ = B(ln2 )).
Recall that if 1/p = 1/q + 1/r (1 ≤ p, q, r < ∞), then u ∈ BSp(H) if
and only if there are u1 ∈ BSq(H) and u2 ∈ BSr(H) such that u = u1u2,
where BSp(H) is the closed unit ball of Sp(H). We also write S+

p (H) =
{a ∈ Sp(H) : a ≥ 0}.

Definition 1.2. Let H,K be Hilbert spaces. Let X ⊂ B(H) and Y ⊂
B(K) be two operator spaces. A linear map u : X → Y is completely bounded

(c.b. for short) if the maps

un : Mn(X) → Mn(Y ), (xij)1≤i,j≤n 7→ (u(xij))1≤i,j≤n,

are uniformly bounded as n → ∞, i.e., sup{‖un‖ : n ≥ 1} < ∞.

In this case we put ‖u‖cb = sup{‖un‖ : n ≥ 1} and we denote by
cb(X, Y ) the Banach space of all c.b. maps from X into Y which is also an
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operator space (Mn(cb(X, Y )) = cb(X, Mn(Y ))) (see [BP91] and [ER91]).
We denote by X ⊗min Y the corresponding subspace of B(H ⊗2 K) with the
induced norm.

Before continuing we briefly mention some properties of completely
bounded operators. Let OH be the operator Hilbert space introduced by
Pisier in [Pis96]). We recall that OH is homogeneous, in other words, every
bounded linear operator u : OH → OH is c.b. and

(1.1) ‖u‖ = ‖u‖cb.

Note also that S2 is completely isometric to OH×OH. We denote by OHn

the n-dimensional version of the Hilbert operator space OH. If now SN
2

(N ∈ N) is equipped with the operator space structure OHN2 , then for any

linear map u : SN
2 → OHn, by homogeneity of OH we have

(1.2) ‖u‖ = ‖u‖cb.

Finally, let us recall one more property. Let Y be an operator space such
that Y ⊂ A (a commutative C∗-algebra) ⊂ B(H). Let X be an arbitrary
operator space. Then, for any bounded linear operator u : X → Y , we have

(1.3) ‖u‖ = ‖u‖cb.

Let X be an operator space. As usual we denote by lp(X) (resp. lnp (X))
for 1 ≤ p < ∞ the space of all sequences (xi) (resp. finite sequences
(x1, . . . , xn)) in X equipped with the norm

‖(xi)‖lp(X) =
( ∞∑

n=1

‖xn‖
p
)1/p

< ∞

(resp. ‖(xi)1≤i≤n‖lnp (X) =
( n∑

i=1

‖xi‖
p
)1/p

),

which becomes an operator space.

Let now X ⊂ B(H). By Pisier [Pis98, p. 32] we have

l∞(X) = l∞ ⊗min X = B(l1, X).

We can show that for all n in N and 1 ≤ p ≤ ∞,

‖v‖cb = sup
a,b∈B+

S2p(H)

( n∑

j=1

‖axjb‖
p
Sp(H)

)1/p
(1.4)

=
∥∥∥

n∑

j=1

ej ⊗ xj

∥∥∥
lnp⊗minX
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if p is finite, and

(1.5) ‖v‖cb =
∥∥∥

n∑

j=1

ej ⊗ xj

∥∥∥
ln∞⊗minX

=
∥∥∥

n∑

j=1

ej ⊗ xj

∥∥∥
ln∞⊗εX

= ‖v‖

if p = ∞. Here v : lnp∗ → X is such that v(ei) = xi.

3. Non-commutative strongly p-summing multilinear operators.

We extend to multilinear operators the class of strongly p-summing oper-
ators defined in 1973 by Cohen [Coh73]. In the non-commutative case, we
prove directly the principal result of this section, which is the Pietsch dom-
ination theorem. For the linear case, Cohen deduces it by duality because
the adjoint of a strongly p-summing operator is absolutely p∗-summing. In
the commutative case, in the category of multilinear operators, to show the
Pietsch domination theorem we have used Ky Fan’s lemma (see [AM07]).
We also give the relationship between the spaces Dm

lp
(X1, . . . , Xm; Y ) and

πlp(Y
∗,L(X1, . . . , Xm; R)). We recall that πlp(X, Y ) (see [Mez02] for more

details) is the space of all lp-summing operators from X into Y , where X is
an operator space.

In what follows, for m ∈ N we consider X1 ⊂ B(H1), . . . , Xm ⊂ B(Hm),
Y ⊂ B(K) ((Hj)1≤j≤m and K are arbitrary Hilbert spaces) as operator
spaces.

Let m ∈ N. If X1, . . . , Xm, Y are simply Banach spaces over the real
numbers, we denote by L(X1, . . . , Xm; Y ) the space of all continuous m-
linear operators from X1 × · · · × Xm into Y . If X1 = · · · = Xm = X, we
write simply L(mX; Y ). The vector space of all bounded linear operators
from X into Y will be denoted by B(X, Y ).

Definition 2.1. Let 1 ≤ p < ∞ and m ∈ N. Let X1, . . . , Xm be Banach
spaces and Y be an operator space. An m-linear operator T : X1×· · ·×Xm

→ Y is strongly lp-summing if there is a constant C > 0 such that for any

n ∈ N, xj
1, . . . , x

j
n ∈ Xj (j = 1, . . . , m) and y∗1, . . . , y

∗
n ∈ Y ∗, we have

(2.1) ‖(〈T (xj
i )j , y

∗
i 〉)‖ln1

≤ C
( n∑

i=1

m∏

j=1

‖xj
i‖

p
Xj

)1/p
sup

a,b∈B+
S2p∗

‖(ay∗i b)‖ln
p∗

(Sp∗(L)).

Here L is a Hilbert space such that Y ∗ ⊂ B(L), because by [Ble92], Y ∗ is
an operator space.

The class of strongly lp-summing m-linear operators from X1×· · ·×Xm

into Y , denoted by Dm
lp

(X1, . . . , Xm; Y ), is a Banach space when equipped

with the norm dm
lp

(T ), which is the smallest constant C such that the in-

equality (2.1) holds.
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In the commutative case the supremum in (2.1) is replaced by
supy∈BY

‖(y∗i (y))‖ln
p∗

.

Let m ∈ N and T ∈ L(X1, . . . , Xm; Y ). The operator T is strongly lp-
summing if and only if, for all n ∈ N and all v ∈ B(lnp∗ , Y

∗) (v(ei) = y∗i or
v =

∑n
i=1 ei ⊗ y∗i ), we have (by (2.1) and (1.4))

(2.2)
n∑

i=1

|〈T (x1
i , . . . , x

m
i ), v(ei)〉| ≤ C

( n∑

i=1

m∏

j=1

‖xj
i‖

p
Xj

)1/p
‖v‖cb.

For p = 1, we have Dm
l1

(X1, . . . , Xm; Y ) = L(X1, . . . , Xm; Y ).

Remark. 1. If Y = OH, then by (1.1) and (2.2) strongly l2-summing
and Cohen strongly 2-summing coincide.

2. If Y = L1, then by (1.3) and (2.2) strongly lp-summing and Cohen
strongly p-summing coincide.

Proposition 2.2. Let X1, . . . , Xm, E1, . . . , Em be Banach spaces and

let Y, Z be operator spaces. Let T ∈ L(X1, . . . , Xm; Y ), R ∈ cb(Y, Z) and

Sj ∈ B(Ej , Xj) (1 ≤ j ≤ m).

(i) If T is strongly lp-summing , then RT is strongly lp-summing and

dm
lp

(RT ) ≤ ‖R‖cbd
m
lp

(T ).

(ii) If T is strongly lp-summing , then T ◦ (S1, . . . , Sm) is strongly lp-

summing and dm
lp

(T ◦ (S1, . . . , Sm)) ≤ dm
lp

(T )
∏m

j=1 ‖Sj‖.

Proof. (i) Let n ∈ N, xj
1, . . . , x

j
n ∈ Xj and z∗1 , . . . , z

∗
n ∈ Z∗. It suffices by

(2.2) to show that

n∑

i=1

|〈RT (x1
i , . . . , x

m
i ), z∗i 〉| ≤ ‖R‖cbd

m
lp (T )

( n∑

i=1

m∏

j=1

‖xj
i‖

p
Xj

)1/p
‖v‖cb

where v : Z → lnp is such that v(z) =
∑n

i=1 z∗i (z)ei. By (2.2) we have

n∑

i=1

|〈RT (x1
i , . . . , x

m
i ), z∗i 〉| =

n∑

i=1

|〈T (x1
i , . . . , x

m
i ), R∗(z∗i )〉|

≤ dm
lp (T )

( n∑

i=1

m∏

j=1

‖(xj
i )‖

p
Xj

)1/p
‖w‖cb

where w∗ : lnp∗ → Y ∗ is such that w∗(ei) = R∗(z∗i ). We have w∗ = R∗ ◦ v∗,
where v : lnp∗ → Z∗, v(ei) = z∗i . This implies that

‖w‖cb = ‖w∗‖cb = ‖R∗ ◦ v∗‖cb ≤ ‖R∗‖cb‖v‖cb.
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(ii) Let n ∈ N, ej
1, . . . , e

j
n ∈ Ej and y∗1 , . . . , y

∗
n ∈ Y ∗. By (2.2) we have

n∑

i=1

|〈T ◦ (S1, . . . , Sm)(e1
i , . . . , e

m
i ), y∗i 〉|

=
n∑

i=1

|〈T (S1(e
1
i ), . . . , Sm(em

i )), y∗i 〉|

≤ dm
lp (T )

( n∑

i=1

m∏

j=1

‖Sj(e
j
i )‖

p
Xj

)1/p
‖v‖cb (v(y) =

n∑

i=1

y∗i (y)ei)

≤ dm
lp (T )

( m∏

j=1

‖Sj‖
p

n∑

i=1

‖ej
i‖

p
Ej

)1/p
‖v‖cb

≤ dm
p (T )

m∏

j=1

‖Sj‖
( n∑

i=1

m∏

j=1

‖ej
i‖

p
Ej

)1/p
‖v‖cb.

This implies that dm
p (T ◦ (S1, . . . , Sm)) ≤ dm

p (T )
∏m

j=1 ‖Sj‖ and concludes
the proof.

This class satisfies a Pietsch domination theorem which is our main re-
sult:

Theorem 2.3. Let m ∈ N. Let X1, . . . , Xm be Banach spaces and let

Y be an operator space. If a m-linear operator T in L(X1, . . . , Xm; Y ) is

strongly lp-summing (1 < p < ∞) then there is an ultrafilter U over an

index set I and families aα, bα in B+
S2p(L) such that for all (x1, . . . , xm) ∈

X1 × · · · × Xm,

(2.3) |〈T (x1, . . . , xm), y∗〉| ≤ dm
lp (T )

m∏

j=1

‖xj‖ lim
U

‖aαy∗bα‖Sp∗(L).

Conversely , if there is a positive constant C, an ultrafilter U over a set I and

families aα, bα in B+
S2p∗(L) such that for all (x1, . . . , xm) ∈ X1 × · · · × Xm,

(2.4) |〈T (x1, . . . , xm), y∗〉| ≤ C
m∏

j=1

‖xj‖ lim
U

‖aαy∗bα‖Sp∗(L),

then T ∈ Dm
lp

(X1, . . . , Xm; Y ) and dm
lp

(T ) ≤ C.

Proof. We prove the first implication by using the Hahn–Banach theo-
rem in the same spirit as in [Pis98]. Let

S = {s = (a, b) ∈ BS2p∗(L) × BS2p∗(L) : a, b ≥ 0}

and K be the set of all real-valued functions on S of the form
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f
((xj

i ),(y
∗
i ))

(s) =
C

p

n∑

i=1

m∏

j=1

‖xj
i‖

p +
C

p∗
‖ay∗i b‖

p∗

ln
p∗

(Sp∗(L))
(2.5)

−
n∑

i=1

|〈T ((xj
i )), y

∗
i 〉|

where (xj
i )1≤i≤n ⊂ Xj, 1 ≤ j ≤ m and (y∗i )1≤i≤n ⊂ Y ∗.

The set K is a convex cone. Indeed, let f1, f2 be in K and λ ≥ 0. Then

f
1((x′j

i ),(y′∗
i ))

(s) =
C

p

n∑

i=1

m∏

j=1

‖x′j
i ‖

p +
C

p∗
‖ay′∗i b‖p∗

ln
p∗

(Sp∗(L))

−
k∑

i=1

|〈T (x′1
i , . . . , x′m

i ), y′∗i 〉|

and

f
2((x′′j

i ),(y′′∗
i ))

(s) =
C

p

n∑

i=1

m∏

j=1

‖x′′j
i ‖p +

C

p∗
‖ay′′∗i b‖p∗

ln
p∗

(Sp∗(L))

−

l∑

i=1

|〈T (x′′1
i , . . . , x′′m

i ), y∗i 〉|.

It follows that

λf
1((x′j

i ),(y′∗
i ))

(a, b) =
λC

p

n∑

i=1

m∏

j=1

‖x′j
i ‖

p +
λC

p∗
‖ay′∗i b‖p∗

ln
p∗

(Sp∗(L))

−

k∑

i=1

λ|〈T (x′1
i , . . . , x′m

i ), y∗i 〉|

=
C

p

n∑

i=1

m∏

j=1

‖λ1/mpx′j
i ‖

p +
C

p∗
‖aλ1/p∗y′∗i b‖p∗

ln
p∗

(Sp∗(L))

−
k∑

i=1

|〈T (λ1/mpx′j
i )j , λ

1/p∗y∗i 〉|

= f
1((λ1/mpx′j

i ),(λ1/p∗y′∗
i ))

(a, b)

and finally we have

(f1 + f2)(s) =
C

p

m∏

j=1

‖xj
i‖

p +
C

p∗
‖ay∗i b‖

p∗

ln
p∗

(Sp∗(L))

−

n∑

i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉|
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with n = k + l and

xj
i =

{
x′j

i if 1 ≤ i ≤ k,

x′′j
i if k + 1 ≤ i ≤ n,

y∗i =

{
y′∗i if 1 ≤ i ≤ k,

y′′∗i if k + 1 ≤ i ≤ n.

Using the elementary equality

(2.6) ∀α, β ∈ R
∗
+ αβ = inf

ε>0

{
1

p

(
α

ε

)p

+
1

p∗
(εβ)p∗

}
,

we have

sup
(a,b)∈S

f((xi),(y∗
i ))(a, b)

= sup
(a,b)∈S

(
C

p

n∑

i=1

m∏

j=1

‖xj
i‖

p +
C

p∗
‖ay∗i b‖

p∗

ln
p∗

(Sp∗(L)) −
n∑

i=1

|〈T (xj
i ), y

∗
i 〉|

)

=
C

p

n∑

i=1

m∏

j=1

‖xj
i‖

p +
C

p∗
sup

(a,b)∈S

n∑

i=1

‖ay∗i b‖
p∗

Sp∗(L) −
n∑

i=1

|〈T (xj
i )j , y

∗
i 〉|

≥ C
( n∑

i=1

m∏

j=1

‖xj
i‖

p
)1/p

sup
(a,b)∈S

( n∑

i=1

‖ay∗i b‖
p∗

Sp∗(L)

)1/p∗

−
n∑

i=1

|〈T (xj
i )j , y

∗
i 〉|

≥ 0 (by hypothesis, see (2.1)),

for all f in the convex cone K. Let C be the open set of all f in l∞(S)
such that sup(a,b)∈S f

((xj
i ),(y

∗
i ))

(a, b) < 0. The sets K and C are disjoint in

l∞(S), which is isomorphically isometric to C(Ŝ), the space of all continuous

real-valued functions on the Stone–Čech compactification Ŝ of S. By the
Hahn–Banach theorem, there exists a bounded linear functional on C(Ŝ)
which separates K and C. By the Riesz representation theorem, we obtain
a probability λ on Ŝ such that

λ(f) ≥ 0 for all f in K.

Consequently, there is an ultrafilter U over an index set I and a family
{λα}α∈I of finitely supported probability measures on S such that

λα → λ in σ(l∗∞(S), l∞(S))

and

∀f ∈ K,
\̂
S

f(a, b) dλ(a, b) = lim
U

\
S

f(a, b) dλα(a, b) ≥ 0.

In particular, if we take

f((x),(y∗))(s) =
C

p

m∏

j=1

‖xj‖p +
C

p∗
‖ay∗b‖p∗

Sp∗(L) − |〈T (x1, . . . , xm), y∗〉|
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we have

lim
U

\
S

f(a, b) dλα(a, b)

=
C

p

m∏

j=1

‖xj‖p +
C

p∗
lim
U

\
S

‖ay∗b‖p∗

Sp∗(L) dλα(a, b) − |〈T ((xj)), y∗〉| ≥ 0

(λα =
∑nα

k=1 λαk
δ(aαk

, bαk
) with

∑nα
k=1 λαk

= 1 and λαk
≥ 0). Hence by

[Pis98, Lemma 1.14] we obtain

|〈T (x1, . . . , xm), y∗〉|

≤
C

p

m∏

j=1

‖xj‖p +
C

p∗
lim
U

nα∑

k=1

λαk
‖aαk

y∗bαk
‖p∗

Sp∗(L)
(aαk

, bαk
≥ 0)

≤
C

p

m∏

j=1

‖xj‖p +
C

p∗
lim
U

∥∥∥
( nα∑

k=1

λαk
a2p∗

αk

)1/2p∗

y∗
( nα∑

j=1

λαk
b2p∗

αk

)1/2p∗∥∥∥
p∗

Sp∗(L)

≤ C

(
1

p

m∏

j=1

‖xj‖p +
1

p∗
lim
U

‖aαy∗bα‖
p∗

Sp∗(L)

)
,

using once again the equality (2.6). Fix ε > 0. Replacing xj by (1/ε1/m)xj,
y∗ by εy∗ and taking the infimum over all ε > 0 in (2.6), we find that

|〈T (x1, . . . , xm), y∗〉| =

∣∣∣∣

〈
T

(
1

ε1/m
x1, . . . ,

1

ε1/m
xm

)
, εy∗

〉∣∣∣∣

≤ C

(
1

p

m∏

j=1

∥∥∥∥
xj

ε1/m

∥∥∥∥
p

+
1

p∗
lim
U

‖aαεy∗bα‖
p∗

Sp∗(L)

)

≤ C

(
1

p

(∏m
j=1 ‖x

j‖

ε

)p

+
1

p∗
(ε(lim

U
‖aαεy∗bα‖

p∗

Sp∗(L))
1/p∗)p∗

)

≤ C

m∏

j=1

‖xj‖(lim
U

‖aαy∗bα‖
p∗

Sp∗(L))
1/p∗ .

This implies that

|〈T (x1, . . . , xm), y∗〉| ≤ C

m∏

j=1

‖xj‖ lim
U

‖aαy∗bα‖
p∗

Sp∗(L).

To prove the converse, fix n ∈ N. Let (x1
i , . . . , x

m
i ) ∈ X1 × · · · × Xm

(1 ≤ i ≤ n) and y∗1 , . . . , y
∗
n ∈ Y ∗. By (2.4) we have

|〈T (x1
i , . . . , x

m
i ), y∗i 〉| ≤ C

m∏

j=1

‖xj
i‖ lim

U
‖aαy∗bα‖Sp(L)
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for all 1 ≤ i ≤ n. Thus
n∑

i=1

|〈T (x1
i , . . . , x

m
i ), y∗i 〉| ≤ C

n∑

i=1

m∏

j=1

‖xj
i‖ lim

U
‖aαy∗i bα‖Sp(L)

≤ C
( n∑

i=1

m∏

j=1

‖xj
i‖

p
)1/p( n∑

i=1

lim
U

‖aαy∗i bα‖
p∗

Sp(L)

)1/p∗

(by Hölder)

≤ C
( n∑

i=1

m∏

j=1

‖xj
i‖

p
)1/p

sup
a,b∈B+

S2p

‖(‖ay∗i b‖Sp(L))1≤i≤n‖ln
p∗

.

This implies that T ∈ Dm
lp

(X1, . . . , Xm; Y ) and dm
lp

(T ) ≤ C.

Lemma 2.4. Let X ⊂ B(H) be an operator space. Let a, b ∈ B+
S2r(H) and

1 ≤ r ≤ s < ∞. Then

∀x ∈ X, ‖axb‖Sr(H) ≤ ‖ar/sxbr/s‖Ss(H).

Proof. For x in X and a, b in B+
S2r

, we have

‖axb‖Sr(H) = ‖a1−r/sar/sxbr/sb1−r/s‖Sr(H)

≤ ‖a1−r/s‖S2rs/(r−s)
‖ar/sxbr/sb1−r/s‖S2rs/(r−s)

≤ ‖a1−r/s‖S2rs/(r−s)
‖ar/sxbr/s‖Ss(H)‖b

1−r/s‖
1−r/s
S2rs/(r−s)

≤ ‖ar/sxbr/s‖Ss(H)

(because ‖a1−r/s‖S2rs/(r−s)
= ‖a‖

(r−s)/s
S2r

≤ 1).

Corollary 2.5. Let 1≤ p, q <∞ with p≤ q. If T ∈Dm
lq

(X1, . . . , Xm; Y )

then T ∈ Dm
lp

(X1, . . . , Xm; Y ) and dm
lp

(T ) ≤ dm
lq

(T ).

Proof. By inequality (2.3) there is an ultrafilter U and families aα, bα in
B+

S2q∗(L) such that

|〈T (x1, . . . , xm), y∗〉| ≤ dm
lq (T )

m∏

j=1

‖xj‖Xj lim
U

‖aαy∗bα‖Sq∗(L).

Using Lemma 2.4, we obtain

|〈T (x1, . . . , xm), y∗〉| ≤ dm
lq (T )

m∏

j=1

‖xj‖Xj lim
U

‖aq∗/p∗

α y∗bq∗/p∗

α ‖Sp∗(L).

The assertion follows because a
q∗/p∗
α , b

q∗/p∗
α are in B+

S2p∗(L)
.

Now, we give a natural definition, as stated in [PS05], of the adjoint of
an m-linear operator.
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Definition 2.6. Let X1, . . . , Xm, Y be Banach spaces. If T belongs to
L(X1, . . . , Xm; Y ), then the adjoint of T is

T ∗ : Y ∗ → L(X1, . . . , Xm; K)

with (T ∗(y∗))(x1, . . . , xm) = y∗(T (x1, . . . , xm)) (K = R or C).

The following theorem establishes the relationship between the spaces
Dm

lp
(X1, . . . , Xm; Y ) and πlp(Y

∗,L(X1, . . . , Xm; K)). We recall that πlp(X, Y )
is the space of all lp-summing operators from an operator space X into a
Banach space Y . For more information on this notion we refer the reader to
[Mez02]. In fact, Theorem 2.3 and [Mez02, Theorem 2.3] give us the following
characterization result.

Theorem 2.7. Let 1 ≤ p < ∞. Let X1, . . . , Xm be Banach spaces and

Y be an operator space. An operator T belongs to Dm
lp

(X1, . . . , Xm; Y ) if

and only if its adjoint T ∗ belongs to πlp(Y
∗,L(X1, . . . , Xm; R)). In this case

Dm
lp

(T ) = πlp∗ (T
∗).

Proof. Let T ∈ Dm
lp

(X1, . . . , Xm; Y ). If (xj)1≤j≤m ∈ X1 × · · · × Xm and

y∗ ∈ Y ∗, by (2.3) we have

|〈T (x1, . . . , xm), y∗〉| ≤ dm
lp (T )

m∏

j=1

‖xj‖ lim
U

‖aαy∗bα‖Sp∗(L).

Hence

|〈(x1, . . . , xm), T ∗(y∗)〉| ≤ dm
lp (T )

m∏

j=1

‖xj‖ lim
U

‖aαy∗bα‖Sp∗(L).

Taking the supremum, we obtain

‖T ∗(y∗)‖ ≤ dm
lp (T ) lim

U
‖aαy∗bα‖Sp∗(L).

Therefore T ∗ ∈ πlp∗ (Y
∗,L(X1, . . . , Xm; R)) and

(2.7) πlp∗ (T
∗) ≤ dm

lp (T ).

Conversely, assume that T ∗ ∈ πlp∗ (Y
∗,L(X1, . . . , Xm; R)). Let xj be in

the unit ball of Xj (1 ≤ j ≤ m). It follows by [Mez02, Theorem 2.3] that

|〈(x1, . . . , xm), T ∗(y∗)〉| ≤ πlp∗ (T
∗) lim

U
‖aαy∗bα‖Sp∗(L).

We conclude that T is strongly lp-summing and

(2.8) dm
lp (T ) ≤ πlp∗ (T

∗).

Combining (2.7) and (2.8) we obtain dm
lp

(T ) = πlp∗ (T ∗). The theorem is
proved.
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de Madrid 12, 1989.

[Ble92] D. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992),
15–30.

[BP91] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal.
99 (1991), 262–292.

[Coh73] J. S. Cohen, Absolutely p-summing p-nuclear operators and their conjugates,
Math. Ann. 201 (1973), 177–200.

[Dia03] V. Dimant, Strongly p-summing multilinear mappings, J. Math. Anal. Appl.
278 (2003), 182–193.

[ER91] E. Effros and Z. J. Ruan, A new approach to operator spaces, Canad. Math.
Bull. 34 (1991), 329–337.

[Mat96] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil.
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