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ON MINIMAL NON-TILTED ALGEBRAS
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FLÁVIO U. COELHO (São Paulo), JOSÉ A. DE LA PEÑA (México) and
SONIA TREPODE (Mar del Plata)

Abstract. A minimal non-tilted triangular algebra such that any proper semiconvex
subcategory is tilted is called a tilt-semicritical algebra. We study the tilt-semicritical
algebras which are quasitilted or one-point extensions of tilted algebras of tame hereditary
type. We establish inductive procedures to decide whether or not a given strongly simply
connected algebra is tilted.

Introduced in the early 1980’s by Happel and Ringel [13], the class of
tilted algebras has played a central role in the development of the repre-
sentation theory of algebras. However, it is not always easy to identify a
tilted algebra looking, for instance, at its ordinary quiver with relations.
Indeed, the properties characterizing tilted algebras refer to the existence
of special components of the corresponding Auslander–Reiten quiver. By
looking at the minimal non-tilted algebras, we try to get some insight on
how the tilted algebras are built up. For example, this is the case in the
Liu–Skowroński criterion for a tilted algebra where existence of a connected
Auslander–Reiten component with a faithful section satisfying a homological
condition is required (see [1, Th. VIII.5.6], [20] and [29] for details).

We say that a subcategory B is semiconvex in A if there is a sequence
B = Bs, Bs−1, . . . , B1, B0 = A such that Bi = Ci[M

′
i ] (resp. [M ′

i ]Ci) is a
one-point (co-)extension of a convex subcategory Ci of Bi−1 = Ci[M

′
i ⊕M ′′

i ]
(resp. [M ′

i ⊕ M ′′
i ]Ci) by a Ci-module M ′

i , possibly M ′
i = 0, i = 1, . . . , s.

A tilt-semicritical algebra A is a triangular algebra which is semitilted (that
is, any proper semiconvex subcategory of A is tilted) but A is non-tilted.
Clearly, any triangular non-tilted algebra contains a semiconvex subcategory
which is tilt-semicritical. In Section 1 we study the basic properties of tilt-
semicritical algebras and give some examples.

More recently, quasitilted algebras were introduced [12] as algebras of
the form A = EndH T for a hereditary abelian k-category H, where k is an
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algebraically closed field, and T is a tilting object in H. If H = modH for
a hereditary path algebra H = k ~∆, where ~∆ is a quiver with underlying
graph ∆, then A is said to be tilted of type ∆. In Section 3 we character-
ize the tilt-semicritical algebras which are quasi-tilted and strongly simply
connected as those semitilted algebras belonging to one of three different
families (QT1), (QT2), (QT3) whose members are described as extensions
of well-known algebras. We recall that a basic algebra A = kQ/I is said to
be strongly simply connected if for every convex subcategory B of A, the
first Hochschild cohomology H1(B) vanishes [28]. In Section 4 we character-
ize the tilt-semicritical algebras A such that whenever A = B[M ] or [M ]B,
then B is a tilted algebra of Dynkin or Euclidean type, as those semitilted
algebras belonging to one of three families (EA0) (= quasi-tilted), (EA1),
(EA2). The algebras in these families can be effectively constructed.

Let B be a derived-hereditary algebra, that is, there exists an equivalence
of triangulated categories F : Db(modH)→ Db(modB) for H a hereditary
algebra. An indecomposable B-module M is said to be derived-directing

(resp. derived-regular) if M = FX for an indecomposable directing (resp.
regular) H-module X. We say that a derived-regular module M = FX
is governing if X governs the regular H-modules (equivalently, if H[X] is
quasi-tilted); see [12]. The main result of this work is the following.

Theorem. Let A be a strongly simply connected semitilted algebra. Then

A is tilted if and only if the following conditions are satisfied :

(T1) A is not in one of the families (QT1), (QT2), (QT3).
(T2) A is not in one of the families (EA1), (EA2).
(T3) For any extension A = B[M ] or coextension [M ]B with B tilted of

wild type and M an indecomposable module, either M is derived-

directing or M is governing.

Directing modules were studied in [14, 25]. We provide simple criteria
for a module to be derived-directing. Disgracefully, there is no simple way
to check for a regular module X over a hereditary algebra H if H[X] is
quasitilted (see the long discussion in Chapter III of [12]). This problem re-
mains an obstacle for our Theorem to be a handy criterion to check whether
or not a given algebra is tilted.

This work was done using exchange projects between Argentina, Brazil
and Mexico (CAPES, SCyT, CNPq-CONACyT). Part of the work was pre-
sented at ICRA 11 at Patzcuaro, Mexico in July 2004.

1. Semiconvex subcategories and tilted algebras

1.1. Let k be an algebraically closed field. In this paper, an “algebra”
means a basic, indecomposable, finite-dimensional, associative k-algebra



MINIMAL NON-TILTED ALGEBRAS 73

with identity. By a “module” we mean a finitely generated left module.
Given an algebra A, we denote by modA its module category, and by indA
a full subcategory of modA consisting of a complete set of representatives
of the isomorphism classes of indecomposable modules. We usually consider
A as a k-category, defined by a quiver Q with relations I, that is, A = kQ/I,
as in [7]. Consequently, modules are k-linear covariant functors A→ mod k.
We say that A is triangular if Q has no oriented cycles.

For a vertex x of Q, denote by Px (resp. Ix) the projective cover (resp.
injective envelope) of the simple module Sx associated to x. Denote by ΓA

the Auslander–Reiten quiver of A, by τA the Auslander–Reiten translation
D Tr and τ−

A its inverse. For unexplained notions of representation theory
we refer the reader to [2, 7].

1.2. Given an algebra B and a B-module M , the one-point extension of
B by M is the algebra

A := B[M ] =

(
k 0

BMk B

)

with the usual matrix operations. It is well-known that A-modules can be
described as triples (kt, BX, γ : kt → HomB(M, X)). When there is no dan-
ger of confusion we shall denote an A-module (0, X, 0) simply as X. The
indecomposable projective A-modules are of the form (0, P, 0) for P an inde-
composable projective B-module or Pω = (k, M, id), which is the projective
corresponding to the extension vertex ω. Then radPω = M .

Lemma. Let A = B[M ]. Then gl.dimA = max{gl.dimB, pdB M +1}.

1.3. We say that B is a semiconvex subcategory of A if there is a
sequence of algebras B = Bs, Bs−1, . . . , B1, B0 = A satisfying:

(SC0) There is a convex subcategory Ci of Bi−1 for i = 1, . . . , s. That is,
Ci = kQ′

i/I ′i and Bi−1 = kQi−1/Ii−1, where Q′
i is a path closed

full subquiver of Qi−1 and I ′i = Ii−1 ∩ kQ′
i.

(SC1) There is a Bi−1-module Mi = M ′
i ⊕M ′′

i such that Bi−1 = Ci[Mi]
(resp. [Mi]Ci), possibly M ′

i = 0.
(SC2) Bi = Ci[M

′
i ] (resp. [M ′

i ]Ci).

In case B is semiconvex in A, the inclusion is a k-linear functor F : B → A
with a remarkable property: for any objects x, y of B, we have A(x, y) =
B(x, y) ⊕ S(x, y) for a family of subspaces S(x, y) of A(x, y) satisfying
αS(x, a) ⊂ S(x, b) and S(b, y)α ⊂ S(a, y) all α ∈ B(a, b). Following [4],
we say that F is a cleaving functor and S is a cleavage.

1.4. Proposition. Let A be a tilted algebra and B a semiconvex sub-

category of A. Then B is a tilted algebra.
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Proof. Clearly, it is enough to consider the situation where A = C[M ]
is a one-point extension of C by M = M ′ ⊕M ′′ and B = C[M ′].

Since C is convex in A, it is tilted (see for instance [10]). Moreover, the
algebra

Ã =




k 0 0 0

0 k 0 0

M ′ M ′′ C 0

M ′′ M ′ 0 C




is a Galois covering of A = C[M ′ ⊕M ′′] defined by the action of Z2. We
may assume that char k 6= 2 (if char k = 2, we consider a three-fold covering

of A) and conclude by [6] that Ã is tilted. Since B = C[M ′] is a convex

subcategory of Ã, it is tilted.

1.5. Recall from the introduction that a triangular algebra A is semi-

tilted if every proper semiconvex subcategory of A is tilted. We say that a
semitilted algebra A is tilt-semicritical if A is not tilted. We shall say that a
non-tilted algebra A is tilt-critical if every proper convex subcategory of A
is tilted. Clearly, tilt-semicritical algebras are tilt-critical.

Lemma. Let A be a semitilted. Then:

(a) gl.dimA ≤ 3.
(b) Assume A = B[M ] and M =

⊕m
i=1 Mi is an indecomposable decom-

position. Then B is tilted and for every proper subset S ⊂ {1, . . . , m},
the extension B[

⊕
i∈S Mi] is tilted.

Proof. (a) Write A = B[M ] with B a convex subcategory of A and
M a B-module. Since B is tilted, gl.dimB ≤ 2 and pdM ≤ 2. Hence
gl.dimA ≤ 3.

(b) is clear.

1.6. Proposition. Let A be a triangular algebra which is not tilted.

Then there is a semiconvex subcategory of A which is tilt-semicritical.

Proof. Let B be a non-tilted semiconvex subcategory of A with dimk B
minimal. We shall show that B is semitilted. Let C be a proper semiconvex
subcategory of B. By definition, C is a semiconvex subcategory of A and
dimk C < dimk B, hence C is tilted.

Examples. (a) Let A be the radical square zero k-algebra given by the
quiver

•

1
−→ •

2
−→ •

3
−→−→ •

4

This algebra is not tilted, since pdA S1 = 3. Let C be the convex subcategory
of A in the vertices 1, 2, 3, such that A = [S3 ⊕ S3]C. Then [S3]C is a
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semiconvex subcategory of A given as the radical square zero algebra with
quiver ~A4. Clearly, [S3]C is tilt-semicritical.

(b) Let A be the k-algebra given by the quiver

2
γ

// 4
β

// •
α

// •

1

ε

OO

η
// 3

δ

OO

with relations αβδ = 0 = γε.

Then A is not a tilted algebra. Let C be the convex subcategory of A ob-
tained by “killing” the vertex 1. Then A = C[S2⊕N ], where N is indecom-
posable with dimk N(3) = 1 = dimk N(4). Then B = C[S2] is a semiconvex
subcategory of A which is tilt-critical. Observe that gl.dimB = 2.

2. Iterated tilted algebras of wild type

2.1. Let A be a k-algebra and K0(A) the Grothendieck group generated
by the isoclasses [S1], . . . , [Sn] of simple A-modules. In case gl.dimA < ∞,
the Euler form 〈−,−〉A on K0(A) is the bilinear form such that for all
A-modules X and Y we have

〈[X], [Y ]〉A =
∞∑

i=0

(−1)i dimk ExtiA(X, Y ).

Defining the Cartan matrix CA = (cij) by cij = 〈[Pj], [Pi]〉A, we get

〈v, w〉A = vC−t
A wt.

We recall that the Coxeter transformation ϕA is an automorphism of K0(A)
determined by

[Pj ]ϕA = −[Ij] for 1 ≤ j ≤ n.

Therefore ϕA = −C−t
A CA and 〈v, wϕA〉A = −〈w, v〉A for all v, w ∈ K0(A).

In the hereditary case H = k ~∆, for any indecomposable non-projective
A-module X we have

[X]ϕH = [τHX].

Let H be a hereditary algebra of wild type. Let ̺ = ̺(ϕH) be the spectral
radius of the Coxeter transformation ϕH . Then 1 < ̺ ∈ SpecϕH = {λ ∈ C :
λ eigenvalue of ϕH} [27]. Moreover, there exist eigenvectors y+ (resp. y−)
with all coordinates positive and y+ϕH = ̺y+ (resp. y−ϕH = ̺−1y−). The
vectors y+, y− play an important role in the representation theory of H.
Namely (see [24]), for an indecomposable H-module X:

(a) X is preprojective or preinjective if and only if σH(X) = 〈y−, [X]〉H
· 〈[X], y+〉H < 0.



76 F. U. COELHO ET AL.

(b) X is regular if and only if σH(X) = 〈y−, [X]〉H〈[X], y+〉H > 0.

The number σH(X) is called the signature of X.

2.2. Consider the derived category D(A)=Db(modA). If gl.dimA<∞,
then D(A) has Auslander–Reiten triangles and [X]ϕA = [τD(A)X] for any
X ∈ D(A).

Let A be a finite-dimensional k-algebra derived-equivalent to H = k ~∆.
By [19], A is iterated tilted, that is, there is a sequence of algebras A0 = H,
A1, . . . , Am = A and tilting Ai-modules Ti such that Ai+1 = EndAi

Ti for
0 ≤ i ≤ m − 1. We say that A is of class ∆. In this case, there is an
isometry S : K0(H)→ K0(A) such that 〈v, w〉H = 〈vS, wS〉A and therefore
ϕA = SϕHS−1. In particular, SpecϕH = SpecϕA and ̺(ϕH) = ̺(ϕA).

If A is derived-equivalent to H = k ~∆ of wild type and F : D(H) →
D(A) is an equivalence of triangulated categories inducing the isometry
S : K0(H) → K0(A), we select the eigenvectors of ϕA as y+

A = y+
HS and

y−A = y−HS. We define the signature σA in the obvious way.

We recall that a module M ∈ modB is directing if there are no paths of
non-zero maps between indecomposable modules of the form

M ′ = N0 → N1 → · · · → Ni → Ni+1 → Ni+2 = τ−

B Ni → · · · → Ns = M ′′

where M ′ and M ′′ are indecomposable direct summands of M . If M is
indecomposable, this is equivalent to saying that there are no paths of non-
zero non-isomorphisms between indecomposable modules of the form M =
N0 → N1 → Ns = M (see [14, 31]).

We say that an indecomposable A-module M is derived-directing (resp.
derived-regular) if there is a directing (resp. regular) H-module X such
that FX = M . We say that a derived-regular module M is governing if
M = FX for a module X which governs the regular H-modules, that is, for
every non-zero indecomposable map f : Xs → Y such that Y has a regular
direct summand, ker f is projective; equivalently, H[X] is quasitilted (see
[12]).

The following result follows from [17].

Proposition. Let B be derived-equivalent to a wild hereditary algebra.

Let M be an indecomposable B-module. Then:

(a) M is derived-directing if and only if σB(M) < 0. In this case B[M ]
is derived-hereditary.

(b) M is derived-regular if and only if σB(M) > 0.
(c) M is governing if and only if σB(M) > 0 and B[M ] is quasitilted.

Proof. Let F : D(H) → D(B) be an equivalence of triangulated cate-
gories and S : K0(H)→ K0(B) the induced isometry. Assume FX = M for
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an indecomposable H-module M . Observe that

σB(M) = 〈y−B , [M ]〉B〈[M ], y+
B〉B = σH(X).

This proves the first parts of (a) and (b). Moreover, by [3], F can be extended
to an equivalence D(H[X])

∼
→ D(B[M ]). If σB(M) < 0, then X is directing

and H[X] is a tilted algebra. Therefore B[M ] is derived-hereditary.

(c) follows by (a), (b) and [12, III(3.9)].

3. Quasitilted tilt-critical algebras

3.1. In this section we shall characterize all the quasitilted strongly sim-
ply connected algebras which are tilt-semicritical. We start by recalling the
original definition of quasitilted algebras given in [12]. Let H be a hered-
itary abelian locally finite R-category, where R is a commutative artinian
ring, and let T be a tilting object in H. The algebra A = EndH T is called
quasitilted. These algebras can be characterized by the properties: (QT1)
gl.dimA ≤ 2, and (QT2) for each indecomposable A-module X, pdA X ≤ 1
or idA X ≤ 1. For further details, we refer to [12].

It follows from [11] that if A = EndH T is a quasitilted algebra, then
H is either derived-equivalent to modH where H is a hereditary algebra
or derived-equivalent to coh X where X is a weighted projective line in the
sense of [8].

The following shows an important feature of quasitilted tilt-semicritical
algebras.

Proposition. Let A be a quasitilted algebra. Then A is tilt-semicritical

if and only if A is tilt-critical.

Proof. One implication is obvious. For the converse, assume that every
convex subcategory of A is tilted and consider B a semiconvex subcategory
of A. There is a chain A = B0 ⊃ B1 ⊃ · · · ⊃ Bs = B of subcategories such
that Bi−1 = Ci[Mi⊕M ′

i ] and Bi = Ci[M
′
i ], where Ci is a convex subcategory

of Bi−1 and Mi is a non-trivial Ci-module, i = 1, . . . , s. Then C1 is tilted.
We distinguish the cases M ′

1 = 0 or not. If M ′
1 = 0, then B1 = C1 is tilted

and 1.4 implies that B is tilted. If M ′
1 6= 0, since A is quasitilted, [5, (2.2)]

implies that the algebra

B′ =




k 0 0

M1 C1 0

M ′
1 0 C1




is tilted. Therefore the convex subcategory B1 = C1[M1] of B′ is also tilted.
Again 1.4 implies that B is tilted. In conclusion, A is tilt-semicritical.
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3.2. Following [16] a quasitilted algebra A is called concealed canonical

if A = EndH T , with H = coh X where X is a weighted projective line, and T
is a tilting object of infinite length, that is, T ∈ vect X. Equivalently, a con-
cealed canonical algebra A can be seen as EndC T , where C is a canonical
algebra and T is a tilting C-module which is a direct sum of indecomposable
modules of strictly positive rank; see [16] for details.

3.3. Example. Let C = H[M ] be a canonical algebra and let T ′ be a
postprojective tilting H-module. Clearly, if Pω is the extended projective
C-module, then T = T ′ ⊕ Pω is a tilting C-module. Since rk T ′ > 0 and
rk Pω > 0, we infer that A = EndC T is a concealed canonical algebra.
Moreover, in this case, A = B[N ] where B = EndC T ′ is a concealed algebra
and N = HomC(T ′, M).

Suppose T ′ is the particular tilting module T ′ =
⊕n

i=1 τ−r
H Pi, where Pi

runs over all the indecomposable projective modules in the postprojective
component of C and r is a positive integer. In this case, EndC T = H[τ r

HM ] is
a concealed canonical algebra. Consequently, if H[M ] is a canonical algebra,
then H[τ r

HM ] is a concealed canonical algebra for each r ∈ N.

We now consider a more specific example, borrowed from [16].

Let H be the hereditary algebra given by the quiver

1 • −→ • 2y
•

8
−→ •

7
−→ •

6
←− •

3
←− •

5
←− •

4

and consider the H-module M with vector-dimension(0, 1, 1, 0, 1, 1, 1, 0). The
algebra A = H[M ] is given by the following quiver ∆:

with a relation identifying the three paths from 9 to 3. It is not difficult
to see that the extension H[τ−1

H M ] is a canonical algebra. By [12], A is a
concealed canonical algebra and, therefore, not tilted by [11]. Denote by
A(l) the algebra given by the full convex subquiver of ∆ containing all its
vertices but l. Clearly, the maximal proper convex subcategories of A are
A(1), A(3), A(4), A(8) and A(9). To see that A is tilt-critical, we shall show that
these subcategories are tilted. First, A(3) and A(9) are hereditary algebras.
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Now, if one makes the reflection by the source 9 on either of A(1) or A(4), one
gets tilted algebras of wild type (they are one-point extensions of hereditary
algebras of type E7 by a module in a complete slice). Then A(1) and A(4) are
quasitilted algebras derived-equivalent to a wild hereditary algebra, hence
they are tilted algebras (see [10, 25]). Similarly, making the reflection by the
source 9 in A(8), one gets a one-point extension of a hereditary algebra of
type Ẽ6 by a postprojective module, so a tilted algebra of wild type. Since
A(8) is a quasitilted algebra derived-equivalent to a wild hereditary algebra,
it is a tilted algebra. Hence, A is tilt-critical.

3.4. In order to prove our next result, we recall the following notation.
For a module M denote by M⊥ the perpendicular category given by all
modules X such that HomA(M, X) = 0 and Ext1A(M, X) = 0.

Proposition. Let C be a concealed canonical algebra. If the type of C

is tubular or wild , then C is tilt-critical.

Proof. Suppose first that C is of tubular type. Then, by [21], C is in
fact a tubular algebra and so, clearly, every full convex subcategory of C is
tilted (see [26]) and the result is proved in this case.

Suppose now that C is of wild type, that is, C = Endcoh X T where T
is a tilting object of infinite length. Let B be a maximal proper convex
subcategory of A and suppose A = B[N ] (the case A = [N ]B is similar).
Then there exists a decomposition of the tilting object T = T ′ ⊕ Tω where
ω is the extension vertex. Hence B = EndT⊥ω

T ′ and N is indecomposable.

Since Tω is an object of infinite length, by [9] we have T⊥
ω
∼= modH for

some hereditary algebra H. Therefore, B is a tilted algebra and the result
is shown.

3.5. Let A = kQA/I be a basic algebra. A source x of QA is said to be
separating if A = B[M ] as a one-point extension with M = radPx has the
property that for the indecomposable decomposition B =

∐m
i=1 Bi, there is

a corresponding decomposition M =
⊕m

i=1 Mi with Mi an indecomposable
Bi-module. According to [28], A is strongly simply connected if and only if
for every convex subcategory B of A, every source of QB is separating.

Observe that a strongly simply connected tilt-semicritical algebra is tilt-
critical. In particular, we get:

Proposition. Let A be a strongly simply connected algebra. Then A is

not tilted if and only if it contains a convex subcategory B which is tilt-

critical.

3.6. In certain situations there are handy criteria to decide the repre-
sentation type of a strongly simply connected algebra. Indeed, let A be a
strongly simply connected algebra. Then:
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(a) A is not representation-finite if and only if A contains a convex sub-
category C which is tame concealed (that is, concealed of a heredi-
tary algebra k∆ of extended Dynkin type; see [20]).

(b) Assume A is a branch enlargement of a tame concealed algebra C,
that is, A = C[Mi, bi]

s
i=1 with Mi simple regular C-modules and bi

branches (i = 1, . . . , s) (see [26]). Then the following are equivalent:

(i) A is tame;
(ii) A is a domestic tubular extension or a tubular extension of C;
(iii) A does not contain convex subcategories B which are concealed

of a wild hereditary algebra k∆.

Indeed, (i)⇔(ii) is in [26]; (i)⇔(iii) follows from [22] and [23] using the Tits
quadratic form.

3.7. We are now ready to show the main result of this section.

Theorem. Let A be a quasitilted algebra. If A is tilt-critical and strongly

simply connected , then it belongs to one of the following families:

(QT1) A = [N ]C[M ] where C is a tame concealed algebra and N, M
are simple regular modules in distinct tubes such that C[M ] and

[N ]C are tilted algebras.

(QT2) A is a tubular algebra.

(QT3) A is not tilted and A = B[M ] (or A = [N ]B) with B a wild

algebra which is tilted of wild type and M (or N) a governing

indecomposable B-module.

Proof. Assume that A is a tilt-critical and strongly simply connected
algebra. We know that A = EndH T where H is derived-equivalent either to
modH for some hereditary algebra H, or to coh X where X is a weighted
projective line. Suppose first thatH is derived-equivalent to modH for some
hereditary algebra H. If H is representation-finite or of wild type, then A
is tilted by [12, 10], a contradiction. Therefore, H is of Euclidean type.
By [30], A is then a semiregular branch enlargement of a tame concealed
algebra, that is, A = [K ′

i, b
′
i]

t
i=1C[Kj, bj ]

s
j=1, where C is a tame concealed

algebra with K ′
i, Kj simple regular C-modules in distinct tubes. If s ≥ 1 and

t ≥ 1, since A is tilt-critical, we infer that A = [N ]C[M ], with N, M being
two simple regular modules in distinct tubes such that C[M ] and [N ]C are
tilted algebras, as in (QT1). If t = 0, then either A is tame and therefore of
type (QT2) by 3.6, or A is wild, and then it contains a convex subcategory
B0 concealed of wild type. Let B be a maximal convex subcategory of A
which is tilted of wild type and B0 ⊂ B. Then there is an indecomposable
B-module N such that [N ]B is a convex subcategory of A (or dually, B[N ]
is a convex subcategory of A). Then [N ]B is quasitilted and not tilted, so
by 2.2, N is governing and A = [N ]B is of type (QT3).
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Suppose now that H is derived-equivalent to coh X. Clearly, X is of tubu-
lar or wild type. If X is of tubular type, then, by [18], A is either of type
(QT1) or of type (QT2). If X is of wild type, then A is a semiregular branch
enlargement of a concealed canonical algebra C. If C is tame concealed we
conclude as above. If C is not tame concealed, then C is either tubular or
concealed canonical of wild type. By the minimality, A is then either of type
(QT2) or of type (QT3).

4. Tilt-semicritical algebras which are extensions of derived-

tame algebras

4.1. We recall the following notation from [12]. Denote by LB (resp.RB)
the full subcategory of modB formed by the indecomposable B-modules X
such that for every predecessor Y of X (resp. successor Y of X), in the
order given by non-zero maps between indecomposable modules, we have
pdB Y ≤ 1 (resp. idB Y ≤ 1). If B is quasitilted, then indB = LB ∪RB .

Proposition ([6]). Let M =
⊕m

i=1 Mi be an indecomposable decompo-

sition of a B-module M and m ≥ 2. Suppose that B is quasitilted. Then:

(a) If A = B[M ] is quasitilted , then M ∈ LB and M is directing.

(b) If M ∈ add(LB ∩RB) and M is directing , then A = B[M ] is tilted.

(c) If M is directing and M1 ∈ LB \ RB, then A = B[M ] is quasitilted

if and only if B[M1] is quasitilted and
⊕m

i=2 Mi is a hereditary pro-

jective module with HomB(
⊕m

i=2 Mi,RB \ LB) = 0.

4.2. Let B be a tilted algebra of type ∆, where ∆ is a Dynkin or Eu-
clidean diagram. Then the Auslander–Reiten quiver ΓB has one of the fol-
lowing shapes:

(a) A single finite connected component CB which is directing and con-
tains a slice (= a connected full subquiver S such that

⊕
S

X is a directing
tilting module).

(b) B = C[Ni, Bi]
s
i=1 (or s

i=1[Ni, Bi]C) is a domestic branch (co) exten-

sion of a tame concealed algebra C by simple regular modules N1, . . . , Ns

and branches B1, . . . , Bs (see [26]). If s = 0, then B = C is tame concealed.
If s ≥ 1, then Ni /∈ RB. Indeed, there is an indecomposable projective B-
module P such that N1 is a summand of rad P . Since N1 is not projective,
X = τBN1 is a module and there is a non-sectional path N1 → · · · → X →
•→ τ−

B X = N1 →֒ P . Hence idB X ≥ 2 and N1 /∈ RB.

4.3. Proposition. Let A be a semitilted strongly simply connected al-

gebra such that whenever A = B[M ], the tilted algebra B is of Dynkin or

Euclidean type. If A is tilt-semicritical then it belongs to one of the following

families:
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(EA0) (QTi), i = 1, 2, 3.
(EA1) A = [N ]C[M ] with M and N indecomposable C-modules such

that there is a non-sectional path N  M . Moreover , C is of

finite or concealed type.

(EA2) A = B[M ] for a tilted algebra B of Euclidean type and M is

indecomposable, neither preprojective nor preinjective, and not a

ray-module in the sense of [26, 4.5].

Proof. Let A = B[M ] with B a tilted algebra of Dynkin or Euclidean
type. Since A is strongly simply connected, M is indecomposable. Suppose
M is directing. By 4.1(b), either M /∈ LB or M /∈ RB . Assume that M /∈
LB and choose a non-sectional path Iy → · · · → M . Let N be a direct
summand of Iy/Sy such that there is a non-sectional path N → · · · → M .
Since M is directing, we have M(y) = 0 and A = [N ]C[M ] for a tilted
algebra C of Dynkin or Euclidean type and A belongs to (EA1). In case
M /∈ RB, we choose a non-sectional path M → · · · → Px. By 4.2, M is
preprojective and we can select x in such a way that A = (C[M ])[N ] for
N = rad Px and C = B/(x). In particular, N is indecomposable. Observe
that M belongs to the preprojective component PC of ΓC . There are two
situations to distinguish: if N does not belong to PC , then since C[N ] = B is
tilted, there are no injective modules in PC . Then C[M ] is a tilted algebra
of wild type, a contradiction. Therefore N belongs to PC , in particular
N is directing. As above, either N /∈ LC or N /∈ RC . If N /∈ LC , we see
that A is in (EA1). Assume that N /∈ RC and choose a non-sectional path
N → · · · → N1 → Px1

. This process can be carried out only finitely many
times before we stop. Then we find that A is in (EA1) as before.

Suppose now that M is indecomposable and non-directing. Let B =
EndH T for a hereditary algebra H of affine type and a tilting module T .
Then M = HomH(T, X) for a regular H-module X and A = B[M ] is
derived-equivalent to H[X]. If A is not in the family (EA0), then H[X] is
not quasitilted. Then X is not a simple regular module, or equivalently, M
is neither a ray-module (and clearly, neither preprojective nor preinjective).
Hence A belongs to (EA2).

5. Proof of the Main Theorem. Let A be a semitilted strongly simply
connected algebra. Suppose A is tilted. Clearly, A satisfies (T1) and (T2).
Assume A = B[M ] with B tilted of wild type and M an indecomposable
module. By 2.2, A satisfies (T3).

For the converse, assume that A is not tilted. Then A is tilt-critical. If A
is quasitilted, by 3.7, (T1) fails. If whenever A = B[M ], the tilted algebra
B is of Dynkin or Euclidean type, then 4.3 implies that (T2) fails. Hence
we may assume that A is not quasitilted and A = B[M ] for a tilted algebra
B of wild type. By 2.2, (T3) should fail.
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