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CANTOR�SCHROEDER�BERNSTEIN QUADRUPLESFOR BANACH SPACESBYELÓI MEDINA GALEGO (São Paulo)Abstrat. Two Banah spaes X and Y are symmetrially omplemented in eahother if there exists a supplement of Y in X whih is isomorphi to some supplement of
X in Y . In 1996, W. T. Gowers solved the Shroeder�Bernstein (or Cantor�Bernstein)Problem for Banah spaes by onstruting two non-isomorphi Banah spaes whihare symmetrially omplemented in eah other. In this paper, we show how to modifysuh a symmetry in order to ensure that X is isomorphi to Y . To do this, �rst weintrodue the notion of Cantor�Shroeder�Bernstein Quadruples for Banah spaes. Thenwe haraterize them by using some Banah spaes onstruted by W. T. Gowers andB. Maurey in 1997. This new insight into the geometry of Banah spaes omplementedin eah other leads naturally to the Strong Square-hyperplane Problem whih is loselyrelated to the Shroeder�Bernstein Problem.1. Introdution. Let X and Y be Banah spaes. We write Y

c
→֒ X if

Y is isomorphi to a omplemented subspae of X, that is, X ∼ Y ⊕ A forsome Banah spae A. In this ase, we say that A is a supplement of Y in
X and we also write Y

A
→֒ X. X ∼ Y means that X is isomorphi to Y and

X 6∼ Y means that X is not isomorphi to Y . If n ∈ N = {1, 2, . . . }, then
Xn indiates the �nite sum of n opies of X. It is useful to de�ne X0 = {0}.Suppose that X and Y are Banah spaes omplemented in eah other,that is,(1.1) Y

c
→֒ X and X

c
→֒ Y.In 1996, W. T. Gowers [14℄ solved the so-alled Shroeder�Bernstein Problemfor Banah spaes by showing that X is not neessarily isomorphi to Y . Thisanswer in the negative opens two diretions of researh. The �rst is to providenew negative solutions to this problem with some partiular properties (see[5℄�[9℄, [11℄ and [16℄). The seond is to ask what additional onditions on

X and Y satisfying (1.1) ensure that X is isomorphi to Y (see [10℄, [12℄and [13℄).2000 Mathematis Subjet Classi�ation: Primary 46B03, 46B20.Key words and phrases: Peªzy«ski's deomposition method, Shroeder�Bernsteinproblem. [105℄ © Instytut Matematyzny PAN, 2008



106 E. M. GALEGO
Conerning this last diretion, it is well known that Peªzy«ski's de-omposition method [3, p. 63℄, whih has played an important role in theisomorphi theory of lassial Banah spaes, states that X ∼ Y if thesespaes satisfy (1.1) and the following Deomposition Sheme:

{

X ∼ X2,

Y ∼ Y 2.The present work is a ontinuation of [10℄, [12℄ and [13℄ in the sense that wepresent some alternatives to Peªzy«ski's deomposition method in Banahspaes. Our starting point is the fat that the �rst ondition of (1.1), Y c
→֒ X,means that there exists a Banah spae A suh that Y

A
→֒ X. Therefore aneessary ondition for (1.1) to yield X ∼ Y is that(1.2) Y

A
→֒ X and X

A
→֒ Y.So we de�neDefinition 1.1. Two Banah spaes X and Y are symmetrially om-plemented in eah other if there exists a Banah spae A satisfying (1.2).Notie that if X and Y are Banah spaes symmetrially omplementedin eah other then X2 ∼ Y 2. Indeed, let A be a Banah spae satisfying(1.2). Then(1.3) X ∼ Y ⊕ A ∼ X ⊕ A ⊕ A = X ⊕ A2.Adding X to both sides of (1.3) we dedue

X2 ∼ X2 ⊕ A2 ∼ Y 2.We do not know examples of Banah spaes X and Y omplemented in eahother and satisfying X2 ∼ Y 2 whih are not symmetrially omplementedin eah other.Unfortunately, two Banah spaes whih are symmetrially omplem-ented in eah other are not neessarily isomorphi. Indeed, in [14℄ there wasonstruted a Banah spae Z isomorphi to Z3 but not to Z2. Thus
Z2 Z

→֒ Z and Z
Z
→֒ Z2 but Z 6∼ Z2.Moreover, even when the spae A from (1.2) is the omplex salars C it doesnot imply that X ∼ Y . Indeed, in [16, p. 559℄, W. T. Gowers and B. Maureyintrodued a Banah spae W isomorphi to eah of its subspaes of o-dimension 2, but not isomorphi to any of its hyperplanes. Therefore(1.4) W ⊕ C

C

→֒ W and W
C

→֒ W ⊕ C but W 6∼ W ⊕ C.However, Banah spaes X and Y symmetrially omplemented in eah otherare isomorphi whenever there exists a spae A satisfying (1.2) and A ∼ A2m
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for some m ∈ N. Indeed, adding A2 to both sides of (1.3) we obtain
X ∼ X ⊕ A2 ∼ X ⊕ A2 ⊕ A2 = X ⊕ A4.So by indution

X ∼ X ⊕ A2m ∼ X ⊕ A ∼ Y.Finally, inspired by the last remark, notie that we an strengthen (1.2) insuh a way that the new onditions guarantee X ∼ Y . For example, X ∼ Ywhenever there exists a supplement A of Y in X satisfying
Y 2 A5

→֒ X and X2 A
→֒ Y.Indeed, in this ase(1.5) X ∼ (Y ⊕ A)2 ⊕ A3 ∼ X2 ⊕ A ⊕ A2 ∼ Y ⊕ A ⊕ A ∼ X ⊕ A.Now adding X ⊕ A to both sides of (1.5) we obtain

Y ∼ X2 ⊕ A ∼ X2 ⊕ A ⊕ A ∼ Y ⊕ A ∼ X.So the natural question whih originated the researh of this paper is whetherone an determine all quadruples (p, q, r, s) in N suh that X ∼ Y wheneverthere exists a supplement A of Y in X satisfying
Y p Aq

→֒ X and Xr As

→֒ Y.To answer a�rmatively this question it is onvenient to introdueDefinition 1.2. A quadruple (p, q, r, s) in N is a Cantor�Shroeder�Bernstein Quadruple for Banah spaes (for short, CSBQ) if X ∼ Y when-ever there exists a supplement A of Y in X suh that(1.6) Y p Aq

→֒ X and Xr As

→֒ Y.We also say that Γ = (q−1)(s+1)+(p− q)(s+r) is the Cantor�Shroeder�Bernstein disriminant of the quadruple (p, q, r, s).The main aim of this paper is to present a haraterization of the CSBQ'sin terms of their disriminants Γ (see Theorem 1.3). This result suggests anintriguing problem onerning the geometry of the hyperplanes of Banahspaes (see Problem 1.4).Theorem 1.3. A quadruple (p, q, r, s) in N with disriminant Γ is aCSBQ if and only if one of the following onditions holds :(a) Γ = 0, r = 1 and gcd(q − 1, s + 1) = 1;(b) Γ 6= 0 and Γ divides p − 1 and r − 1.The Banah spaes onstruted by W. T. Gowers and B. Maurey in[16, p. 563℄ and the main result of [13℄ will be fundamental in the proof ofTheorem 1.3 (see Remarks 2.1 and 2.2 and also the proofs of Proposition 3.1and Lemma 4.1).
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Nevertheless, we have not been able to obtain a natural generalization ofTheorem 1.3, that is, one involving �nite sums of X, Xm, m ∈ N, m ≥ 2,instead of X in the �rst ondition of (1.6). In partiular, in the simplestase of m = 2, we do not know whether two Banah spaes X and Y areisomorphi whenever there exists a supplement A of Y in X satisfying(1.7) Y 2 A

→֒ X2 and X
A
→֒ Y.On one hand, observe that (1.7) implies that X ∼ Y when A ∼ Xp ⊕Y q forsome p, q ∈ N ∪ {0} with p + q ≥ 1. Indeed, in this ase,

X ∼ Y ⊕ A ∼ Xp ⊕ Y q+1,and
Y 2 ∼ Y ⊕ A ⊕ X ∼ X2 ∼ Y 2 ⊕ A ∼ Y ⊕ Y ⊕ A ∼ Y ⊕ X.Thus, aording to Remark 2.2 below, X ∼ Y .On the other hand, we do not know how to solve the above problemeven when A is the smallest possible non-null spae, that is, the �eld of realor omplex salars. Notie that in this ase, indiating by K the �eld inquestion, we have

X2 ∼ Y 2 ⊕ K ∼ (X ⊕ K)2 ⊕ K ∼ X ⊕ X ⊕ K2 ⊕ K ∼ X2 ⊕ K.Thus (1.7) an be rewritten as follows:
X2 ∼ X2 ⊕ K and X ∼ X ⊕ K2.Hene our searh for alternatives to Peªzy«ski's deomposition method leadsnaturally to:Problem 1.4 (Strong Square-hyperplane Problem). Let X be a Banahwhose square spae is isomorphi to its hyperplanes. Suppose that X is iso-morphi to its subspaes of odimension 2. Does it follow that X is isomor-phi to its hyperplanes?Observe that the Banah spae W mentioned in (1.4) is a andidatefor a negative solution to Problem 1.4. Moreover, evidently the answer toProblem 1.4 is a�rmative if the following problem has a positive solution.Problem 1.5 (Square-hyperplane Problem). Let X be a Banah spaewhose square is isomorphi to its hyperplanes. Is X itself isomorphi to itshyperplanes?Finally, we reall that a Banah spae H is hereditarily indeomposable(H.I.) if no losed subspae E of H ontains a pair of in�nite-dimensionallosed subspaes M and N suh that E = M ⊕N . In [15℄ W. T. Gowers andB. Maurey gave the �rst example of a H.I. spae. We refer to [2℄ for a detailedsurvey of results about H.I. spaes. These spaes have been used to providenegative answers to several questions in Banah spae theory (see for example
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[1℄, [7℄, [15℄�[17℄). These spaes may be useful in solving Problems 1.4 and1.5; we only remark that no H.I. spae itself is a solution to Problem 1.4.Furthermore, they are not solutions to Problem 1.5 beause the square of aH.I. spae is not isomorphi to its hyperplanes [4, Corollary 5℄.2. Preliminaries. We start by realling some results on pairs of Banahspaes whih are isomorphi to omplemented subspaes of eah other.Remark 2.1. In [16, p. 563℄ there were onstruted Banah spaes Xt,for every t ∈ N, t ≥ 2, having the following property: Xm
t ∼ Xn

t , with
m, n ∈ N, if and only if m is equal to n modulo t.Remark 2.2. In [13℄ a quintuple (p, q, r, s, t) in N ∪ {0} with p + q ≥ 2,
r + s + t ≥ 3, (r, s) 6= (0, 0) and t ≥ 1 was said to be a Shroeder�Bernsteinquintuple (for short, SBq) if X ∼ Y whenever the Banah spaes X and Ysatisfy (1.1) and the following Deomposition Sheme:

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr ⊕ Y s.The number ∇ = (p − 1)(s − t) − rq was alled the disriminant of thequintuple (p, q, r, s, t).We reall the following haraterization of the SBq's obtained in [13℄: Let
(p, q, r, s, t) be a quintuple in N with p + q ≥ 2, r + s + t ≥ 3, (r, s) 6= (0, 0)and t ≥ 1. Then (p, q, r, s, t) is a SBq if and only if ∇ 6= 0 and ∇ divides
p + q − 1 and r + s − t.3. Su�ient onditions for a quadruple (p, q, r, s) in N to be aCSBQ. The main goal of this setion is to prove the su�ieny part ofTheorem 1.3, by proving Propositions 3.1 and 3.2 below.Proposition 3.1. Let (p, q, r, s) be a quadruple in N with disrimi-nant Γ . If Γ 6= 0 and Γ divides p − 1 and r − 1 then (p, q, r, s) is a CSBQ.Proof. Let X and Y be Banah spaes satisfying (1.6) for some sup-plement A of Y in X and quadruple (p, q, r, s) in N suh that Γ 6= 0 and
Γ divides p − 1 and r − 1. We will show that X ∼ Y . It is onvenient todistinguish two ases: p ≤ q and p > q.
Case 1: p ≤ q. There are two subases: Γ > 0 and Γ < 0.
Subcase 1.1: Γ > 0. Let m, n ∈ N ∪ {0} be suh that p − 1 = mΓ and

r − 1 = nΓ . We an hek that(3.1) Γ = (s + 1)(p − 1) − (q − p)(r − 1).Thus(3.2) m(s + 1) = 1 + n(q − p).
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By the �rst ondition of (1.6), we have(3.3) X ∼ Y p ⊕ Ap ⊕ Aq−p ∼ Xp ⊕ Aq−p.Adding Xp−1 ⊕ Aq−p to both sides of (3.3) we onlude that

X ∼ Xp ⊕ Aq−p ∼ Xp+(p−1) ⊕ A2(q−p) = X2(p−1)+1 ⊕ A2(q−p).Therefore by indution we get(3.4) X ∼ Xn(p−1)+1 ⊕ An(q−p).Now aording to the seond ondition of (1.6),(3.5) Y ∼ Xr ⊕ As.Adding A to both sides of (3.5), we dedue that
X ∼ Y ⊕ A ∼ Xr ⊕ As+1.Thus proeeding as above, we see that(3.6) X ∼ Xm(r−1)+1 ⊕ Am(s+1).By the hoie of m and n, n(p− 1) = m(r− 1). Hene bearing (3.2) in mindand using (3.4) in (3.6) we �nd that(3.7) X ∼ X ⊕ A.Finally, adding Xr−1 ⊕ As to both sides of (3.7), we infer that

Y ∼ Xr ⊕ As ∼ X ⊕ Xr−1 ⊕ As ∼ X ⊕ Xr−1 ⊕ As ⊕ A

∼ Xr ⊕ As ⊕ A ∼ Y ⊕ A ∼ X.

Subcase 1.2: Γ < 0. Let m, n ∈ N be suh that p − 1 = −mΓ and
r − 1 = −nΓ . Hene n(p− 1) = m(r − 1) and aording to (3.1), n(q − p) =
1 + m(s + 1). Thus analogously to Subase 1.1, we use (3.6) in (3.4) to get
X ∼ Y .
Case 2: p > q. Sine X ∼ Y ⊕A, by the �rst ondition of (1.6) we have(3.8) X ∼ Y p−q ⊕ Y q ⊕ Aq ∼ Xq ⊕ Y p−q.Moreover, by the seond ondition of (1.6) we know that(3.9) Y ∼ Xr ⊕ As.Adding Y s to both sides of (3.9), we dedue that

Y s+1 ∼ Xr ⊕ As ⊕ Y s ∼ Xr ⊕ Xs = Xr+s.Thus by (3.8) we onlude that
{

X ∼ Xq ⊕ Y p−q,

Y s+1 ∼ Xr+s.Sine the disriminant ∇ of the quintuple (q, p− q, r + s, 0, s + 1) is equal to
−(q − 1)(s + 1) − (p − q)(r + s) = −Γ , by hypothesis we have ∇ 6= 0, and
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∇ divides q +(p− q)− 1 = p and r + s− (s+1) = r− 1. Furthermore p ≥ 2,so by Remark 2.2 we onlude that X ∼ Y .Proposition 3.2. Let (p, q, r, s) be a quadruple in N with disriminant
Γ = 0, r = 1 and gd(q − 1, s + 1) = 1. Then (p, q, r, s) is a CSBQ.Proof. By Bézout's theorem there exist m, n ∈ N ∪ {0} suh that

m(q − 1) = n(s + 1) + 1 or n(s + 1) = m(q − 1) + 1.Sine r = 1, it follows that Γ = (p− 1)(s+1) = 0 and therefore p = 1. Now,as in the proof of (3.4) and (3.5), we obtain
X ∼ X ⊕ An(q−1) and X ∼ X ⊕ Am(s+1).So it su�es to proeed as in the proof of Proposition 3.1 to dedue that

X ∼ Y .4. Neessary onditions for a quadruple (p, q, r, s) in N to be aCSBQ. The main purpose of this setion is to omplete the proof of Theo-rem 1.3. This theorem is an immediate onsequene of Propositions 4.2, 4.5and 4.6 below. In order to prove Proposition 4.2 we need to state an auxiliaryresult. It is related to the Banah spaes Xt mentioned in Remark 2.1.Lemma 4.1. Let p, q, r, s ∈ N and suppose that there exist i, j, t ∈ N with
t ≥ 2 satisfying(a) t divides i(q − 1) + j(p − q);(b) t divides i(s + r) − j(s + 1);() t does not divide j − i.Then (p, q, r, s) is not a CSBQ.Proof. Let n ∈ N be suh that nt−j+i > 0. Sine j+(nt−j+i)−i = nt,by the property of Xt mentioned in Remark 2.1 we have

Xj
t

A
→֒ X i

t , where A = Xnt−j+i
t .Next notie that from (a) and (b) we dedue that

Xjp
t

Aq

→֒ X i
t and X ir

t

As

→֒ Xj
t .Furthermore, () implies that X i

t is not isomorphi to Xj
t . Consequently,

(p, q, r, s) is not a CSBQ.Proposition 4.2. If a quadruple (p, q, r, s) in N is a CSBQ with dis-riminant Γ = 0, then r = 1 and gd(q − 1, s + 1) = 1.Proof. Suppose that the disriminant Γ of a quadruple (p, q, r, s) in Nis equal to zero. We will show that (p, q, r, s) is not a CSBQ when r ≥ 2 or
r = 1 and gd(q − 1, s + 1) ≥ 2.
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Case 1: r ≥ 2. Take i = s+1 and j = s+r. Thus i(s+r)− j(s+1) = 0and sine Γ = 0, it follows that i(q − 1) + j(p − q) = 0. Moreover, j − i =

r − 1 6= 0. Hene it is enough to take t ∈ N, t ≥ 2, not dividing r − 1 andapply Lemma 4.1 to see that (p, q, r, s) is not a CSBQ.
Case 2: r = 1 and gd(q − 1, s + 1) ≥ 2. Sine Γ = 0, we dedue that

p = 1. Take i = 1, j = 2 and t = gd(q − 1, s + 1). Hene the onditions(a)�() of Lemma 4.1 are satis�ed. Consequently, (p, q, r, s) is not a CSBQ.We need two lemmas.Lemma 4.3. Let (p, q, r, s) be a quadruple in N with disriminant Γ ≥ 2.Suppose that there exist integers α and β satisfying(a) −α(s + 1) > β(p − q);(b) β(q − 1) > α(s + r);() Γ does not divide β(p − 1) + α(r − 1).Then (p, q, r, s) is not a CSBQ.Proof. Let t = Γ and onsider the linear system(4.1) {

i(q − 1) + j(p − q) = αt,

i(s + r) − j(s + 1) = βt.The only solution of (4.1) is i = −α(s+1)−β(p−q) and j = β(q−1)−α(s+r).It follows from (a)�() that i > 0, j > 0 and t does not divide j − i =
β(p − 1) − α(r − 1). Moreover, learly t divides i(q − 1) + j(p − q) and
i(s + r) − j(s + 1). Therefore Lemma 4.1 implies that (p, q, r, s) is not aCSBQ.Taking t = −Γ and proeeding as in the proof of Lemma 4.3 we obtain:Lemma 4.4. Let (p, q, r, s) be a quadruple in N with disriminant Γ ≤−2.Suppose that there exist integers α and β satisfying(a) −α(s + 1) < β(p − q);(b) β(q − 1) < α(s + r);() Γ does not divide β(p − 1) − α(r − 1).Then (p, q, r, s) is not a CSBQ.Now we are ready to omplete the proof of the neessity part of Theo-rem 1.3, by proving Propositions 4.5 and 4.6 below.Proposition 4.5. If a quadruple (p, q, r, s) in N with disriminant Γ 6= 0is a CSBQ , then Γ divides p − 1.Proof. Assume that a quadruple in N has disriminant Γ 6= 0 and Γ doesnot divide p−1. We will show that it is not a CSBQ. We onsider two ases:
Γ ≥ 2 and Γ ≤ −2.
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Case 1: Γ ≥ 2. We distinguish three subases: p < q, p = q and p > q.
Subcase 1.1: p < q. Then q > 1 and aording to the de�nition of Γ ,

(s + r)/(q − 1) < (s + 1)/(q − p).Take α = q − p and β = s + 2. Hene
(s + 1)/(q − p) < β/α and β(p − 1) − α(r − 1) = Γ + p − 1.By Lemma 4.3, we infer that (p, q, r, s) is not a CSBQ.

Subcase 1.2: p = q. Then Γ = (p − 1)(s + 1) and therefore p ≥ 2.Take α = 1 − q and β = 1 − s − r. Hene α < 0, β(q − 1) > α(s + r) and
β(p − 1) − α(r − 1) = −Γ + p − 1. Thus Lemma 4.3 implies that (p, q, r, s)is not a CSBQ.
Subcase 1.3: p > q. We onsider the subases q = 1 and q > 1.
Subcase 1.3.1: q = 1. Then Γ = (p − 1)(s + r) > 0 and hene p ≥ 2.Take α = 1 − p and β = s. Then α < 0, β(p − 1) < −α(s + 1) and

β(p− 1)−α(r− 1) = Γ − (p− 1). Aording to Lemma 4.3, (p, q, r, s) is nota CSBQ.
Subcase 1.3.2: q > 1. Then by the de�nition of Γ we have

(s + 1)/(q − p) < (s + r)/(q − 1).Take α = q−p and β = s+2. So β/α < (s+1)/(q−p) and β(p−1)−α(r−1) =
Γ + p− 1. Therefore again by Lemma 4.3 we dedue that (p, q, r, s) is not aCSBQ.
Case 2: Γ ≤ −2. Then by the de�nition of Γ , p < q and

(s + 1)/(q − p) < (s + r)/(q − 1).Take α = q−p and β = s. So β/α < (s+1)/(q−p) and β(p−1)−α(r−1) =
Γ − (p − 1). Thus Lemma 4.4 implies that (p, q, r, s) is not a CSBQ.Proposition 4.6. If a quadruple (p, q, r, s) in N with disriminant Γ 6= 0is a CSBQ , then Γ divides r − 1.Proof. Suppose that a quadruple in N has disriminant Γ 6= 0 and Γdoes not divide r − 1. We will show that it is not a CSBQ. We onsider twoases: Γ ≥ 2 and Γ ≤ −2.
Case 1: Γ ≥ 2. Then aording to the de�nition of Γ ,

(q − p)/(s + 1) < (q − 1)/(s + r).Take α = q − p − 1 and β = s + 1. Hene α/β < (q − p)/(s + 1) and
β(p − 1) − α(r − 1) = Γ + r − 1. By Lemma 4.3, we infer that (p, q, r, s) isnot a CSBQ.
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Case 2: Γ ≤ −2. Then again by the de�nition of Γ ,

(q − 1)/(s + r) < (q − p)/(s + 1).Take α = q − p + 1 and β = s + 1. It follows that (q − p)/(s + r) < α/β and
β(p−1)−α(r−1) = Γ − (r−1). It su�es to apply Lemma 4.4 to onludethat (p, q, r, s) is not a CSBQ.Aknowledgements. The author would like to thank the referee for hisomments.

REFERENCES[1℄ G. Alexandrov, D. Kutzarova and A. Plihko, A separable spae with no Shauderdeomposition, Pro. Amer. Math. So. 127 (1999), 2805�2806.[2℄ S. A. Argyros and A. Tolias, Methods in the theory of hereditarily indeomposableBanah spaes, Mem. Amer. Math. So. 170 (2004), no. 806.[3℄ P. G. Casazza, The Shroeder�Bernstein property for Banah spaes, in: Contemp.Math. 85, Amer. Math. So., 1989, 61�77.[4℄ V. Ferenzi, Hereditarily �nitely deomposable Banah spaes, Studia Math. 123(1997), 135�149.[5℄ V. Ferenzi and E. M. Galego, Some results about the Shroeder�Bernstein propertyfor separable Banah spaes, Canad. J. Math. 59 (2007), 63�84.[6℄ E. M. Galego, On solutions to the Shroeder�Bernstein problem for Banah spaes,Arh. Math. (Basel) 79 (2002), 299�307.[7℄ �, Banah spaes omplemented in eah other without isomorphi �nite sums, Bull.Polish Aad. Si. Math. 50 (2002), 1�9.[8℄ �, The Shroeder�Bernstein index for Banah spaes, Studia Math. 164 (2004),29�38.[9℄ �, On pairs of Banah spaes whih are isomorphi to omplemented subspaes ofeah other , Colloq. Math. 101 (2004), 279�287.[10℄ �, An arithmeti haraterization of deomposition methods in Banah spaes sim-ilar to Peªzy«ski's deomposition method , Bull. Polish Aad. Si. Math. 52 (2004),273�282.[11℄ �, A remark on non-separable solutions to the Shroeder�Bernstein problem forBanah spaes, Results Math. 47 (2005), 55�60.[12℄ �, An arithmetial haraterization of deomposition methods in Banah spaes viasupplemented subspaes, Glasgow Math. J. 47 (2005), 489�500.[13℄ �, Shroeder�Bernstein quintuples for Banah spaes, Bull. Polish Aad. Si. Math.54 (2006), 113�124.[14℄ W. T. Gowers, A solution to the Shroeder�Bernstein problem for Banah spaes,Bull. London Math. So. 28 (1996), 297�304.[15℄ W. T. Gowers and B. Maurey, The unonditional basi sequene problem, J. Amer.Math. So. 6 (1993), 851�874.[16℄ �, �, Banah spaes with small spaes of operators, Math. Ann. 307 (1997), 543�568.



CANTOR�SCHROEDER�BERNSTEIN QUADRUPLES 115

[17℄ N. Tomzak-Jaegermann, A solution of the homogeneous Banah spae problem,in: Canadian Mathematial Soiety, 1945�1995, Vol. 3, Canad. Math. So., 1996,267�286.Department of Mathematis � IMEUniversity of São PauloSão Paulo 05315-970, BrazilE-mail: eloi�ime.usp.br Reeived 12 January 2007;revised 4 May 2007 (4858)


