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AUTOMORPHISMS OF COMPLETELY PRIMARY FINITE RINGS
OF CHARACTERISTIC p

BY

CHITENG’A JOHN CHIKUNJI (Gaborone)

Abstract. A completely primary ring is a ring R with identity 1 # 0 whose subset of
zero-divisors forms the unique maximal ideal J. We determine the structure of the group
of automorphisms Aut(R) of a completely primary finite ring R of characteristic p, such
that if 7 is the Jacobson radical of R, then J° = (0), J? # (0), the annihilator of J
coincides with 72 and R/J = GF(p"), the finite field of p” elements, for any prime p and
any positive integer r.

1. Introduction. A ring R is completely primary if the subset J of all
its zero-divisors forms an ideal. These rings have been studied extensively
by, among others, Raghavendran [5]. It has long been recognized that the
group of automorphisms of a ring provides valuable information about the
structure of the ring. For instance, Evariste Galois initiated the study of the
group of automorphisms of a field, which was later applied by N. H. Abel
to prove the celebrated theorem on the insolvability of the general quintic
polynomial by radicals. It is known (see, e.g., [5]) that the group of auto-
morphisms of the Galois ring Ry = GR(p"", p") is isomorphic to the group
of automorphisms of its residue field Ry/pRy, and is thus a cyclic group of
order r. In [1], Alkhamees determined the group of automorphisms of a com-
pletely primary finite ring R in which the product of any two zero divisors
is zero. This was done for both characteristics of the ring R (i.e. char R = p
and p?), and for both commutative and non-commutative cases.

In this paper, we seek an explicit description of the group of automor-
phisms of a completely primary finite ring R of characteristic p, with Jacob-
son radical J such that J3 = 0), J 24 (0), the annihilator of J coincides
with 72 and R/J = GF(p"), the finite field of p” elements, for any prime p
and any positive integer r. We leave the consideration of the cases when the
characteristic of R is p? and p? for future work. These rings were studied by
the author who gave their constructions for all characteristics; for details of
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the general background, the reader is referred to [2] and [3]. In this paper,
these rings are given in terms of the basis of their additive groups and the
multiplication tables of basis elements. We use standard notation and ter-
minology; ann(J) denotes the two-sided annihilator of 7, and for any two
groups G and H, G xg H denotes the semidirect product of G by H, where
0 : H — Aut(G) is a group homomorphism.

Throughout, we will assume that all rings are finite, associative (but
generally not commutative) with identities, denoted by 1, that ring homo-
morphisms preserve 1, a ring and its subrings have the same 1 and that
modules are unital. We freely use the definitions and notations introduced
in [2], [3] and [5].

Let R be a completely primary finite ring. The following results will be
assumed (see [5]): |R| = p™, J is the Jacobson radical of R, J" = (0),
|T| = pn=1r R/J = GF(p"), and char R = p*, where 1 < k < n, for some
prime p and positive integers n, k, r; the group of units G is a semidirect
product Gg = (1+ J) xg (b) of its normal subgroup 1+ 7 of order p(»=1r
by a cyclic subgroup (b) of order p" — 1. If n = k, it is known that, up
to isomorphism, there is precisely one completely primary ring of order p™*
having characteristic p* and residue field GF(p"). It is called the Galois ring
GR(p",p") and a concrete model is the quotient Ly [X]/(f), where f is a
monic polynomial of degree r, irreducible modulo p. Any such polynomial
will do: the rings are all isomorphic. Trivial cases are GR(p",p") = Zpn
and GR(p",p) = Fpn. In fact, R = Z,n[b], where b is an element of R of
multiplicative order p" — 1; furthermore, J = pR and Aut(R) = Aut(R/pR)
(see Proposition 2 in [5]).

Let R be a completely primary ring, |R/J| = p” and char R = p*. Then
it can be deduced from [4] that R has a coefficient subring Ry of the form
GR(p*", p*), which is clearly a maximal Galois subring of R. Moreover, if R},
is another coefficient subring of R then there exists an invertible element x
in R such that R = xRpz~! (see Theorem 8 in [5]). Furthermore, there exist
mi,...,mp € J and o1,...,0, € Aut(Ry) such that R = Ry & Z?:l Rom;
(as Ro-modules), and m;rg = ri'm; for all ro € Ry and any ¢ = 1,...,h
(use the decomposition of Ry ®z Ry in terms of Aut(Ry) and apply the
fact that R is a module over Ry ®z Rp). Moreover, o1, ..., 0, are uniquely
determined by R and Ry. We call ¢; the automorphism associated with m;
and o1, ...,0y the associated automorphisms of R with respect to Ry.

2. Cube radical zero completely primary finite rings. We now
assume that R is a completely primary finite ring with Jacobson radical J
such that J3 = (0) and J? # (0). These rings were studied by the author
in [2] and [3]. Since R is such that J3 = (0), by one of the above results
char R is either p, p? or p3. The ring R contains a coefficient subring Ry
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with char Ry = char R, and with Ry/pRy equal to R/J. Moreover, Ry is a
Galois ring of the form GR(p*",p*), k = 1, 2 or 3. Let ann(J) denote the
two-sided annihilator of J in R. Of course ann(7) is an ideal of R. Because
J?3 = (0), it follows easily that J2 C ann(J).

We know from the above results that R = Ry & 2?21 Rym;, where
m; € J, and that there exist automorphisms o; € Aut(Rp) (i = 1,...,h)
such that m;rg = rj‘m; for all ro € Ry and for all ¢ = 1,...,h; and the
number h and the automorphisms o1, ..., o, are uniquely determined by R
and Ry. Again, because J2 = (0), we have p?>m; = 0 for all m; € J. Further,
pm; = 0 for all m; € ann(J). In particular, pm; = 0 for all m; € J2.

2.1. Rings of characteristic p. Let IF be the Galois field GF(p"). Given
two positive integers s, t such that 1 <t < s2, fix s, t-dimensional F-spaces
U, V, respectively. Since F is commutative we can think of them as both
left and right vector spaces. Let (afj) € My s(F) be t linearly independent
matrices, {o1,...,0s}, {01,...,60:} be sets of automorphisms of F (with pos-
sible repetitions) and let {0;} and {0} satisfy the additional condition that
if afj # 0 for any k with 1 < k <t¢, then 05, = 0;0;.

In the additive group R = F&U @V, we select bases {u;} and {vy} for U
and V| respectively, and we define multiplication by the following relations:

t
k
Uju; = E A0k,  UiVk = Vgl = Uilju] = 0,
(1) pt

wie = a%uy,  vpa = oy, (1<i,j,l<s,1<k<t),

where a,afj eF.

By the above relations, R is a completely primary finite ring of charac-
teristic p with Jacobson radical 7 = U @V, J2 =V and J2 = (0) (see [2]
and/or [3]). We call the numbers p, n, r, s, t invariants of the ring R.

Throughout, we need the following result proved in [3, Theorem 4.1]:

THEOREM 2.1. Let R be a ring. Then R is a cube radical zero completely
primary finite ring of characteristic p in which the annihilator of J coincides
with J? if and only if R is isomorphic to one of the rings given by the above
relations.

3. The group of automorphisms. To determine this group, we first
show that the Galois subfield F = GF(p") and the F-space V =2 J?2 generated
by {v1,..., v} are invariant under any automorphism ¢ € Aut(R). Then
we compute the image of the rest of the generators under a fixed element
of Aut(R). Let U and V be the F-vector spaces generated by {uq,...,us}
and {vy,...,v:}, respectively. By (1), the set {u1,...,us} is an F-basis of
the vector space J/J? = U and the set {u;u; : 1 <i,j < s} generates the
vector space V over F.
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LEMMA 3.1. Let ¢ € Aut(R). Then ¢(F) is a mazimal subfield of R
which is equal to F and ¢(V) =V, where V =2 J2.

Proof. 1t is obvious that ¢(F) is a maximal subfield of R so that there
exists an invertible element z € R such that z¢(F)z~! = F. Now, con-
sider the map ¢ : R — R given by r — z¢(r)z~!. Then, clearly, 1 is an
automorphism of R which sends [ to itself.

On the other hand, for any v € V, we have ¢(v) € V because [¢(v)]* =
#(v?) = 0, and the result follows. m

3.1. Preliminary results. Let R be the ring given by the multiplication in
(1) with respect to the linearly independent matrices Ay = (afj) € My s(F)
(k=1,...,t) and associated automorphisms {o;} and {0;}. Then

t
R=Fo ZFu @ Z]ka,
i=1 k=1

and u;rg = {5 Ui, VEro = rg’“vk for every rog € F.
Let B = {uq,...,us,v1,...,v:} and let 7 € Aut(F). Put B, = {w € B :
wb = b"w}, where b is an element of F of order p" — 1, and let J, =
ge B. Fw. Then, obviously, 7, is an F-submodule of .

LEMMA 3.2. Let R be a ring of Theorem 2.1 with maximal ideal J. Then
J = ZfeAut(F) Jr as F-modules.

Let R be a ring of Theorem 2.1 and let us reindex the associated auto-
morphisms in such a way that oy, ..., 0, are distinct, so that 61,...,60;, are
distinct as well. Let J = U @ V. Obviously,

s t
J = Fu; &) Fuy,
=1 k=1

where U = @Y7 Fu; and V = @3} _, Fug. Now, if ¢ € Endg(J), then
e(m)=ma (me€ J,aclF)and J; = EUJ_:UZ_ Fu; ® Zg:m Fu;, where o is
the automorphism associated with u; (i =1,...,s), and j,f = Zgam:(%k Fup,,
where 0,, is the automorphism associated with v and 1 < k < r. It is easy
to see that Ji,...,Jr, J? (1 <k < r) are the eigenspaces of .

Let v be the number of non-trivial associated automorphisms o; of R
taken with their multiplicities and J, = Zi Zids Fe;, and let 6 be the num-
ber of non-trivial associated automorphisms 6 of R taken with their multi-
plicities and .,7(? = 221 Lide F fi. Clearly, J, and J52 are F-vector spaces
of dimensions ~ and 9, respectively. Let J), = Z?j:idm Fe; and Ji =
ZS?CZMF Ffi; then Jy = J; for some i € {1,...,7} or J\ = {0} accord-
ing as one or none of the associated automorphisms of R is trivial; and
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jl% = .,7k.2 for some k£ with 1 < k <7r or Ji = {0} according as one or none
of the associated automorphisms of R is trivial.

It 7 = J; for some i € {1,...,7} and ji = j,? for some k with
1 <k <r, let us assume that 7, = J, and jﬁ = jf, respectively. Hence,
Ty = @Z?lei, where h = r or r — 1; and Jf = @22:1 J,f, where
1 <l<rorl <1l <r—1 Clearly, we may assume J = >, F &
Su_ F alsos = 37 s and t = >1_,t;, where s; = dimp(J;) and

PROPOSITION 3.3. Let R be a ring of Theorem 2.1. Then F®) ;| Fu,®
Su_Fv, = R if and only if for all i = 1,...,s and k = 1,...,t, u} =
e; + > by, and v, = fi, where {e1,...,es} is a union of F-bases for
Ty, Jr and by; is an element of F which is zero if ) is not in the centre,
Z(R), of R, and where { f1,. .., fi} is a union of F-bases for J2,..., T2 (1 <
kE<r).

Proof. Suppose that R = F @ Y5 Ful @ Y ;_, Fv, and ulr = 7%},
vir = r%l for all r € F. Because u}, € J = > i=1 Fuj @ S)_, Fu; for any
i=1,...,s, we can write u, = Y ajuj + Y byv;, where aj;,b; € F; and
because v), € J? = Zle Fu, for any k = 1,...,t, we can write v}, = Y ¢y,
where ¢, € F.

Now

)
> agrTiug + Y b = 7 = ujr = (Z ajiu; + Y blz‘vl)r
= Z CL]'Z'TUj uj + Z blirel (Y

chkre"vl = 7“0’“1),/C = v,/cr = (chkvl)r = chkrelvl.

From these equalities we deduce that if o; # o; then aj; = 0, and if 0, # 6,
then ¢p; = 0. In particular, if o; # 6; then b; = 0. It is also worth noting
that 0, = 0,0, because J° = (0), J? # (0).

Let e; = u, — > bj,v and vy, = f. Then obviously e;r = r%e; and
fir = 1% fy, for all r € F; that is, 0y, 65 are the automorphisms associated
with e;, fi, respectively. Also, it is easy to check that &7 | Fe; is of order
p*", and @ 22:1 F fx is of order p"; but clearly, > ;_; Fe; & 22:1 Ff, CJ.
Hence, 7 =350 Fe; ® Y0 Ffy.

Finally, it is easy to prove that J; = Zoj:m_ Fej and J2 = > F f}, where
oj and 0; are the automorphisms associated with e; and fj, respectively, and
i=1,...,m1<k<r

The converse is easy to prove. m

and
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COROLLARY 3.4. Let ¢ € Aut(R). Then for each i =1,...,s and each
k=1,... .t

Gu) = Y ajiug+ > bgivk, b)) = Y g,
0j=0; Or=0; 0,=0x
where aj;, by, e € F. In particular, if by; # 0, then o; = idy.
Proof. Since

s t
uiGJZ@ZFu]-EBZka foralli=1,...,s;
j=1 k=1

t
weJ?=@» Fy forallk=1,... .t
=1
we can write

G(ui) =Y ajiuj+ > bivk,  d(v) = Y _ ey,
where aj;, bii, i € F. Now, let 79 € F be such that w;rog = rg"ui and
VT = rgkvk. Then
Ouiro) = 6§ us) = S(rg )6 () = (r) | D ajius + 3 briv .
On the other hand,

Bluiro) = (w)d(ro) = | 3 ajiy + Y byiwe| 6(r)
= Z aji[d)(ro)]ajuj + Z bki¢(ro)6kvk.

B(r") [Z Cucvl] = cld(ro)) v

From these equalities, we deduce that if o; # o; then aj; = 0, and if 6; # 0,
then ¢ = 0. In particular, if by; # 0 then o; = idp, since 8, = o0, if
af‘j #0, and ann(J) = J2. =

COROLLARY 3.5. Let ¢ € Aut(R). If by; = 0, then ¢(u;) = Zaj:a,- ajit;
and ¢(vg) = Z(%:Hk ckvy, where aj;, ¢ € I

Similarly

3.2. The main results. We first establish some notation that will be
useful in the rest of the paper.

Notation. Let R be a ring of Theorem 2.1. If 0 € Aut(F) and =z € Gp,
the group of unit elements in R, define the mappings a., ¥, from R to R as
follows:

o (ao + Z a;u; + Z bkvk) =aj + Z aj u; + Z b vk,
Vg (ao + Z a;u; + Z bkvk) = m(ao + Z a;u; + Z bkvk) z L
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Also, if

@(ao + ) aui+ Yy bkvk) = a0+ Y apj(us) + Y beei(vr),

where ¢; € Autp(J;) (if u; € J;) and j = 1,...,r, and ¢; € Autg(J?) (if
v € jf) and 1 <1<, let po = pa,, and if
ﬂ(ao +) aiui+ Y bkvk;) =ao+ Y aui+ Y aga + Y bpog,
o;=idp
where a;; € F and o; is the automorphism associated with u;, let o =
Bag. Finally, if A = (a;;), define A7 = (af;) and let A% denote (o1(a;1),
o2(ai2), . .., 0¢(ai)) for some automorphisms o, not necessarily distinct.
THEOREM 3.6. Let R be a ring of Theorem 2.1. Then ¢ € Aut(R) if
and only if

s t s
go(ao + Z a;u; + Z bkvk) = xagac_l + Z a:af:z:_lgoj (ui)
i=1 k=1 i=1

t
+ Z alixafxflvl + Z xngflgél(vk),
k=1

o;=idp

where o € Aut(F), z € Gg, ¢j € Autp(J;) (ifus € Jj) andj=1,...,1, ¢ €
AutF(ij) (if vy € Jlg) and1 <1 <r, a; €F, and 0;, 0y are automorphisms
associated with u;, vy, respectively, and where 0y is a composition of the o;’s.

Proof. Let ¢ € Aut(R). Then there exists x € Gg such that p(F) =
xFr~1, and hence ¢(r) = xr°z~! for any r € F, for some automorphism o
of F. Since

R=pF) @Y oF)pu)® > oF)p(v)
and conjugation is an automorphism of R,

R=F&® ZFw’lw(ui)m ® ZIFx’lgo(vk)m.
But J3 = (0), J? # (0), hence 2 'p(u;)r = aip(u;) and v~ to(vg)r =
Bre(vk), where oy, B, € F for alli =1,...,s and k = 1,...,t. Thus,

R=F® ZIFaigo(ui) ® ZFﬂkgo(vk)
and hence
R=F&) Fo(u)® ) Fp(u).

Therefore, for any i € {1,...,s} and any k € {1,...,t}, o(u;) = p;(u;)+
Yayv and @(vg) = ¢i(vg), where ¢; € Autp(J;) (if vy € Jj), ¢ €
Autp(J2) (if v, € J?), and a;; € F, which is zero if u; ¢ Z(R), the centre
of R.
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Conversely, let ¢ be as defined above. We need to check that for every
T =ag+ ) au; + Y apvy,
(T ao+z aiui—i-z avy — ag—i-z af j(u;)+ Z ah»afvl+z agm(vg),
o;=idp

is an automorphism of R, where ;(u;) = 2~ o (ui)z, m(vy) = 2~ 1y (vg)z.
So let s = bg + > bju; + > brvg be another element in R. Then

Gibob Y biwi+ Y bop = bF Y bi(w)+ Y aubfui+ bim(v).

o;=idp
Now,
Y(r)¥(s) = agh +Z 007 +af (b7) 77115 (us) + Z [agaib] + aiiaf (b7)]vi
o;=idp
+ > [agb7 + af (63) " m(vw) + ) af (b7) 7 s (wi) g (us).

i=1
On the other hand,
w(rs) = (agbo)a + Z(agbi + aibgj)owj (uz) + Z ali(aob,- + aibgj)avl

g; =1d]F

+ Z(aobk —l—akb 77l Uk + Z Z albg 771 vk)

k=11,5=1

From the above equalities we deduce that o; = oj, 0; = idp if a;; # 0,
O = 6, and Y5 (ak )omi(vr) = 307 g 1 (i) (ui).

Now, it is obvious that ¢ = 1,1, and hence ¢ is an automorphism of R. u

REMARK 3.7. In view of Corollary 3.4, if ¢ € Aut(R), then ¢|p is an
automorphism o € Aut(F); if bg; = 0, then ¢|y is an automorphism ¢; €
Autp(U;) (if u; € U;) and @ = 1,...,s, and ¢|y is an automorphism ¢, €
Aut]F(Vk) (if U € Vk) and k=1,...,t

REMARK 3.8. If A1, ..., Ay are linearly independent matrices over F and
o € Aut(F), then A7,..., A7 are also linearly independent over F.

REMARK 3.9. Let C' € GL(s,F). If 0; = 6 for some fixed 6 € Aut(F),
forall j =1,...,s, then C% € GL(s,F).

EXAMPLE 3.10. Let C = (¢ 1) € GL(2,F4) and suppose that o1 =
idp,, o9 # idp, are automorphisms of Fy. Then C% = (¢ ¢) ¢ GL(2,F4).
However, if 0% = CY then for § = idp, or 0 # idg,, C? € GL(2,F,).

Following observations from Remark 3.9 and Example 3.10, we consider
determining the groups of automorphisms of the rings of the paper only
in the case where o; is fixed for all j = 1,...,s. Thus, the formulae in
Proposition 3.11 will have fixed automorphisms in what follows.
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PROPOSITION 3.11. Let R be a ring of Theorem 2.1 with structural ma-
trices A = (af;j) and with invariants p, n, r, s, t. Then ¢ is an automor-
phism of R if and only if o; = 0 € Aut(F) (for every i = 1,...,s) and
there exist o € Aut(F), B = (0B,) € GL(t,F) and C € GL(s,F) such that
CTA@CG = 22:1 Bro A7,

Proof. Suppose there is an automorphism 1 : R — R. Then ¢(F) is a
maximal subfield of R so that there exists an invertible element x € R such
that 2¢(F)z~! = F.

Now, consider the map ¢ : R — R given by r +— 2¢(r)x~1. Then, clearly,
¢ is an automorphism of R which sends F to itself. Also,

<75< Z aiui) => Z Plai)aviuy +y  (y€V),
¢( > 'kak) =3 (1) Bkt
k o k

Therefore,

¢(§ijaiui) ~¢(Zijaéui)
= <;;¢(ai)auiuu+y) ' (ZZ¢ amuy+y)

= Z Z Z ¢(Ozi)04m‘[¢(a;)auj]aua§uve

o vpu=lij=1
On the other hand,

¢((Za“) : (Zau)) —¢

It follows that

>3 dlai)owildlaf)ay,;)” Z Z $(as)7) Borplafy)-

v,u=11,5=1 k=11,7=1

Now, ¢|p is an automorphism o of F, and so gb(afj) = U(afj) and o, = o;.
Hence, the above equation now implies that C’TAQCO = 22:1 BroAf with
C = (ay;) and o; = 0 for every i = 1,...,s, as required.

Conversely, suppose that the associated automorphisms o; equal 6 €
Aut(R) for every i = 1,...,s and there exist 0 € Aut(F), B = (Bk,) €

GL(t,F) and C € GL(s,F) with CTA4,C? = 3"\ _, Br,A7. Consider the map
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¢ : R — R given by
aﬁ(ao + Z ou; + Z ykvk) =ag + Z Z af ity + Z Z Ve BroVo-
i k v ok
Then it is easy to verify that ¢ is an automorphism of the ring R. =

Thus, the set {#,0 € Aut(F), B = (6k,) € GL(t,F), C € GL(s,F)}
determines all the automorphisms of the ring R.

Consider the set of equations C’TAQC"9 = Z',;zl BroAf given in Proposi-
tion 3.11 with C = (ayj) € GL(s,F) and for a fixed 6§ € Aut(F). Then it is
easy to see that C' = («y;) is the transition matrix between the bases (@;)
of J/J?% Also, B = (B,) is the transition matrix between the bases (vy)
of J2%. By calculating uyuy, (the images of the u; under ¢) and comparing
coefficients of (v,) (the images of the v;, under ¢) we obtain equations which,
in matrix form, are CTA,C? = 22:1 BroA7.

The problem of determining the groups of automorphisms of our rings
amounts to classifying t-tuples of linearly independent matrices (Aq, ..., A;)
under the above relation, B, C being arbitrary invertible matrices and o,
being arbitrary automorphisms.

Let A be the set of all t-tuples (A, ..., A;) of s X s matrices over F. The
group GL(s,F) acts on A by “congruence”:

(A1,..., 4)-C=(CTACY ... CTACY
and on the left via
B-(A1,...,A) = (BunA] + -+ BuAf, ..., B AT + -+ By AY),

where B = (f3,). Thus, these two actions are permutable and define a (left)
action of G = GL(s,F) x GL(¢,F) on A:

(C,B)-(A1,...,A) =B-(A],..., A7) - (C~1)¢

for some fixed automorphisms ¢ and 6. By restriction, G acts on the subset
Y consisting of linearly independent ¢-tuples Aq,..., A;. This amounts to
studying the “congruence” action (via C) of GL(s,F) on the set ) of t-
dimensional subspaces of Mxs(IF), B just representing a change of basis
in a given space. In the same way, the whole action of G on A may be
represented as an action of GL(¢,TF) on the set A of subspaces of dimension
< t. We may call two t-tuples in the same G-orbit equivalent.

THEOREM 3.12. Let R be a ring of Theorem 2.1 with invariants p, n, r,
s, t. Then

Aut(R) 2 [Myxs(F) x (U & V)] g, [Aut(F) xq, (GL(s, F) x GL(t, F))].
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Proof. Let G be the subgroup of Aut(R) which contains all the auto-
morphisms ¢ defined by

<P<7’o +) aui+ Y bk”k) =r§ + > afe;(ui) + Y beu(ve),
where 0 € Aut(F), ¢; € Autp(U;) (if w; € Uj) and j = 1,...,s, and
¢ € Autp(V)) (if vy € V) and I =1,... ¢t
Let Gg be the subgroup of G which contains all the automorphisms «,,
such that

o (7"0 + Z a;u; + Z bk%) =ry + Z aju; + Z b vk,
where o € Aut(FF). Then Gy = Aut(F). Let G be the subgroup of G which
contains all the automorphisms ¢ such that

cp(ro + Z a;u; + Z bkvk) =79+ Z a;pj(u;) + Z brvk,

where ¢; € Autp(U;) (if v; € U;) and @ = 1,...,s; and let Go be the
subgroup of G which contains all the automorphisms ¢ such that

<P<7"0 + ) aiui+ Yy kak) =ro+ Y ami+ Y beei(vi),

where ¢; € Autp(V)) (if vy € V}) and k = 1,...,t. Then G; and Gy are
subgroups of G and G X G5 is a direct product. Moreover, G1 = Auty(U) &
GL(s,F) and G = Autp(V) = GL(t, F).

Finally, let H be the subgroup of Aut(R) containing all the automor-
phisms ¢ defined by

60(7“0 + Z a;u; + Z bkvk) =z (To + Z aiu; + Z Qv+ Z bk”k) z !,
o;=idp

where x € 1+ 7, a;; € F and o; is the automorphism associated with ;. Let

H; be the subgroup of H which contains all the automorphisms ¢ defined

by

@(m + Z a;u; + Z bkvk> =rg+ Z a;u; + Z Qy;a;v; + Z by vk,
G’i:id]F
where «y; € F and o; is the automorphism associated with u;, and Hs be
the subgroup of H which contains all the automorphisms ¢ such that

cp(ro + Z a;u; + Z bkvk> = :L‘(?”o + Z a;u; + Z bkvk>aj_1,

where z € 1 + J C Gpg. Then it is easy to check that the direct product
H = Hj x Hy and the semidirect product G = (G1 xG2) X, G are subgroups
of Aut(R), where if ¢ € G; x G2 and a, € Gy, then 02(ay)(p) = po.

Let ¢ € H N G. Since every element of H either fixes F elementwise
or sends F to another maximal Galois subring of R and ¢ € G, we see
that ¢ fixes F elementwise. Let ¢ = (1, where 8 € H; and ¢, € Hs.
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Since x € 1+ 7, clearly, ¢ = B, = . Since 5 € G, S(U) = U. But the
only element of H; which fixes U is the identity. Thus, ¢ = idr and hence
H NG = idr. Now, it is easy to see that Aut(R) = H xg, G, where if
B, € Hi and ga, € G, then 61 (paq)(BYs) = Bopya, (). It is trivial to
check that the mapping g : Hy — My (F) given by g(8un) = > a;;,
where

Bm (7‘0 + Z a;u; + Z bkvk) =179+ Z a;u; + Z al; a; U; + Z brvg,

o;=idp

o;=idp

is an isomorphism, and so, combining with f : Ho — U @ V, we obtain an
isomorphism H = My (F) x (U @ V).
Hence,

Aut(R) = [Myxs(F) x (U & V)] xg, [Aut(F) xg, (GL(s,F) x GL(¢,F))],
where
01(0)(C,B) - (A1,...,A) = B-(A],..., A7) - (C7Y)°,
03(0,C, B)(A1,..., A) = (CTACY,...,CTA,CY). »

COROLLARY 3.13. Let R be a ring of Theorem 2.1 with invariants p, n,
r, s, t. Then

Aut(R)] = g x "+
xrx(¢*=¢* N =) .. (¢ —1) x (¢ =¢" ) ... (¢"-1).

COROLLARY 3.14. Let R be a ring of Theorem 2.1 with invariants p, n,
r, s, t. If F lies in the centre of R, then

Aut(R) 2 [Mys(F) x (U @ V)] xg, [GL(s,F) x GL(¢, F)].

COROLLARY 3.15. Let R be a ring of Theorem 2.1 with invariants p,
n, r, s, t. If every ¢ € Aut(R) is such that (o) = « for every a € F,
©(U) =U and T lies in the centre of R, then

Aut(R) = GL(s,F) x GL(t,F).
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