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ON FAITHFUL PROJECTIVE REPRESENTATIONS OF FINITE
ABELIAN p-GROUPS OVER A FIELD OF CHARACTERISTIC p

BY

LEONID F. BARANNYK (Stupsk)

Abstract. Let G be a noncyclic abelian p-group and K be an infinite field of finite
characteristic p. For every 2-cocycle A € Z2(G, K*) such that the twisted group algebra
K*Q@ is of infinite representation type, we find natural numbers d for which G has infinitely
many faithful absolutely indecomposable A-representations over K of dimension d.

0. Introduction. Throughout this paper, we use the following nota-
tions: p > 2 is a prime; K is an infinite field of characteristic p; K* is the
multiplicative group of K; KP = {a? : « € K}; G is a finite p-group of order
|G|; e is the identity element of G |g| is the order of g € G; soc B is the
socle of an abelian p-group B and exp B is the exponent of B. Moreover, we
denote by Z%(G, K*) the group of all K*-valued normalized 2-cocycles of the
group GG, where we assume that G acts trivially on K* (see [15, Chapter 1]).

Given a cocycle \:G x G — K* in Z*(G, K*), we denote by K*G the
twisted group algebra of the group G over the field K with the cocycle A
and by rad KAG the radical of K*G. We set KAG = K*G/rad K*G. A
K-basis {ugy : g € G} of KAG satistying uqup = Aaptqp for all a,b € G is
called natural. All K*G-modules are assumed to be finitely generated left
modules. If H is a subgroup of GG, we often use the same symbol for an
element \: G x G — K* of Z%(G, K*) and its restriction to H x H. In this
case, K*H is a subalgebra of K*G.

If M is a K*G-module, then we denote by My the K*H-module ob-
tained by restriction of the algebra. If N is a K*H-module then N¢ =
K G ®pap N is the induced K*G-module.

Let Z2(G, K*)s be the set of all cocycles A € Z2?(G, K*) such that
the algebra K G is of infinite representation type, that is, the number of
isomorphism classes of finite-dimensional indecomposable K*G-modules is
infinite (see [1, p. 25]). Finally, given A € Z2(G, K*), we denote by Ker(\)
the union of all cyclic subgroups (g) of G such that the restriction of A to
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(g) x (g) is a coboundary. We recall from Lemma 1 of [2] that G’ C Ker()\),
Ker(\) is a normal subgroup of G and the restriction of A to Ker(A) x Ker(\)
is a coboundary. The set Ker()) is called the kernel of \.

Let V be a finite-dimensional vector space over K and I' : G — GL(V)
a projective representation of G with a cocycle A € Z?(G,K*). We refer
to I' as a A-representation of G over the field K (see [15, p. 106]). If we
view V as a module over K*G, we say that V is the underlying module of
the A-representation I'. Let PGL(V) = GL(V)/K* - 1y and 7 : GL(V) —
PGL(V) be the canonical group homomorphism. If 7o I : G — PGL(V) is
a monomorphism, the representation I is called faithful.

We recall from [10, p. 437] that a K G-module V is defined to be ab-
solutely indecomposable if for every field extension L of K, L ®k V is an
indecomposable module over L @ x K*G.

In this paper we continue the study of faithful projective representations
of finite p-groups over fields of characteristic p as begun in [3]. Our investiga-
tions are also motivated by the results of P. M. Gudivok [11] and G. J. Janusz
[12, 13|. In particular, they show that a noncyclic abelian p-group A of order
|A| # 4 has infinitely many absolutely indecomposable linear representa-
tions in each dimension d > 2 if the ground field is infinite. This result,
together with the result by V. A. Bashev [5], gives a solution of the second
Brauer—Thrall conjecture for group algebras of finite groups (see [1, p. 138]
for a formulation of the conjecture). Moreover, G. J. Janusz [13] has proved
that if p(d—1) > exp A, then there exist infinitely many isomorphism classes
of absolutely indecomposable faithful linear representations of A of dimen-
sion d.

Now we briefly present the main results of the paper. In Section 1 we
prove that if G is a noncyclic abelian p-group, then for any natural n > 2 and
for any cocycle A € Z2(G, K*)s the group G has infinitely many nonequiv-
alent faithful absolutely indecomposable A-representations over K of dimen-
sion nt|G|, where t = 1/p? if p # 2, and t = 1/2 if p = 2 (Corollary 1.11).

In Section 2 we study the indecomposable projective representations of
a noncyclic abelian p-group G over a nonperfect field K of characteristic p
such that the K-algebra

K[z]/ (2" — o) @x Kla]/(a? = )
is not a field for any o, 3 € K*. Let A € Z%(G, K*)oo, d = dimg K*G and
1 if 4d < |G|,
- {2 if 4d = |G].
We show that in this case the group G has infinitely many nonequivalent

absolutely indecomposable A-representations over K of dimension nld for
any n > 2 (Theorem 2.3). If Ker(A\) = {e}, then d = expG and all I
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representations of G are faithful. Suppose that G = Ax B, A € Z%(G, K*)wo,
H =Ker()\), H= BNH, |A| >1,|B| > 1,exp B # 2 and soc B = soc H. We
prove that if exp A = p™, exp B = p® and p™ > exp(B/H), then the group
G has infinitely many nonequivalent faithful absolutely indecomposable -
representations over K of dimension np™ for any n > p*~1+1 (Theorem 2.5).

The reader is referred to [8], [14] and [15] for basic facts and notation
from group representation theory and to [1] and |7] for terminology, notation
and introduction to the representation theory of finite-dimensional algebras
over a field.

1. Faithful indecomposable projective representations of abelian
p-groups over an arbitrary field. In this section, K denotes an infinite
field of characteristic p.

LEMMA 1.1 ([13, p. 138]). Let G be an abelian p-group which is neither
cyclic nor of order four. If G has exponent p° and n is any natural num-
ber with n > p*~' + 1, then G has infinitely many nonequivalent faithful
absolutely indecomposable linear K -representations of dimension n.

Note that it is not shown in [13] that the representations constructed in
[13, pp. 139-144] are absolutely indecomposable. However, this follows by an
analysis of the construction given in [13]. To convince the reader, we present
an outline of the proof.

The general idea of the proof in [13] is to construct a K-algebra A and
imbed the group G into the group A* of all invertible elements of A.

Assume that p # 2 and G = (g1) X --- X (gr), where |g;| = p® and
c1 > -+ > ¢q. Let n be a natural number with pcl_l +1<n<p“ We set
A = K[X], where X" = 0 and X"~ ! = 0. Let a1, as,... be a basis for K
over the field of p elements. By |12, Theorem 3.1, A* = K* x U, where U is
a p-primary group. The group U is the direct product of the cyclic groups
(w;(cy)), where wj(a;) = 14 a; X7 for j € {1,...,n}, j is not divisible by p
and?=1,2,....It follows that there exist infinitely many ways of imbedding
G into A*, so that g; is mapped to 1 + X in each imbedding. Every such
imbedding T' gives rise to a faithful indecomposable representation of G' of
dimension n acting on A. Let K be a field extension of K and A = K @ A.
Then T is also a monomorphism of G into A* and T'(G) generates AasaK-
algebra. Hence T gives rise to an absolutely indecomposable representation
of G. Distinct imbeddings of G into A* give rise to mutually nonequivalent
representations of G.

Now suppose that

pcl—l +pcr—1 S n S pcl"l‘cr _ 2
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Select natural numbers e and f such that
Pl <e<pt, pTTI 1< f<p

and
e+ f—-2<n<ef-2

Let A=A, ;= K[X,Y] be the K-algebra on two commuting generators X
and Y that satisfy

Xe=0, Xe¢l+#£o0,

(1.1)
Yf=0 Y/ 10

Denote by I, the ideal of A, ; generated by the elements
Xalflyffl _i_,YXeflybtfl Xaiybi
where v is any nonzero element in K, a;, b; are natural numbers for i =

1,...,t and
1< <ar< - <ar <e—1,

(1.2)
lgbt<bt_1<"'<b1§f—l.

Since A, s is a local algebra, A, /I, is an indecomposable A, -module.
There exists at least one pair of sequences (1.2) such that dimg(Ae ¢/1)
= n. The modules A r/I, and A, s/Is (both constructed from the same
sequences (1.2)) are isomorphic if and only if v = §.

Let T : G — Aj ; be amonomorphism such that T'(g1) = 1+X, T(g;) is in
K[X] fori <randT(g,) =1+Y. Since T'(g) generates A, ; as a K-algebra,
nonisomorphic A, r-modules give rise to nonequivalent representations of G.
Moreover, A, ¢/ is the underlying module of a faithful indecomposable
representation of G over K of dimension n.

Let V(™) be a vector space over K with basis v1, ..., U, uo, Ui, - - - , Um.
Define

Xv; = ui—1, Yv, =u; fOfiE{l,...,m},
and
Xuj =Yu; forallje{0,1,...,m}.

Then V(™) becomes an Ac p-module. Let e > 3 and f > 3. We can select
sequences (1.2) with ¢ > 2 such that dimg (A, r/I,) = do, where dy is any
number with e + f — 1 < dy < ef — 3. Let v be any nonzero element of K
and M, = U,/W,, where

Uy =V @ Ap/T,, Wy = K(upn, XY 4 1)

The A. r-module M, is indecomposable and dimg M, = 2m + dy. One can
choose m and dp in such a way that 2m + dy = n for any given n > ef — 2.
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We assume again that G acts upon M, via T(G) from the previous
case. Then M, is the underlying K G-module of a faithful indecomposable
representation of G.

Let K be a field extension of K, /L,f = IN([X, Y] the IN(—algebra on two
commuting generators X and Y that satisfy relations (1.1), and ge, ¢/ f,y,
Mw be indecomposable 1167 s-modules constructed by the same rules as the
Ac s-modules A, /I, M,. Then we can identify ge,ﬁ fI:,, Zej/f% Mv with

Kok Aoy, Koxl,, KogAf/l, Kok M,

respectively. It follows that the A, r-modules A ¢/I, and M, are absolutely
indecomposable.

LEMMA 1.2 ([5]). Let G be an abelian group of type (2,2) and K an
infinite field of characteristic 2. Then G has infinitely many nonequivalent
faithful absolutely indecomposable linear K -representations of dimension 2n
for any natural number n.

LEMMA 1.3 (|11}, [13]). Let G be an abelian p-group which is neither
cyclic nor of order four. Then G has infinitely many nonequivalent absolutely
indecomposable linear K -representations of any dimension n > 2.

By Theorem 1.1 in [4], an algebra K G is of finite representation type if
and only if K G is a uniserial algebra. It is well known (see [15, p. 74]) that
for any A € Z%(G, K*), KXG is a finite purely inseparable field extension
of K. Hence, dimgx K*G divides |G|. If G is an abelian group, then K G is
a commutative algebra for any A.

Set ix = sup{0,m}, where m is a natural number such that the K-
algebra

Klz]/(2? —m) @k -+ @k K[z]/ (2" = vm)

is a field for some 71,..., v, € K*. By Proposition 1.1 of [4], for any natu-
ral t, there exists a field K such that ix = t.

Let G = (a1) X -+ X (as) be an abelian p-group. We recall that from
Proposition 1.3 in [4], the following statements hold:

(i) If s > ix + 2, then K@ is of infinite representation type for every
A€ Z%G,K¥).

(i) If 2 < s < ig + 1, then the group algebra KG is of infinite rep-
resentation type and there exists an algebra K*G that is of finite
representation type.

(iii) If s = 1, then K G is of finite representation type for any \ €
Z%(G,K™).
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LEMMA 1.4. Let G be an abelian p-group and X\ € Z?(G,K*). The
group G has a faithful irreducible \-representation over K if and only if
Ker(\) = {e}.

Proof. Apply [3, Proposition 9]. =

Note that if K is not a perfect field, then the factor group K*/(KP)* is
infinite [6]. In this case there exist infinitely many pairwise noncohomologous

cocycles A € Z%(G, K*) such that Ker()\) = {e}.

LEMMA 1.5 ([9, p. 119]). Let G be an abelian p-group, and T a subgroup
of socG. Then there exists a decomposition G = A X B such that soc B =T.

PROPOSITION 1.6. Let G be an abelian p-group, K*G a uniserial algebra,
p" the nilpotency index of rad K*G and H = Ker()\).

(i) Ewvery indecomposable K*G-module is isomorphic to one of Vi =
K*G/(rad K*G)7, where j € {1,...,p"}. If d = dimg V1, then K-
dimension of Vj is equal to dj.

(i) If H = {e}, then every Vj is the underlying K*G-module of a faith-
ful indecomposable A-representation of the group G over K.

(iii) If H # {e}, then V; is the underlying KAG-module of a faithful
indecomposable A-representation of G over K if and only if j >
prl 41,

Proof. By Proposition 1.3 in [4], there exists a decomposition of G into
a direct product G = A x B such that K*A is a field and B = (b). Let
L = KA and |B| = p". Then
pt—1
K*G=I1'B= P Lup, uf =+,
=0
where 7 < n and v € L*. Moreover v € LP if r < n. Let m = n — r. Now we
have rad L*B = (ugm —v)L*B. Up to a K AG-isomorphism, the indecom-
posable K*G-modules are exhausted by the modules V; = L*B/(rad L*B),
where j = 1,...,p". If H = {e}, then, by Lemma 1.4, every Vj is the un-
derlying K*G-module of a faithful indecomposable A-representation of the
group G.
Assume that H # {e}. Since K H is of finite representation type, H is a
cyclic group. In view of Lemma 1.5, we may assume that soc H = soc B. Let

n—1

c=b""" and U = ug
Then ¢ € H and |¢| = p. The K*G-module Vj is not the underlying module
of a faithful A-representation of G if and only if (u. — pue) LB C (rad LM B)
for some o € K*. Then ub — oPu, = 0, which yields ou, = ’ypr_l. Since

r—1

Ue — QUe = (Ufm - '7)p )
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it follows that Vj; is not the underlying module of a faithful A-representation

of G over K if and only if j < p"~!. m

LEMMA 1.7. Let H be a subgroup of a p-group G and X € Z*(G,K*).
If V is an absolutely indecomposable K*H-module, then the induced module
V% is also absolutely indecomposable.

Proof. Let K be the algebraic closure of K, K H = K®K K H, KA\G =
K QK K*G and V = K @k V. We may consider K H to be a subalgebra
of K*G. Every cocycle from Z2(G, K) is a coboundary (see [15, p. 43]).

Hence K G is the group algebra of G over K. By Green’s theorem (see
[10, p. 438]), the induced module

V6 R o, T
is indecomposable. Since
k@}( (KAG Qg V) = K\G g (R' Qi V)

as K*G-modules (see [14, p. 209]), the K*G-module K ® V¢ is indecom-
posable. Consequently, the K*G-module V¢ is absolutely indecomposable. m

Denote by [M] the isomorphism class of K*G-modules that contains M.
Let AInd(K*G, s) be the set of all [V'] where V is an absolutely indecompos-
able K*G-module of K-dimension s. We denote by FAInd(K*G, s) the set

of all [W] where W is the underlying K*G-module of a faithful absolutely
indecomposable A-representation of G over K of dimension s.

LEMMA 1.8. Let G be an abelian p-group, \,u € Z%(G,K*), K’\G =
K*G, {uy : g € G} a natural K-basis of K*G corresponding to A\ and
{vg : g € G} a natural K-basis of K*G corresponding to . Assume that C
is the socle of Ker(\) and u, = agv, for every x € C, where a, € K*. Let D
be a subgroup of G, C C D, V an absolutely indecomposable K" D-module
and let Vo be the underlying K*C-module of a faithful \-representation
of C. Then the induced module V€ = KMG Qgup V is the underlying
K*G-module of a faithful absolutely indecomposable A-representation of G.
Moreover, if [VE] = [ViF] then [Vi] = [V4].

Proof. In view of Lemma 1.7, V¢ is an absolutely indecomposable K*G-
module. Suppose that (ug — au)VE = 0 for some g € socG and some
a € K*. Since (u; — aue)?’VY = 0, we have uf = aPu., which yields
g € C. Therefore, (ug — aue)V = 0. It follows that g = e. Consequently,
V¢ is the underlying K*G-module of a faithful absolutely indecompos-
able A-representation of G. If V¥ = V,& then (V¥)p = (Vi¥)p. Since
(VjG)D%’Vj@ @Vforg-leehaveVl V5. m
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PROPOSITION 1.9. Let G be an abelian p-group, A € Z*(G,K*), H =
Ker(\) and p® = exp H. Assume that H is noncyclic. Let

- 1 if |H| >4,
|2 if |H| =4
Then the set FAInd(K G, nl|G : H|) is infinite for any n > p*~1 + 1.

Proof. In view of Lemmas 1.1 and 1.2, FAInd(K*H,nl) is infinite for
n > p*~! +1. By Lemma 1.8, the formula f([V]) = [VY] defines an injective
map f : FAInd(K*H, nl) — FAInd(K G, nl|G : H|). u

THEOREM 1.10. Let G be a noncyclic abelian p-group, Gog = socG, A €
ZQ(G, K*)Oo, d= dimK KAG() and

l—{l if 4d < |Gol,
2 if 4d =Gy

Then the set FAInd(K*G,nld|G : Gy|) is infinite for all n > 2.

Proof. Let H = Gy NKer(\) and B be a maximal subgroup of Gy with
K?B a field. Then Gy = B x C x H and K*G( = K*"Gy, where

Hbch,b/c'h! = Abp
for all b,/ € B, ¢,¢ € C and h,h € H. Obviously, d = dimg K*B =
|B|. Let D = C x H. Since A\ € Z*(G,K*)x, the group D is noncyclic
[4, p. 176]. By Lemmas 1.1 and 1.2, FAInd(K D, nl) is infinite for every n > 2.
Hence, by Lemma 1.8, FAInd(K*Gy, nld) is infinite. Applying again Lemma
1.8, we conclude that FAInd(K G, nld|G : Gy|) is infinite for any n > 2. =

COROLLARY 1.11. Let G be a noncyclic abelian p-group and

t:{l/pz if p#2,
1/2 i p=2.
Then FAInd(K G, nt|G|) is infinite for any n > 2 and any cocycle \ €
732G, K*) o

Let G be a noncyclic abelian p-group with at most ¢x invariants.
By Proposition 1 of [2], there exists a cocycle A € Z?(G, K*)o such that
dimg K*G = |G|-p~2. Hence, in this case, Corollary 1.11 gives all dimensions

for which the group G has infinitely many faithful absolutely indecomposable
A-representations.

2. Faithful indecomposable projective representations of abelian
p-groups over a field K with ix = 1. In this section we assume that
K is a field of characteristic p with ix¢ = 1. That is, there exists a €
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K* such that the K-algebra K[z]/(zP — «) is a field, and the K-algebra
K[x]/(2P — B) @k K[z]/(xP — ~) is not a field for any 3,7 € K*. Since K
is not perfect, K is an infinite field. For example, if F' is a perfect field of

characteristic p and L = F(z) is the quotient field of the polynomial ring
F[z], then i, =1 (see [4, p. 174]).

LEMMA 2.1. Let  be a root of an irreducible polynomial zP" — o € K[x]
in some extension of K. Then for every 3 € K* there exists v € K(0)* such
that 3 = ~P"".

Proof. Because i = 1, we have

p—1 »
(2.1) B= (Dm0 )
r=0

for some u, € K. Let m > 2. We have

p—1
(2.2) My = (Z Vrsespnkl>pa
s=0

where v,5 € K. It follows from (2.1) and (2.2) that

If m > 2, we inductively continue the above construction. =

LEMMA 2.2. Let G = (a), |a] =p" and
-1
KAG = @ Kul, ul" = AP,
=0

where v € K*, v & KP and m < n. Then for every § € K* there exists an
invertible element z in K*G such that

2P = P .

Proof. Let 6 be a root of the polynomial 2P — ~, where » = n — m. By
Lemma 2.1,

p -1 '
D
3= (Z(sjeﬂ) , 6 eK.
j=0
It follows that
pT_]- . pn
( Z 5jufl) = 7" Ue. m
=0
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THEOREM 2.3. Let G be a noncyclic abelian p-group, A € Z?(G, K*)so,
d= dimKK—’\G and
1 if 4d < |G|,
B {2 if 4d =G|

Then the set AInd(K G, nld) is infinite for any n > 2.

Proof. By Lemmas 1.2 and 1.3, it is sufficient to consider the case d # 1.
Let {u, : g € G} be a natural K-basis of K*G. There exists a decomposition
G = (a) x B such that if |a|] = p" and H is the kernel of the restriction
of A to B x B, then b = VP ue, where s < r, v € K*, v ¢ KP, and
p"™* > exp(B/H). Let C = (c) be a group of order p"~* and D = C x B.
There exists an algebra homomorphism of K*G onto K#D = K¥C®y K*B,
where

K"C = EBKU@, P = .
i

By Lemma 2.1, K*D =2 KYC' ®g KB. Evidently d = p"~*. If B is not cyclic
and |B| > 4 then, in view of Lemmas 1.3 and 1.7, the set Alnd(K*D,n|C|)
is infinite for every n > 2.

Now let B be noncyclic and |B| = 4. If s = 0 then d = 2" and |G| = 4d.
By Lemmas 1.2 and 1.7, Alnd(K*G, 2nd) is infinite for any n. Assume that
s # 0. We have

K*G = @ Kuéuﬁu{;, uZ

041,52
where 61,00 € K*. Let §; ¢ K2. Then we may suppose that dy = 1. Let
0 € K[up,] and 0?> = v lu,. Then

2% 2 2
=" Ue, Uy, = O1Ue, Up, = O2Ue,

2T—S—1)2S+1

(ou; = Ue.

The order of the subgroup of G generated by a? " and by is equal to
25+2 > 8. Tt follows from this and Lemmas 1.3 and 1.7 that AInd(K G, nd)
is infinite for every n > 2.

Assume that B = (b) and |B| = p’. Since K*G is not a uniserial algebra,
we have

KAG = @ K], ol =9"ue, uf =" u,
7:7-]‘

where s > 0, m < t, moreover, if m < ¢ then é ¢ KP? and if m = t then
8 =1. Let 6 ¢ KP. There exists an algebra homomorphism of K*G onto

— R T—s+1 t—m+1
K'G = @Kvévg, vP = ~Pug, v%: = §Pvs.
,J
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By Lemma 2.2, we have

K“C_;':@Kv%wz, w? = Vg.
i,J
Because p'~™ 1 > 2, AInd(K*G, nd) is infinite for any n > 2 by Lemmas 1.3
and 1.7. Let § = 1. If p' > 2 or p* > 2 then AInd(K*G,nd) is infinite for
anyn > 2. If p=2,s=1,¢t =1, then 4d = |G|. In view of Lemmas 1.2
and 1.7, Alnd(K*G, 2nd) is infinite for all n.

COROLLARY 2.4. Let G be a noncyclic_abelian p-group of exponent p™,
A€ Z2(G,K*)oo, Ker()\) = {e}, d = dimx K*G and
1 if 4d < |G|,
- {2 if 4d=|G|.
Then d = p™ and FAInd(K*G, nld) is infinite for any n > 2.
Proof. Apply Lemma 1.4. u

Let us remark that K. Sobolewska in [16] has found some infinite subsets
of the set of all natural numbers m for which an abelian p-group G has
infinitely many indecomposable A-representations over K of dimension m,

where K is an arbitrary field and A € Z%(G, K*) .

THEOREM 2.5. Let G = A x B be an abelian p-group, A € Z%(G, K*) oo,
H =Ker(\), H=BNH, p = exp A and p" = exp(B/H). Assume that
|A| > 1, |B| > 1 and soc B =soc H.

(i) Let m > r and
- { 1 if expB#2 or if exp B=2 and [socG| > 8,
2 if expB =2 and |socG|=8.
Then p™ = dimgx K*G. If p* = expB then FAInd(K*G,nip™)

is infinite for all n > p*~' + 1. Moreover, the smallest dimension
of a faithful indecomposable \-representation of G over K equals
P+ 1). )

(ii) Let m < r. Denote by D a maximal subgroup of B with H C D
and exp(D/H) = p™. If p* = exp D then FAInd(K*G,np™|B : D))
is infinite for all n > p*~ 1 + 1.

Proof. Let A = A x Ag, where A; is a cyclic group and |A;| = exp A.
Since AN H = {e} and A € Z?(G, K*) s, it follows that K*A; is a field and
Ay X B is not a cyclic group.

(i) Assume that m > r. Denote by {uy : ¢ € G} a natural K-basis of
K*G corresponding to A. Let C' = Ay x B. Up to cohomology u|hh| = U, for
every h € soc B, and if g = aic, where a; € Ay, c € C, then ug = uy, u.. We
can view K*G as the twisted group algebra L *C' of the group C over the
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field L = K*A; with the cocycle A. By Lemma 2.1, the algebra L*C has a
group L-basis {v. : ¢ € C}, that is, v.vy = vee for all ¢, € C. We choose
this basis in such a way that v, = uy, for every h € soc B. We set vy = g, v¢
for every g = ajc, where a1 € Ay, c € C. If ¢ = d ¢/, where a} € 43, ¢ € C,
then vgv, = )‘al,a’luala’lvcd = )‘al,a’lvgg’- Let pigy = /\aha/1 for any g,¢' € G.
Then p € Z%(G, K*), K’G = K*G and {v, : g € G} is a natural K-basis of
K G corresponding to u. B

Let Az be an elementary abelian p-group of order |soc Ag| and C' =
Ay x B. In view of Lemmas 1.1 and 1.2, FAInd(KC,nl) is infinite for all
n > p*~1 4+ 1. It follows that AInd(KC,nl) has infinitely many elements [WW]
such that Wp is the underlying K B-module of a faithful linear representation
of B. Hence, by Lemma 1.8, FAInd(K G, nlp™) is infinite for all n > p*~141.

Let G; = A; x By, where Bj is a cyclic subgroup of B and |B;| = p®. By
|7, p. 170], the algebra K AG1 is uniserial. The nilpotency index of rad K*G4
is equal to p®. Since soc By C H, by Proposition 1.6, the smallest dimension
of a faithful A-representation of G over K equals p™(p°~! + 1). It follows
that the smallest dimension of a faithful indecomposable \-representation of
G over K also equals p™(p*~1 + 1).

(ii) Let m < r and T = A x D. Since expD > 2, by case (i),
FAInd(K*T, np™) is infinite for all n > p*~! 4 1, where p° = exp D. Hence,
in view of Lemma 1.8, FAInd(K*G,np™ - |G : T|) is also infinite. Since
|G : T| = |B : D|, the theorem is proved. m

COROLLARY 2.6. Let G be an elementary abelian p-group of order p™,
where m > 3, A € Z%(G,K*), Ker(\) # G and

- 1 if p#£2o0rif p=2and m > 4,
12 ifp=2and m=3.

Then dimgx K2G = p and FAInd(K G, nlp) is infinite for all n > 2.
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