COLLOQUIUM MATHEMATICUM

ON FAITHFUL PROJECTIVE REPRESENTATIONS OF FINITE ABELIAN p-GROUPS OVER A FIELD OF CHARACTERISTIC p

BY
LEONID F. BARANNYK (Słupsk)

Abstract

Let G be a noncyclic abelian p-group and K be an infinite field of finite characteristic p. For every 2-cocycle $\lambda \in Z^{2}\left(G, K^{*}\right)$ such that the twisted group algebra $K^{\lambda} G$ is of infinite representation type, we find natural numbers d for which G has infinitely many faithful absolutely indecomposable λ-representations over K of dimension d.

0. Introduction. Throughout this paper, we use the following notations: $p \geq 2$ is a prime; K is an infinite field of characteristic $p ; K^{*}$ is the multiplicative group of $K ; K^{p}=\left\{\alpha^{p}: \alpha \in K\right\} ; G$ is a finite p-group of order $|G| ; e$ is the identity element of $G ;|g|$ is the order of $g \in G$; soc B is the socle of an abelian p-group B and $\exp B$ is the exponent of B. Moreover, we denote by $Z^{2}\left(G, K^{*}\right)$ the group of all K^{*}-valued normalized 2-cocycles of the group G, where we assume that G acts trivially on K^{*} (see [15, Chapter 1]).

Given a cocycle $\lambda: G \times G \rightarrow K^{*}$ in $Z^{2}\left(G, K^{*}\right)$, we denote by $K^{\lambda} G$ the twisted group algebra of the group G over the field K with the cocycle λ and by $\operatorname{rad} K^{\lambda} G$ the radical of $K^{\lambda} G$. We set $\overline{K^{\lambda} G}=K^{\lambda} G / \operatorname{rad} K^{\lambda} G$. A K-basis $\left\{u_{g}: g \in G\right\}$ of $K^{\lambda} G$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$ is called natural. All $K^{\lambda} G$-modules are assumed to be finitely generated left modules. If H is a subgroup of G, we often use the same symbol for an element $\lambda: G \times G \rightarrow K^{*}$ of $Z^{2}\left(G, K^{*}\right)$ and its restriction to $H \times H$. In this case, $K^{\lambda} H$ is a subalgebra of $K^{\lambda} G$.

If M is a $K^{\lambda} G$-module, then we denote by M_{H} the $K^{\lambda} H$-module obtained by restriction of the algebra. If N is a $K^{\lambda} H$-module then $N^{G}=$ $K^{\lambda} G \otimes_{K^{\lambda} H} N$ is the induced $K^{\lambda} G$-module.

Let $Z^{2}\left(G, K^{*}\right)_{\infty}$ be the set of all cocycles $\lambda \in Z^{2}\left(G, K^{*}\right)$ such that the algebra $K^{\lambda} G$ is of infinite representation type, that is, the number of isomorphism classes of finite-dimensional indecomposable $K^{\lambda} G$-modules is infinite (see [1, p. 25]). Finally, given $\lambda \in Z^{2}\left(G, K^{*}\right)$, we denote by $\operatorname{Ker}(\lambda)$ the union of all cyclic subgroups $\langle g\rangle$ of G such that the restriction of λ to

[^0]$\langle g\rangle \times\langle g\rangle$ is a coboundary. We recall from Lemma 1 of [2] that $G^{\prime} \subset \operatorname{Ker}(\lambda)$, $\operatorname{Ker}(\lambda)$ is a normal subgroup of G and the restriction of λ to $\operatorname{Ker}(\lambda) \times \operatorname{Ker}(\lambda)$ is a coboundary. The set $\operatorname{Ker}(\lambda)$ is called the kernel of λ.

Let V be a finite-dimensional vector space over K and $\Gamma: G \rightarrow \mathrm{GL}(V)$ a projective representation of G with a cocycle $\lambda \in Z^{2}\left(G, K^{*}\right)$. We refer to Γ as a λ-representation of G over the field K (see [15, p. 106]). If we view V as a module over $K^{\lambda} G$, we say that V is the underlying module of the λ-representation Γ. Let $\mathrm{PGL}(V)=\mathrm{GL}(V) / K^{*} \cdot 1_{V}$ and $\pi: \mathrm{GL}(V) \rightarrow$ $\operatorname{PGL}(V)$ be the canonical group homomorphism. If $\pi \circ \Gamma: G \rightarrow \operatorname{PGL}(V)$ is a monomorphism, the representation Γ is called faithful.

We recall from [10, p. 437] that a $K^{\lambda} G$-module V is defined to be $a b$ solutely indecomposable if for every field extension L of $K, L \otimes_{K} V$ is an indecomposable module over $L \otimes_{K} K^{\lambda} G$.

In this paper we continue the study of faithful projective representations of finite p-groups over fields of characteristic p as begun in [3]. Our investigations are also motivated by the results of P. M. Gudivok [11] and G. J. Janusz $[12,13]$. In particular, they show that a noncyclic abelian p-group A of order $|A| \neq 4$ has infinitely many absolutely indecomposable linear representations in each dimension $d \geq 2$ if the ground field is infinite. This result, together with the result by V. A. Bashev [5], gives a solution of the second Brauer-Thrall conjecture for group algebras of finite groups (see [1, p. 138] for a formulation of the conjecture). Moreover, G. J. Janusz [13] has proved that if $p(d-1) \geq \exp A$, then there exist infinitely many isomorphism classes of absolutely indecomposable faithful linear representations of A of dimension d.

Now we briefly present the main results of the paper. In Section 1 we prove that if G is a noncyclic abelian p-group, then for any natural $n \geq 2$ and for any cocycle $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$ the group G has infinitely many nonequivalent faithful absolutely indecomposable λ-representations over K of dimension $n t|G|$, where $t=1 / p^{2}$ if $p \neq 2$, and $t=1 / 2$ if $p=2$ (Corollary 1.11).

In Section 2 we study the indecomposable projective representations of a noncyclic abelian p-group G over a nonperfect field K of characteristic p such that the K-algebra

$$
K[x] /\left(x^{p}-\alpha\right) \otimes_{K} K[x] /\left(x^{p}-\beta\right)
$$

is not a field for any $\alpha, \beta \in K^{*}$. Let $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}, d=\operatorname{dim}_{K} \overline{K^{\lambda} G}$ and

$$
l= \begin{cases}1 & \text { if } 4 d<|G| \\ 2 & \text { if } 4 d=|G| .\end{cases}
$$

We show that in this case the group G has infinitely many nonequivalent absolutely indecomposable λ-representations over K of dimension $n l d$ for any $n \geq 2$ (Theorem 2.3). If $\operatorname{Ker}(\lambda)=\{e\}$, then $d=\exp G$ and all λ -
representations of G are faithful. Suppose that $G=A \times B, \lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$, $H=\operatorname{Ker}(\lambda), \bar{H}=B \cap H,|A|>1,|B|>1, \exp B \neq 2$ and $\operatorname{soc} B=\operatorname{soc} H$. We prove that if $\exp A=p^{m}, \exp B=p^{s}$ and $p^{m} \geq \exp (B / \bar{H})$, then the group G has infinitely many nonequivalent faithful absolutely indecomposable λ representations over K of dimension $n p^{m}$ for any $n \geq p^{s-1}+1$ (Theorem 2.5).

The reader is referred to [8], [14] and [15] for basic facts and notation from group representation theory and to [1] and [7] for terminology, notation and introduction to the representation theory of finite-dimensional algebras over a field.

1. Faithful indecomposable projective representations of abelian

 p-groups over an arbitrary field. In this section, K denotes an infinite field of characteristic p.Lemma 1.1 ([13, p. 138]). Let G be an abelian p-group which is neither cyclic nor of order four. If G has exponent p^{s} and n is any natural number with $n \geq p^{s-1}+1$, then G has infinitely many nonequivalent faithful absolutely indecomposable linear K-representations of dimension n.

Note that it is not shown in [13] that the representations constructed in [13, pp. 139-144] are absolutely indecomposable. However, this follows by an analysis of the construction given in [13]. To convince the reader, we present an outline of the proof.

The general idea of the proof in [13] is to construct a K-algebra A and imbed the group G into the group A^{*} of all invertible elements of A.

Assume that $p \neq 2$ and $G=\left\langle g_{1}\right\rangle \times \cdots \times\left\langle g_{r}\right\rangle$, where $\left|g_{i}\right|=p^{c_{i}}$ and $c_{1} \geq \cdots \geq c_{r}$. Let n be a natural number with $p^{c_{1}-1}+1 \leq n \leq p^{c_{1}}$. We set $A=K[X]$, where $X^{n}=0$ and $X^{n-1} \neq 0$. Let $\alpha_{1}, \alpha_{2}, \ldots$ be a basis for K over the field of p elements. By [12, Theorem 3.1], $A^{*}=K^{*} \times U$, where U is a p-primary group. The group U is the direct product of the cyclic groups $\left\langle w_{j}\left(\alpha_{i}\right)\right\rangle$, where $w_{j}\left(\alpha_{i}\right)=1+\alpha_{i} X^{j}$ for $j \in\{1, \ldots, n\}, j$ is not divisible by p and $i=1,2, \ldots$ It follows that there exist infinitely many ways of imbedding G into A^{*}, so that g_{1} is mapped to $1+X$ in each imbedding. Every such imbedding T gives rise to a faithful indecomposable representation of G of dimension n acting on A. Let \widetilde{K} be a field extension of K and $\widetilde{A}=\widetilde{\sim} \otimes_{K} A$. Then T is also a monomorphism of G into \widetilde{A}^{*} and $T(G)$ generates \widetilde{A} as a \widetilde{K} algebra. Hence T gives rise to an absolutely indecomposable representation of G. Distinct imbeddings of G into A^{*} give rise to mutually nonequivalent representations of G.

Now suppose that

$$
p^{c_{1}-1}+p^{c_{r}-1} \leq n \leq p^{c_{1}+c_{r}}-2 .
$$

Select natural numbers e and f such that

$$
p^{c_{1}-1}+1 \leq e \leq p^{c_{1}}, \quad p^{c_{r}-1}+1 \leq f \leq p^{c_{r}}
$$

and

$$
e+f-2 \leq n \leq e f-2
$$

Let $A=A_{e, f}=K[X, Y]$ be the K-algebra on two commuting generators X and Y that satisfy

$$
\begin{array}{ll}
X^{e}=0, & X^{e-1} \neq 0 \tag{1.1}\\
Y^{f}=0, & Y^{f-1} \neq 0
\end{array}
$$

Denote by I_{γ} the ideal of $A_{e, f}$ generated by the elements

$$
X^{a_{1}-1} Y^{f-1}+\gamma X^{e-1} Y^{b_{t}-1}, \quad X^{a_{i}} Y^{b_{i}}
$$

where γ is any nonzero element in K, a_{i}, b_{i} are natural numbers for $i=$ $1, \ldots, t$ and

$$
\begin{align*}
& 1 \leq a_{1}<a_{2}<\cdots<a_{t} \leq e-1 \tag{1.2}\\
& 1 \leq b_{t}<b_{t-1}<\cdots<b_{1} \leq f-1
\end{align*}
$$

Since $A_{e, f}$ is a local algebra, $A_{e, f} / I_{\gamma}$ is an indecomposable $A_{e, f}$-module. There exists at least one pair of sequences (1.2) such that $\operatorname{dim}_{K}\left(A_{e, f} / I_{\gamma}\right)$ $=n$. The modules $A_{e, f} / I_{\gamma}$ and $A_{e, f} / I_{\delta}$ (both constructed from the same sequences (1.2)) are isomorphic if and only if $\gamma=\delta$.

Let $T: G \rightarrow A_{e, f}^{*}$ be a monomorphism such that $T\left(g_{1}\right)=1+X, T\left(g_{i}\right)$ is in $K[X]$ for $i<r$ and $T\left(g_{r}\right)=1+Y$. Since $T(g)$ generates $A_{e, f}$ as a K-algebra, nonisomorphic $A_{e, f}$-modules give rise to nonequivalent representations of G. Moreover, $A_{e, f} / I_{\gamma}$ is the underlying module of a faithful indecomposable representation of G over K of dimension n.

Let $V^{(m)}$ be a vector space over K with basis $v_{1}, \ldots, v_{m}, u_{0}, u_{1}, \ldots, u_{m}$. Define

$$
X v_{i}=u_{i-1}, \quad Y v_{i}=u_{i} \quad \text { for } i \in\{1, \ldots, m\}
$$

and

$$
X u_{j}=Y u_{j} \quad \text { for all } j \in\{0,1, \ldots, m\}
$$

Then $V^{(m)}$ becomes an $A_{e, f}$-module. Let $e \geq 3$ and $f \geq 3$. We can select sequences (1.2) with $t \geq 2$ such that $\operatorname{dim}_{K}\left(A_{e, f} / I_{\gamma}\right)=d_{0}$, where d_{0} is any number with $e+f-1 \leq d_{0} \leq e f-3$. Let γ be any nonzero element of K and $M_{\gamma}=U_{\gamma} / W_{\gamma}$, where

$$
U_{\gamma}=V^{(m)} \oplus A_{e, f} / I_{\gamma}, \quad W_{\gamma}=K\left(u_{m}, X^{a_{1}} Y^{f-1}+I_{\gamma}\right)
$$

The $A_{e, f}$-module M_{γ} is indecomposable and $\operatorname{dim}_{K} M_{\gamma}=2 m+d_{0}$. One can choose m and d_{0} in such a way that $2 m+d_{0}=n$ for any given $n>e f-2$.

We assume again that G acts upon M_{γ} via $T(G)$ from the previous case. Then M_{γ} is the underlying $K G$-module of a faithful indecomposable representation of G.

Let \widetilde{K} be a field extension of $K, \widetilde{A}_{e, f}=\widetilde{K}[X, Y]$ the \widetilde{K}-algebra on two commuting generators X and Y that satisfy relations (1.1), and $\widetilde{A}_{e, f} / \widetilde{I}_{\gamma}$, \widetilde{M}_{γ} be indecomposable $\widetilde{A}_{e, f}$-modules constructed by the same rules as the $A_{e, f}$-modules $A_{e, f} / I_{\gamma}, M_{\gamma}$. Then we can identify $\widetilde{A}_{e, f}, \widetilde{I}_{\gamma}, \widetilde{A}_{e, f} / \widetilde{I}_{\gamma}, \widetilde{M}_{\gamma}$ with

$$
\widetilde{K} \otimes_{K} A_{e, f}, \quad \widetilde{K} \otimes_{K} I_{\gamma}, \quad \widetilde{K} \otimes_{K} A_{e, f} / I_{\gamma}, \quad \widetilde{K} \otimes_{K} M_{\gamma}
$$

respectively. It follows that the $A_{e, f}$-modules $A_{e, f} / I_{\gamma}$ and M_{γ} are absolutely indecomposable.

Lemma 1.2 ([5]). Let G be an abelian group of type $(2,2)$ and K an infinite field of characteristic 2 . Then G has infinitely many nonequivalent faithful absolutely indecomposable linear K-representations of dimension $2 n$ for any natural number n.

Lemma 1.3 ([11], [13]). Let G be an abelian p-group which is neither cyclic nor of order four. Then G has infinitely many nonequivalent absolutely indecomposable linear K-representations of any dimension $n \geq 2$.

By Theorem 1.1 in [4], an algebra $K^{\lambda} G$ is of finite representation type if and only if $K^{\lambda} G$ is a uniserial algebra. It is well known (see [15, p. 74]) that for any $\lambda \in Z^{2}\left(G, K^{*}\right), \overline{K^{\lambda} G}$ is a finite purely inseparable field extension of K. Hence, $\operatorname{dim}_{K} \overline{K^{\lambda} G}$ divides $|G|$. If G is an abelian group, then $K^{\lambda} G$ is a commutative algebra for any λ.

Set $i_{K}=\sup \{0, m\}$, where m is a natural number such that the K algebra

$$
K[x] /\left(x^{p}-\gamma_{1}\right) \otimes_{K} \cdots \otimes_{K} K[x] /\left(x^{p}-\gamma_{m}\right)
$$

is a field for some $\gamma_{1}, \ldots, \gamma_{m} \in K^{*}$. By Proposition 1.1 of [4], for any natural t, there exists a field K such that $i_{K}=t$.

Let $G=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{s}\right\rangle$ be an abelian p-group. We recall that from Proposition 1.3 in [4], the following statements hold:
(i) If $s \geq i_{K}+2$, then $K^{\lambda} G$ is of infinite representation type for every $\lambda \in Z^{2}\left(G, K^{*}\right)$.
(ii) If $2 \leq s \leq i_{K}+1$, then the group algebra $K G$ is of infinite representation type and there exists an algebra $K^{\lambda} G$ that is of finite representation type.
(iii) If $s=1$, then $K^{\lambda} G$ is of finite representation type for any $\lambda \in$ $Z^{2}\left(G, K^{*}\right)$.

Lemma 1.4. Let G be an abelian p-group and $\lambda \in Z^{2}\left(G, K^{*}\right)$. The group G has a faithful irreducible λ-representation over K if and only if $\operatorname{Ker}(\lambda)=\{e\}$.

Proof. Apply [3, Proposition 9].
Note that if K is not a perfect field, then the factor group $K^{*} /\left(K^{p}\right)^{*}$ is infinite [6]. In this case there exist infinitely many pairwise noncohomologous cocycles $\lambda \in Z^{2}\left(G, K^{*}\right)$ such that $\operatorname{Ker}(\lambda)=\{e\}$.

Lemma 1.5 ([9, p. 119]). Let G be an abelian p-group, and T a subgroup of $\operatorname{soc} G$. Then there exists a decomposition $G=A \times B$ such that $\operatorname{soc} B=T$.

Proposition 1.6. Let G be an abelian p-group, $K^{\lambda} G$ a uniserial algebra, p^{r} the nilpotency index of $\operatorname{rad} K^{\lambda} G$ and $H=\operatorname{Ker}(\lambda)$.
(i) Every indecomposable $K^{\lambda} G$-module is isomorphic to one of $V_{j}=$ $K^{\lambda} G /\left(\operatorname{rad} K^{\lambda} G\right)^{j}$, where $j \in\left\{1, \ldots, p^{r}\right\}$. If $d=\operatorname{dim}_{K} V_{1}$, then K dimension of V_{j} is equal to dj.
(ii) If $H=\{e\}$, then every V_{j} is the underlying $K^{\lambda} G$-module of a faithful indecomposable λ-representation of the group G over K.
(iii) If $H \neq\{e\}$, then V_{j} is the underlying $K^{\lambda} G$-module of a faithful indecomposable λ-representation of G over K if and only if $j \geq$ $p^{r-1}+1$.

Proof. By Proposition 1.3 in [4], there exists a decomposition of G into a direct product $G=A \times B$ such that $K^{\lambda} A$ is a field and $B=\langle b\rangle$. Let $L=K^{\lambda} A$ and $|B|=p^{n}$. Then

$$
K^{\lambda} G=L^{\mu} B=\bigoplus_{i=0}^{p^{n}-1} L u_{b}^{i}, \quad u_{b}^{p^{n}}=\gamma^{p^{r}}
$$

where $r \leq n$ and $\gamma \in L^{*}$. Moreover $\gamma \notin L^{p}$ if $r<n$. Let $m=n-r$. Now we have $\operatorname{rad} L^{\mu} B=\left(u_{b}^{p^{m}}-\gamma\right) L^{\mu} B$. Up to a $K^{\lambda} G$-isomorphism, the indecomposable $K^{\lambda} G$-modules are exhausted by the modules $V_{j}=L^{\mu} B /\left(\operatorname{rad} L^{\mu} B\right)^{j}$, where $j=1, \ldots, p^{r}$. If $H=\{e\}$, then, by Lemma 1.4 , every V_{j} is the underlying $K^{\lambda} G$-module of a faithful indecomposable λ-representation of the group G.

Assume that $H \neq\{e\}$. Since $K H$ is of finite representation type, H is a cyclic group. In view of Lemma 1.5, we may assume that $\operatorname{soc} H=\operatorname{soc} B$. Let

$$
c=b^{p^{n-1}} \quad \text { and } \quad u_{c}=u_{b}^{p^{n-1}}
$$

Then $c \in H$ and $|c|=p$. The $K^{\lambda} G$-module V_{j} is not the underlying module of a faithful λ-representation of G if and only if $\left(u_{c}-\varrho u_{e}\right) L^{\mu} B \subset\left(\operatorname{rad} L^{\mu} B\right)^{j}$ for some $\varrho \in K^{*}$. Then $u_{c}^{p}-\varrho^{p} u_{e}=0$, which yields $\varrho u_{e}=\gamma^{p^{r-1}}$. Since

$$
u_{c}-\varrho u_{e}=\left(u_{b}^{p^{m}}-\gamma\right)^{p^{r-1}}
$$

it follows that V_{j} is not the underlying module of a faithful λ-representation of G over K if and only if $j \leq p^{r-1}$.

Lemma 1.7. Let H be a subgroup of a p-group G and $\lambda \in Z^{2}\left(G, K^{*}\right)$. If V is an absolutely indecomposable $K^{\lambda} H$-module, then the induced module V^{G} is also absolutely indecomposable.

Proof. Let \widetilde{K} be the algebraic closure of $K, \widetilde{K}^{\lambda} H=\widetilde{K} \otimes_{K} K^{\lambda} H, \widetilde{K}^{\lambda} G=$ $\widetilde{K} \otimes_{K} K^{\lambda} G$ and $\widetilde{V}=\widetilde{K} \otimes_{K} V$. We may consider $\widetilde{K}^{\lambda} H$ to be a subalgebra of $\widetilde{K}^{\lambda} G$. Every cocycle from $Z^{2}(G, \widetilde{K})$ is a coboundary (see [15, p. 43]). Hence $\widetilde{K}^{\lambda} G$ is the group algebra of G over \widetilde{K}. By Green's theorem (see [10, p. 438]), the induced module

$$
\widetilde{V}^{G}=\widetilde{K}^{\lambda} G \otimes_{\widetilde{K}^{\lambda} H} \widetilde{V}
$$

is indecomposable. Since

$$
\widetilde{K} \otimes_{K}\left(K^{\lambda} G \otimes_{K^{\lambda} H} V\right) \cong \widetilde{K}^{\lambda} G \otimes_{\widetilde{K}^{\lambda} H}\left(\widetilde{K} \otimes_{K} V\right)
$$

as $\widetilde{K}^{\lambda} G$-modules (see [14, p. 209]), the $\widetilde{K}^{\lambda} G$-module $\widetilde{K} \otimes_{K} V^{G}$ is indecomposable. Consequently, the $K^{\lambda} G$-module V^{G} is absolutely indecomposable.

Denote by $[M]$ the isomorphism class of $K^{\lambda} G$-modules that contains M. Let $\operatorname{AInd}\left(K^{\lambda} G, s\right)$ be the set of all $[V]$ where V is an absolutely indecomposable $K^{\lambda} G$-module of K-dimension s. We denote by $\operatorname{FAInd}\left(K^{\lambda} G, s\right)$ the set of all [W] where W is the underlying $K^{\lambda} G$-module of a faithful absolutely indecomposable λ-representation of G over K of dimension s.

Lemma 1.8. Let G be an abelian p-group, $\lambda, \mu \in Z^{2}\left(G, K^{*}\right), K^{\lambda} G=$ $K^{\mu} G,\left\{u_{g}: g \in G\right\}$ a natural K-basis of $K^{\lambda} G$ corresponding to λ and $\left\{v_{g}: g \in G\right\}$ a natural K-basis of $K^{\lambda} G$ corresponding to μ. Assume that C is the socle of $\operatorname{Ker}(\lambda)$ and $u_{x}=\alpha_{x} v_{x}$ for every $x \in C$, where $\alpha_{x} \in K^{*}$. Let D be a subgroup of $G, C \subset D, V$ an absolutely indecomposable $K^{\mu} D$-module and let V_{C} be the underlying $K^{\lambda} C$-module of a faithful λ-representation of C. Then the induced module $V^{G}=K^{\mu} G \otimes_{K^{\mu} D} V$ is the underlying $K^{\lambda} G$-module of a faithful absolutely indecomposable λ-representation of G. Moreover, if $\left[V_{1}^{G}\right]=\left[V_{2}^{G}\right]$ then $\left[V_{1}\right]=\left[V_{2}\right]$.

Proof. In view of Lemma 1.7, V^{G} is an absolutely indecomposable $K^{\lambda} G$ module. Suppose that $\left(u_{g}-\alpha u_{e}\right) V^{G}=0$ for some $g \in \operatorname{soc} G$ and some $\alpha \in K^{*}$. Since $\left(u_{g}-\alpha u_{e}\right)^{p} V^{G}=0$, we have $u_{g}^{p}=\alpha^{p} u_{e}$, which yields $g \in C$. Therefore, $\left(u_{g}-\alpha u_{e}\right) V=0$. It follows that $g=e$. Consequently, V^{G} is the underlying $K^{\lambda} G$-module of a faithful absolutely indecomposable λ-representation of G. If $V_{1}^{G} \cong V_{2}^{G}$ then $\left(V_{1}^{G}\right)_{D} \cong\left(V_{2}^{G}\right)_{D}$. Since $\left(V_{j}^{G}\right)_{D} \cong V_{j} \oplus \cdots \oplus V_{j}$ for $j=1,2$, we have $V_{1} \cong V_{2}$.

Proposition 1.9. Let G be an abelian p-group, $\lambda \in Z^{2}\left(G, K^{*}\right), H=$ $\operatorname{Ker}(\lambda)$ and $p^{s}=\exp H$. Assume that H is noncyclic. Let

$$
l= \begin{cases}1 & \text { if }|H|>4 \\ 2 & \text { if }|H|=4\end{cases}
$$

Then the set $\operatorname{FAInd}\left(K^{\lambda} G, n l|G: H|\right)$ is infinite for any $n \geq p^{s-1}+1$.
Proof. In view of Lemmas 1.1 and 1.2, $\operatorname{FAInd}\left(K^{\lambda} H, n l\right)$ is infinite for $n \geq p^{s-1}+1$. By Lemma 1.8, the formula $f([V])=\left[V^{G}\right]$ defines an injective $\operatorname{map} f: \operatorname{FAInd}\left(K^{\lambda} H, n l\right) \rightarrow \operatorname{FAInd}\left(K^{\lambda} G, n l|G: H|\right)$.

THEOREM 1.10. Let G be a noncyclic abelian p-group, $G_{0}=\operatorname{soc} G, \lambda \in$ $Z^{2}\left(G, K^{*}\right)_{\infty}, d=\operatorname{dim}_{K} \overline{K^{\lambda} G_{0}}$ and

$$
l= \begin{cases}1 & \text { if } 4 d<\left|G_{0}\right| \\ 2 & \text { if } 4 d=\left|G_{0}\right|\end{cases}
$$

Then the set $\operatorname{FAInd}\left(K^{\lambda} G, n l d\left|G: G_{0}\right|\right)$ is infinite for all $n \geq 2$.
Proof. Let $H=G_{0} \cap \operatorname{Ker}(\lambda)$ and B be a maximal subgroup of G_{0} with $K^{\lambda} B$ a field. Then $G_{0}=B \times C \times H$ and $K^{\lambda} G_{0}=K^{\mu} G_{0}$, where

$$
\mu_{b c h, b^{\prime} c^{\prime} h^{\prime}}=\lambda_{b, b^{\prime}}
$$

for all $b, b^{\prime} \in B, c, c^{\prime} \in C$ and $h, h^{\prime} \in H$. Obviously, $d=\operatorname{dim}_{K} K^{\lambda} B=$ $|B|$. Let $D=C \times H$. Since $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$, the group D is noncyclic [4, p. 176]. By Lemmas 1.1 and 1.2, $\operatorname{FAInd}(K D, n l)$ is infinite for every $n \geq 2$. Hence, by Lemma 1.8, $\operatorname{FAInd}\left(K^{\lambda} G_{0}, n l d\right)$ is infinite. Applying again Lemma 1.8, we conclude that $\operatorname{FAInd}\left(K^{\lambda} G, n l d\left|G: G_{0}\right|\right)$ is infinite for any $n \geq 2$.

Corollary 1.11. Let G be a noncyclic abelian p-group and

$$
t= \begin{cases}1 / p^{2} & \text { if } p \neq 2 \\ 1 / 2 & \text { if } p=2\end{cases}
$$

Then $\operatorname{FAInd}\left(K^{\lambda} G, n t|G|\right)$ is infinite for any $n \geq 2$ and any cocycle $\lambda \in$ $Z^{2}\left(G, K^{*}\right)_{\infty}$.

Let G be a noncyclic abelian p-group with at most i_{K} invariants. By Proposition 1 of [2], there exists a cocycle $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$ such that $\operatorname{dim}_{K} \overline{K^{\lambda} G}=|G| \cdot p^{-2}$. Hence, in this case, Corollary 1.11 gives all dimensions for which the group G has infinitely many faithful absolutely indecomposable λ-representations.
2. Faithful indecomposable projective representations of abelian p-groups over a field K with $i_{K}=1$. In this section we assume that K is a field of characteristic p with $i_{K}=1$. That is, there exists $\alpha \in$
K^{*} such that the K-algebra $K[x] /\left(x^{p}-\alpha\right)$ is a field, and the K-algebra $K[x] /\left(x^{p}-\beta\right) \otimes_{K} K[x] /\left(x^{p}-\gamma\right)$ is not a field for any $\beta, \gamma \in K^{*}$. Since K is not perfect, K is an infinite field. For example, if F is a perfect field of characteristic p and $L=F(x)$ is the quotient field of the polynomial ring $F[x]$, then $i_{L}=1$ (see [4, p. 174]).

Lemma 2.1. Let θ be a root of an irreducible polynomial $x^{p^{m}}-\alpha \in K[x]$ in some extension of K. Then for every $\beta \in K^{*}$ there exists $\gamma \in K(\theta)^{*}$ such that $\beta=\gamma^{p^{m}}$.

Proof. Because $i_{K}=1$, we have

$$
\begin{equation*}
\beta=\left(\sum_{r=0}^{p-1} \mu_{r} \theta^{r p^{m-1}}\right)^{p} \tag{2.1}
\end{equation*}
$$

for some $\mu_{r} \in K$. Let $m \geq 2$. We have

$$
\begin{equation*}
\mu_{r}=\left(\sum_{s=0}^{p-1} \nu_{r s} \theta^{s p^{m-1}}\right)^{p} \tag{2.2}
\end{equation*}
$$

where $\nu_{r s} \in K$. It follows from (2.1) and (2.2) that

$$
\beta=\left(\sum_{i=0}^{p^{2}-1} \varrho_{i} \theta^{i p^{m-2}}\right)^{p^{2}}, \quad \varrho_{i} \in K
$$

If $m>2$, we inductively continue the above construction.
Lemma 2.2. Let $G=\langle a\rangle,|a|=p^{n}$ and

$$
K^{\lambda} G=\bigoplus_{i=0}^{p^{n}-1} K u_{a}^{i}, \quad u_{a}^{p^{n}}=\gamma^{p^{m}} u_{e}
$$

where $\gamma \in K^{*}, \gamma \notin K^{p}$ and $m<n$. Then for every $\beta \in K^{*}$ there exists an invertible element z in $K^{\lambda} G$ such that

$$
z^{p^{n}}=\beta^{p^{m}} u_{e}
$$

Proof. Let θ be a root of the polynomial $x^{p^{r}}-\gamma$, where $r=n-m$. By Lemma 2.1,

$$
\beta=\left(\sum_{j=0}^{p^{r}-1} \delta_{j} \theta^{j}\right)^{p^{r}}, \quad \delta_{j} \in K
$$

It follows that

$$
\left(\sum_{j=0}^{p^{r}-1} \delta_{j} u_{a}^{j}\right)^{p^{n}}=\beta^{p^{m}} u_{e}
$$

THEOREM 2.3. Let G be a noncyclic abelian p-group, $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$, $d=\operatorname{dim}_{K} \overline{K^{\lambda} G}$ and

$$
l= \begin{cases}1 & \text { if } 4 d<|G| \\ 2 & \text { if } 4 d=|G|\end{cases}
$$

Then the set $\operatorname{AInd}\left(K^{\lambda} G, n l d\right)$ is infinite for any $n \geq 2$.
Proof. By Lemmas 1.2 and 1.3, it is sufficient to consider the case $d \neq 1$. Let $\left\{u_{g}: g \in G\right\}$ be a natural K-basis of $K^{\lambda} G$. There exists a decomposition $G=\langle a\rangle \times B$ such that if $|a|=p^{r}$ and H is the kernel of the restriction of λ to $B \times B$, then $u_{a}^{p^{r}}=\gamma^{p^{s}} u_{e}$, where $s<r, \gamma \in K^{*}, \gamma \notin K^{p}$, and $p^{r-s} \geq \exp (B / H)$. Let $C=\langle c\rangle$ be a group of order p^{r-s} and $D=C \times B$. There exists an algebra homomorphism of $K^{\lambda} G$ onto $K^{\mu} D=K^{\nu} C \otimes_{K} K^{\lambda} B$, where

$$
K^{\nu} C=\bigoplus_{i} K v_{c}^{i}, \quad v_{c}^{p^{r-s}}=\gamma v_{e}
$$

By Lemma 2.1, $K^{\mu} D \cong K^{\nu} C \otimes_{K} K B$. Evidently $d=p^{r-s}$. If B is not cyclic and $|B|>4$ then, in view of Lemmas 1.3 and 1.7, the set $\operatorname{AInd}\left(K^{\mu} D, n|C|\right)$ is infinite for every $n \geq 2$.

Now let B be noncyclic and $|B|=4$. If $s=0$ then $d=2^{r}$ and $|G|=4 d$. By Lemmas 1.2 and 1.7, $\operatorname{AInd}\left(K^{\lambda} G, 2 n d\right)$ is infinite for any n. Assume that $s \neq 0$. We have

$$
K^{\lambda} G=\bigoplus_{i, j_{1}, j_{2}} K u_{a}^{i} u_{b_{1}}^{j_{1}} u_{b_{2}}^{j_{2}}, \quad u_{a}^{2^{r}}=\gamma^{2^{s}} u_{e}, \quad u_{b_{1}}^{2}=\delta_{1} u_{e}, \quad u_{b_{2}}^{2}=\delta_{2} u_{e}
$$

where $\delta_{1}, \delta_{2} \in K^{*}$. Let $\delta_{1} \notin K^{2}$. Then we may suppose that $\delta_{2}=1$. Let $\varrho \in K\left[u_{b_{1}}\right]$ and $\varrho^{2}=\gamma^{-1} u_{e}$. Then

$$
\left(\varrho u_{a}^{2^{r-s-1}}\right)^{2^{s+1}}=u_{e}
$$

The order of the subgroup of G generated by $a^{2^{r-s-1}}$ and b_{2} is equal to $2^{s+2} \geq 8$. It follows from this and Lemmas 1.3 and 1.7 that $\operatorname{AInd}\left(K^{\lambda} G, n d\right)$ is infinite for every $n \geq 2$.

Assume that $B=\langle b\rangle$ and $|B|=p^{t}$. Since $K^{\lambda} G$ is not a uniserial algebra, we have

$$
K^{\lambda} G=\bigoplus_{i, j} K u_{a}^{i} u_{b}^{j}, \quad u_{a}^{p^{r}}=\gamma^{p^{s}} u_{e}, \quad u_{b}^{p^{t}}=\delta^{p^{m}} u_{e}
$$

where $s>0, m \leq t$, moreover, if $m<t$ then $\delta \notin K^{p}$ and if $m=t$ then $\delta=1$. Let $\delta \notin K^{p}$. There exists an algebra homomorphism of $K^{\lambda} G$ onto

$$
K^{\mu} \bar{G}=\bigoplus_{i, j} K v_{\bar{a}}^{i} v_{\bar{b}}^{j}, \quad v_{\bar{a}}^{p^{r-s+1}}=\gamma^{p} v_{\bar{e}}, \quad v_{\bar{b}}^{p^{t-m+1}}=\delta^{p} v_{\bar{e}}
$$

By Lemma 2.2, we have

$$
K^{\mu} \bar{G}=\bigoplus_{i, j} K v_{\bar{a}}^{i} w_{\bar{b}}^{j}, \quad w_{\bar{b}}^{p^{t-m+1}}=v_{\bar{e}}
$$

Because $p^{t-m+1}>2, \operatorname{AInd}\left(K^{\mu} \bar{G}, n d\right)$ is infinite for any $n \geq 2$ by Lemmas 1.3 and 1.7. Let $\delta=1$. If $p^{t}>2$ or $p^{s}>2$ then $\operatorname{AInd}\left(K^{\lambda} G, n d\right)$ is infinite for any $n \geq 2$. If $p=2, s=1, t=1$, then $4 d=|G|$. In view of Lemmas 1.2 and 1.7, $\operatorname{AInd}\left(K^{\lambda} G, 2 n d\right)$ is infinite for all n.

Corollary 2.4. Let G be a noncyclic abelian p-group of exponent p^{m}, $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}, \operatorname{Ker}(\lambda)=\{e\}, d=\operatorname{dim}_{K} \overline{K^{\lambda} G}$ and

$$
l= \begin{cases}1 & \text { if } 4 d<|G| \\ 2 & \text { if } 4 d=|G|\end{cases}
$$

Then $d=p^{m}$ and $\operatorname{FAInd}\left(K^{\lambda} G, n l d\right)$ is infinite for any $n \geq 2$.

Proof. Apply Lemma 1.4.

Let us remark that K. Sobolewska in [16] has found some infinite subsets of the set of all natural numbers m for which an abelian p-group G has infinitely many indecomposable λ-representations over K of dimension m, where K is an arbitrary field and $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$.

Theorem 2.5. Let $G=A \times B$ be an abelian p-group, $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$, $H=\operatorname{Ker}(\lambda), \bar{H}=B \cap H, p^{m}=\exp A$ and $p^{r}=\exp (B / \bar{H})$. Assume that $|A|>1,|B|>1$ and $\operatorname{soc} B=\operatorname{soc} H$.
(i) Let $m \geq r$ and

$$
l= \begin{cases}1 & \text { if } \exp B \neq 2 \text { or if } \exp B=2 \text { and }|\operatorname{soc} G|>8 \\ 2 & \text { if } \exp B=2 \text { and }|\operatorname{soc} G|=8\end{cases}
$$

Then $p^{m}=\operatorname{dim}_{K} \overline{K^{\lambda} G}$. If $p^{s}=\exp B$ then $\operatorname{FAInd}\left(K^{\lambda} G, n l p^{m}\right)$ is infinite for all $n \geq p^{s-1}+1$. Moreover, the smallest dimension of a faithful indecomposable λ-representation of G over K equals $p^{m}\left(p^{s-1}+1\right)$.
(ii) Let $m<r$. Denote by D a maximal subgroup of B with $\bar{H} \subset D$ and $\exp (D / \bar{H})=p^{m}$. If $p^{s}=\exp D$ then $\operatorname{FAInd}\left(K^{\lambda} G, n p^{m}|B: D|\right)$ is infinite for all $n \geq p^{s-1}+1$.
Proof. Let $A=A_{1} \times A_{2}$, where A_{1} is a cyclic group and $\left|A_{1}\right|=\exp A$. Since $A \cap H=\{e\}$ and $\lambda \in Z^{2}\left(G, K^{*}\right)_{\infty}$, it follows that $K^{\lambda} A_{1}$ is a field and $A_{2} \times B$ is not a cyclic group.
(i) Assume that $m \geq r$. Denote by $\left\{u_{g}: g \in G\right\}$ a natural K-basis of $K^{\lambda} G$ corresponding to λ. Let $C=A_{2} \times B$. Up to cohomology $u_{h}^{|h|}=u_{e}$ for every $h \in \operatorname{soc} B$, and if $g=a_{1} c$, where $a_{1} \in A_{1}, c \in C$, then $u_{g}=u_{a_{1}} u_{c}$. We can view $K^{\lambda} G$ as the twisted group algebra $L^{\lambda} C$ of the group C over the
field $L=K^{\lambda} A_{1}$ with the cocycle λ. By Lemma 2.1, the algebra $L^{\lambda} C$ has a group L-basis $\left\{v_{c}: c \in C\right\}$, that is, $v_{c} v_{c^{\prime}}=v_{c c^{\prime}}$ for all $c, c^{\prime} \in C$. We choose this basis in such a way that $v_{h}=u_{h}$ for every $h \in \operatorname{soc} B$. We set $v_{g}=u_{a_{1}} v_{c}$ for every $g=a_{1} c$, where $a_{1} \in A_{1}, c \in C$. If $g^{\prime}=a_{1}^{\prime} c^{\prime}$, where $a_{1}^{\prime} \in A_{1}, c^{\prime} \in C$, then $v_{g} v_{g^{\prime}}=\lambda_{a_{1}, a_{1}^{\prime}} u_{a_{1} a_{1}^{\prime}} v_{c c^{\prime}}=\lambda_{a_{1}, a_{1}^{\prime}} v_{g g^{\prime}}$. Let $\mu_{g, g^{\prime}}=\lambda_{a_{1}, a_{1}^{\prime}}$ for any $g, g^{\prime} \in G$. Then $\mu \in Z^{2}\left(G, K^{*}\right), K^{\lambda} G=K^{\mu} G$ and $\left\{v_{g}: g \in G\right\}$ is a natural K-basis of $K^{\lambda} G$ corresponding to μ.

Let \widetilde{A}_{2} be an elementary abelian p-group of order $\left|\operatorname{soc} A_{2}\right|$ and $\widetilde{C}=$ $\widetilde{A}_{2} \times B$. In view of Lemmas 1.1 and 1.2, $\operatorname{FAInd}(K \widetilde{C}, n l)$ is infinite for all $n \geq p^{s-1}+1$. It follows that $\operatorname{AInd}(K C, n l)$ has infinitely many elements [W] such that W_{B} is the underlying $K B$-module of a faithful linear representation of B. Hence, by Lemma 1.8, FAInd $\left(K^{\lambda} G, n l p^{m}\right)$ is infinite for all $n \geq p^{s-1}+1$.

Let $G_{1}=A_{1} \times B_{1}$, where B_{1} is a cyclic subgroup of B and $\left|B_{1}\right|=p^{s}$. By [7, p. 170], the algebra $K^{\lambda} G_{1}$ is uniserial. The nilpotency index of $\operatorname{rad} K^{\lambda} G_{1}$ is equal to p^{s}. Since soc $B_{1} \subset H$, by Proposition 1.6, the smallest dimension of a faithful λ-representation of G_{1} over K equals $p^{m}\left(p^{s-1}+1\right)$. It follows that the smallest dimension of a faithful indecomposable λ-representation of G over K also equals $p^{m}\left(p^{s-1}+1\right)$.
(ii) Let $m<r$ and $T=A \times D$. Since $\exp D>2$, by case (i), $\operatorname{FAInd}\left(K^{\lambda} T, n p^{m}\right)$ is infinite for all $n \geq p^{s-1}+1$, where $p^{s}=\exp D$. Hence, in view of Lemma 1.8, $\operatorname{FAInd}\left(K^{\lambda} G, n p^{m} \cdot|G: T|\right)$ is also infinite. Since $|G: T|=|B: D|$, the theorem is proved.

Corollary 2.6. Let G be an elementary abelian p-group of order p^{m}, where $m \geq 3, \lambda \in Z^{2}\left(G, K^{*}\right), \operatorname{Ker}(\lambda) \neq G$ and

$$
l= \begin{cases}1 & \text { if } p \neq 2 \text { or if } p=2 \text { and } m \geq 4 \\ 2 & \text { if } p=2 \text { and } m=3\end{cases}
$$

Then $\operatorname{dim}_{K} \overline{K^{\lambda} G}=p$ and $\operatorname{FAInd}\left(K^{\lambda} G, n l p\right)$ is infinite for all $n \geq 2$.
Acknowledgments. The author is grateful to Professor D. Simson for valuable remarks.

REFERENCES

[1] I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
[2] L. F. Barannyk and D. Klein, Twisted group rings of strongly unbounded representation type, Colloq. Math. 100 (2004), 265-287.
[3] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, ibid. 87 (2001) 181-193.
[4] —, 一, On indecomposable projective representations of finite groups over fields of characteristic $p>0$, ibid. 98 (2003), 171-187.
[5] V. A. Bashev, Representations of the group $Z_{2} \times Z_{2}$ in a field of characteristic 2, Dokl. Akad. Nauk SSSR 141 (1961), 1015-1018 (in Russian).
[6] A. Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965), 71-73.
[7] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras, Springer, Berlin, 1994.
[8] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
[9] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
[10] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
[11] P. M. Gudivok, On modular representations of finite groups, Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat. 4 (1961), 86-87 (in Russian).
[12] G. J. Janusz, Faithful representations of p-groups at characteristic p. I, J. Algebra 15 (1970), 335-351.
[13] -, Faithful representations of p-groups at characteristic p. II, ibid. 22 (1972), 137-160.
[14] G. Karpilovsky, Projective Representations of Finite Groups, Dekker, New York, 1985.
[15] -, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
[16] K. Sobolewska, Modular projective representations of finite groups, Ph.D. Thesis, Univ. of Toruń, 2005.

Institute of Mathematics
Pomeranian University of Słupsk
Arciszewskiego 22b
76-200 Słupsk, Poland
E-mail: barannyk@pap.edu.pl, barannykleo@poczta.onet.pl

Received 30 March 2007;
revised 14 May 2007

[^0]: 2000 Mathematics Subject Classification: 16S35, 20C20, 20C25.
 Key words and phrases: faithful projective representations, faithful representations, modular projective representations, modular representations, projective representations, twisted group algebras.

