VOL. 111

2008

NO. 1

ON FAITHFUL PROJECTIVE REPRESENTATIONS OF FINITE ABELIAN p-GROUPS OVER A FIELD OF CHARACTERISTIC p

ВY

LEONID F. BARANNYK (Słupsk)

Abstract. Let G be a noncyclic abelian p-group and K be an infinite field of finite characteristic p. For every 2-cocycle $\lambda \in Z^2(G, K^*)$ such that the twisted group algebra $K^{\lambda}G$ is of infinite representation type, we find natural numbers d for which G has infinitely many faithful absolutely indecomposable λ -representations over K of dimension d.

0. Introduction. Throughout this paper, we use the following notations: $p \geq 2$ is a prime; K is an infinite field of characteristic p; K^* is the multiplicative group of K; $K^p = \{\alpha^p : \alpha \in K\}$; G is a finite p-group of order |G|; e is the identity element of G; |g| is the order of $g \in G$; soc B is the socle of an abelian p-group B and $\exp B$ is the exponent of B. Moreover, we denote by $Z^2(G, K^*)$ the group of all K^* -valued normalized 2-cocycles of the group G, where we assume that G acts trivially on K^* (see [15, Chapter 1]).

Given a cocycle $\lambda: G \times G \to K^*$ in $Z^2(G, K^*)$, we denote by $K^{\lambda}G$ the twisted group algebra of the group G over the field K with the cocycle λ and by rad $K^{\lambda}G$ the radical of $K^{\lambda}G$. We set $\overline{K^{\lambda}G} = K^{\lambda}G/\operatorname{rad} K^{\lambda}G$. A K-basis $\{u_g : g \in G\}$ of $K^{\lambda}G$ satisfying $u_a u_b = \lambda_{a,b} u_{ab}$ for all $a, b \in G$ is called natural. All $K^{\lambda}G$ -modules are assumed to be finitely generated left modules. If H is a subgroup of G, we often use the same symbol for an element $\lambda: G \times G \to K^*$ of $Z^2(G, K^*)$ and its restriction to $H \times H$. In this case, $K^{\lambda}H$ is a subalgebra of $K^{\lambda}G$.

If M is a $K^{\lambda}G$ -module, then we denote by M_H the $K^{\lambda}H$ -module obtained by restriction of the algebra. If N is a $K^{\lambda}H$ -module then $N^G = K^{\lambda}G \otimes_{K^{\lambda}H} N$ is the induced $K^{\lambda}G$ -module.

Let $Z^2(G, K^*)_{\infty}$ be the set of all cocycles $\lambda \in Z^2(G, K^*)$ such that the algebra $K^{\lambda}G$ is of infinite representation type, that is, the number of isomorphism classes of finite-dimensional indecomposable $K^{\lambda}G$ -modules is infinite (see [1, p. 25]). Finally, given $\lambda \in Z^2(G, K^*)$, we denote by $\text{Ker}(\lambda)$ the union of all cyclic subgroups $\langle g \rangle$ of G such that the restriction of λ to

[135]

²⁰⁰⁰ Mathematics Subject Classification: 16S35, 20C20, 20C25.

Key words and phrases: faithful projective representations, faithful representations, modular projective representations, modular representations, projective representations, twisted group algebras.

 $\langle g \rangle \times \langle g \rangle$ is a coboundary. We recall from Lemma 1 of [2] that $G' \subset \operatorname{Ker}(\lambda)$, $\operatorname{Ker}(\lambda)$ is a normal subgroup of G and the restriction of λ to $\operatorname{Ker}(\lambda) \times \operatorname{Ker}(\lambda)$ is a coboundary. The set $\operatorname{Ker}(\lambda)$ is called the *kernel* of λ .

Let V be a finite-dimensional vector space over K and $\Gamma: G \to \operatorname{GL}(V)$ a projective representation of G with a cocycle $\lambda \in Z^2(G, K^*)$. We refer to Γ as a λ -representation of G over the field K (see [15, p. 106]). If we view V as a module over $K^{\lambda}G$, we say that V is the underlying module of the λ -representation Γ . Let $\operatorname{PGL}(V) = \operatorname{GL}(V)/K^* \cdot 1_V$ and $\pi: \operatorname{GL}(V) \to$ $\operatorname{PGL}(V)$ be the canonical group homomorphism. If $\pi \circ \Gamma: G \to \operatorname{PGL}(V)$ is a monomorphism, the representation Γ is called faithful.

We recall from [10, p. 437] that a $K^{\lambda}G$ -module V is defined to be *ab*solutely indecomposable if for every field extension L of K, $L \otimes_K V$ is an indecomposable module over $L \otimes_K K^{\lambda}G$.

In this paper we continue the study of faithful projective representations of finite p-groups over fields of characteristic p as begun in [3]. Our investigations are also motivated by the results of P. M. Gudivok [11] and G. J. Janusz [12, 13]. In particular, they show that a noncyclic abelian p-group A of order $|A| \neq 4$ has infinitely many absolutely indecomposable linear representations in each dimension $d \geq 2$ if the ground field is infinite. This result, together with the result by V. A. Bashev [5], gives a solution of the second Brauer-Thrall conjecture for group algebras of finite groups (see [1, p. 138] for a formulation of the conjecture). Moreover, G. J. Janusz [13] has proved that if $p(d-1) \geq \exp A$, then there exist infinitely many isomorphism classes of absolutely indecomposable faithful linear representations of A of dimension d.

Now we briefly present the main results of the paper. In Section 1 we prove that if G is a noncyclic abelian p-group, then for any natural $n \ge 2$ and for any cocycle $\lambda \in Z^2(G, K^*)_{\infty}$ the group G has infinitely many nonequivalent faithful absolutely indecomposable λ -representations over K of dimension nt|G|, where $t = 1/p^2$ if $p \ne 2$, and t = 1/2 if p = 2 (Corollary 1.11).

In Section 2 we study the indecomposable projective representations of a noncyclic abelian p-group G over a nonperfect field K of characteristic psuch that the K-algebra

$$K[x]/(x^p - \alpha) \otimes_K K[x]/(x^p - \beta)$$

is not a field for any $\alpha, \beta \in K^*$. Let $\lambda \in Z^2(G, K^*)_{\infty}$, $d = \dim_K \overline{K^{\lambda}G}$ and , $\int 1 \quad \text{if } 4d < |G|$,

$$l = \begin{cases} 1 & \text{if } 4d = |G|, \\ 2 & \text{if } 4d = |G|. \end{cases}$$

We show that in this case the group G has infinitely many nonequivalent absolutely indecomposable λ -representations over K of dimension *nld* for any $n \geq 2$ (Theorem 2.3). If $\text{Ker}(\lambda) = \{e\}$, then $d = \exp G$ and all λ - representations of G are faithful. Suppose that $G = A \times B$, $\lambda \in Z^2(G, K^*)_{\infty}$, $H = \operatorname{Ker}(\lambda)$, $\overline{H} = B \cap H$, |A| > 1, |B| > 1, $\exp B \neq 2$ and $\operatorname{soc} B = \operatorname{soc} H$. We prove that if $\exp A = p^m$, $\exp B = p^s$ and $p^m \ge \exp(B/\overline{H})$, then the group G has infinitely many nonequivalent faithful absolutely indecomposable λ representations over K of dimension np^m for any $n \ge p^{s-1} + 1$ (Theorem 2.5).

The reader is referred to [8], [14] and [15] for basic facts and notation from group representation theory and to [1] and [7] for terminology, notation and introduction to the representation theory of finite-dimensional algebras over a field.

1. Faithful indecomposable projective representations of abelian p-groups over an arbitrary field. In this section, K denotes an infinite field of characteristic p.

LEMMA 1.1 ([13, p. 138]). Let G be an abelian p-group which is neither cyclic nor of order four. If G has exponent p^s and n is any natural number with $n \ge p^{s-1} + 1$, then G has infinitely many nonequivalent faithful absolutely indecomposable linear K-representations of dimension n.

Note that it is not shown in [13] that the representations constructed in [13, pp. 139–144] are absolutely indecomposable. However, this follows by an analysis of the construction given in [13]. To convince the reader, we present an outline of the proof.

The general idea of the proof in [13] is to construct a K-algebra A and imbed the group G into the group A^* of all invertible elements of A.

Assume that $p \neq 2$ and $G = \langle g_1 \rangle \times \cdots \times \langle g_r \rangle$, where $|g_i| = p^{c_i}$ and $c_1 \geq \cdots \geq c_r$. Let n be a natural number with $p^{c_1-1} + 1 \leq n \leq p^{c_1}$. We set A = K[X], where $X^n = 0$ and $X^{n-1} \neq 0$. Let $\alpha_1, \alpha_2, \ldots$ be a basis for K over the field of p elements. By [12, Theorem 3.1], $A^* = K^* \times U$, where U is a p-primary group. The group U is the direct product of the cyclic groups $\langle w_j(\alpha_i) \rangle$, where $w_j(\alpha_i) = 1 + \alpha_i X^j$ for $j \in \{1, \ldots, n\}$, j is not divisible by p and $i = 1, 2, \ldots$. It follows that there exist infinitely many ways of imbedding G into A^* , so that g_1 is mapped to 1 + X in each imbedding. Every such imbedding T gives rise to a faithful indecomposable representation of G of dimension n acting on A. Let \widetilde{K} be a field extension of K and $\widetilde{A} = \widetilde{K} \otimes_K A$. Then T is also a monomorphism of G into A^* give rise to mutually nonequivalent representations of G.

Now suppose that

$$p^{c_1-1} + p^{c_r-1} \le n \le p^{c_1+c_r} - 2.$$

Select natural numbers e and f such that

$$p^{c_1-1} + 1 \le e \le p^{c_1}, \quad p^{c_r-1} + 1 \le f \le p^{c_r}$$

and

$$e + f - 2 \le n \le ef - 2.$$

Let $A = A_{e,f} = K[X, Y]$ be the K-algebra on two commuting generators X and Y that satisfy

(1.1)
$$\begin{aligned} X^{e} &= 0, \quad X^{e-1} \neq 0, \\ Y^{f} &= 0, \quad Y^{f-1} \neq 0. \end{aligned}$$

Denote by I_{γ} the ideal of $A_{e,f}$ generated by the elements

$$X^{a_1-1}Y^{f-1} + \gamma X^{e-1}Y^{b_t-1}, \quad X^{a_i}Y^{b_i},$$

where γ is any nonzero element in K, a_i , b_i are natural numbers for $i = 1, \ldots, t$ and

(1.2)
$$1 \le a_1 < a_2 < \dots < a_t \le e - 1, \\ 1 \le b_t < b_{t-1} < \dots < b_1 \le f - 1$$

Since $A_{e,f}$ is a local algebra, $A_{e,f}/I_{\gamma}$ is an indecomposable $A_{e,f}$ -module. There exists at least one pair of sequences (1.2) such that $\dim_K(A_{e,f}/I_{\gamma}) = n$. The modules $A_{e,f}/I_{\gamma}$ and $A_{e,f}/I_{\delta}$ (both constructed from the same sequences (1.2)) are isomorphic if and only if $\gamma = \delta$.

Let $T: G \to A_{e,f}^*$ be a monomorphism such that $T(g_1) = 1+X$, $T(g_i)$ is in K[X] for i < r and $T(g_r) = 1+Y$. Since T(g) generates $A_{e,f}$ as a K-algebra, nonisomorphic $A_{e,f}$ -modules give rise to nonequivalent representations of G. Moreover, $A_{e,f}/I_{\gamma}$ is the underlying module of a faithful indecomposable representation of G over K of dimension n.

Let $V^{(m)}$ be a vector space over K with basis $v_1, \ldots, v_m, u_0, u_1, \ldots, u_m$. Define

$$Xv_i = u_{i-1}, \quad Yv_i = u_i \quad \text{for } i \in \{1, \dots, m\},$$

and

$$Xu_j = Yu_j$$
 for all $j \in \{0, 1, \dots, m\}$.

Then $V^{(m)}$ becomes an $A_{e,f}$ -module. Let $e \geq 3$ and $f \geq 3$. We can select sequences (1.2) with $t \geq 2$ such that $\dim_K(A_{e,f}/I_{\gamma}) = d_0$, where d_0 is any number with $e + f - 1 \leq d_0 \leq ef - 3$. Let γ be any nonzero element of Kand $M_{\gamma} = U_{\gamma}/W_{\gamma}$, where

$$U_{\gamma} = V^{(m)} \oplus A_{e,f}/I_{\gamma}, \quad W_{\gamma} = K(u_m, X^{a_1}Y^{f-1} + I_{\gamma}).$$

The $A_{e,f}$ -module M_{γ} is indecomposable and $\dim_K M_{\gamma} = 2m + d_0$. One can choose m and d_0 in such a way that $2m + d_0 = n$ for any given n > ef - 2.

We assume again that G acts upon M_{γ} via T(G) from the previous case. Then M_{γ} is the underlying KG-module of a faithful indecomposable representation of G.

Let \widetilde{K} be a field extension of K, $\widetilde{A}_{e,f} = \widetilde{K}[X,Y]$ the \widetilde{K} -algebra on two commuting generators X and Y that satisfy relations (1.1), and $\widetilde{A}_{e,f}/\widetilde{I}_{\gamma}$, \widetilde{M}_{γ} be indecomposable $\widetilde{A}_{e,f}$ -modules constructed by the same rules as the $A_{e,f}$ -modules $A_{e,f}/I_{\gamma}$, M_{γ} . Then we can identify $\widetilde{A}_{e,f}$, \widetilde{I}_{γ} , $\widetilde{A}_{e,f}/\widetilde{I}_{\gamma}$, \widetilde{M}_{γ} with

 $\widetilde{K} \otimes_K A_{e,f}, \quad \widetilde{K} \otimes_K I_{\gamma}, \quad \widetilde{K} \otimes_K A_{e,f}/I_{\gamma}, \quad \widetilde{K} \otimes_K M_{\gamma},$

respectively. It follows that the $A_{e,f}$ -modules $A_{e,f}/I_{\gamma}$ and M_{γ} are absolutely indecomposable.

LEMMA 1.2 ([5]). Let G be an abelian group of type (2,2) and K an infinite field of characteristic 2. Then G has infinitely many nonequivalent faithful absolutely indecomposable linear K-representations of dimension 2n for any natural number n.

LEMMA 1.3 ([11], [13]). Let G be an abelian p-group which is neither cyclic nor of order four. Then G has infinitely many nonequivalent absolutely indecomposable linear K-representations of any dimension $n \geq 2$.

By Theorem 1.1 in [4], an algebra $K^{\lambda}G$ is of finite representation type if and only if $K^{\lambda}G$ is a uniserial algebra. It is well known (see [15, p. 74]) that for any $\lambda \in Z^2(G, K^*)$, $\overline{K^{\lambda}G}$ is a finite purely inseparable field extension of K. Hence, $\dim_K \overline{K^{\lambda}G}$ divides |G|. If G is an abelian group, then $K^{\lambda}G$ is a commutative algebra for any λ .

Set $i_K = \sup\{0, m\}$, where m is a natural number such that the K-algebra

$$K[x]/(x^p - \gamma_1) \otimes_K \cdots \otimes_K K[x]/(x^p - \gamma_m)$$

is a field for some $\gamma_1, \ldots, \gamma_m \in K^*$. By Proposition 1.1 of [4], for any natural t, there exists a field K such that $i_K = t$.

Let $G = \langle a_1 \rangle \times \cdots \times \langle a_s \rangle$ be an abelian *p*-group. We recall that from Proposition 1.3 in [4], the following statements hold:

- (i) If $s \ge i_K + 2$, then $K^{\lambda}G$ is of infinite representation type for every $\lambda \in Z^2(G, K^*)$.
- (ii) If $2 \leq s \leq i_K + 1$, then the group algebra KG is of infinite representation type and there exists an algebra $K^{\lambda}G$ that is of finite representation type.
- (iii) If s = 1, then $K^{\lambda}G$ is of finite representation type for any $\lambda \in Z^2(G, K^*)$.

LEMMA 1.4. Let G be an abelian p-group and $\lambda \in Z^2(G, K^*)$. The group G has a faithful irreducible λ -representation over K if and only if $\operatorname{Ker}(\lambda) = \{e\}.$

Proof. Apply [3, Proposition 9].

Note that if K is not a perfect field, then the factor group $K^*/(K^p)^*$ is infinite [6]. In this case there exist infinitely many pairwise noncohomologous cocycles $\lambda \in Z^2(G, K^*)$ such that $\operatorname{Ker}(\lambda) = \{e\}$.

LEMMA 1.5 ([9, p. 119]). Let G be an abelian p-group, and T a subgroup of soc G. Then there exists a decomposition $G = A \times B$ such that soc B = T.

PROPOSITION 1.6. Let G be an abelian p-group, $K^{\lambda}G$ a uniserial algebra, p^r the nilpotency index of rad $K^{\lambda}G$ and $H = \text{Ker}(\lambda)$.

- (i) Every indecomposable $K^{\lambda}G$ -module is isomorphic to one of $V_j = K^{\lambda}G/(\operatorname{rad} K^{\lambda}G)^j$, where $j \in \{1, \ldots, p^r\}$. If $d = \dim_K V_1$, then K-dimension of V_j is equal to dj.
- (ii) If $H = \{e\}$, then every V_j is the underlying $K^{\lambda}G$ -module of a faithful indecomposable λ -representation of the group G over K.
- (iii) If $H \neq \{e\}$, then V_j is the underlying $K^{\lambda}G$ -module of a faithful indecomposable λ -representation of G over K if and only if $j \geq p^{r-1} + 1$.

Proof. By Proposition 1.3 in [4], there exists a decomposition of G into a direct product $G = A \times B$ such that $K^{\lambda}A$ is a field and $B = \langle b \rangle$. Let $L = K^{\lambda}A$ and $|B| = p^n$. Then

$$K^{\lambda}G = L^{\mu}B = \bigoplus_{i=0}^{p^n-1} Lu_b^i, \quad u_b^{p^n} = \gamma^{p^r},$$

where $r \leq n$ and $\gamma \in L^*$. Moreover $\gamma \notin L^p$ if r < n. Let m = n - r. Now we have rad $L^{\mu}B = (u_b^{p^m} - \gamma)L^{\mu}B$. Up to a $K^{\lambda}G$ -isomorphism, the indecomposable $K^{\lambda}G$ -modules are exhausted by the modules $V_j = L^{\mu}B/(\operatorname{rad} L^{\mu}B)^j$, where $j = 1, \ldots, p^r$. If $H = \{e\}$, then, by Lemma 1.4, every V_j is the underlying $K^{\lambda}G$ -module of a faithful indecomposable λ -representation of the group G.

Assume that $H \neq \{e\}$. Since KH is of finite representation type, H is a cyclic group. In view of Lemma 1.5, we may assume that soc $H = \operatorname{soc} B$. Let

$$c = b^{p^{n-1}}$$
 and $u_c = u_b^{p^{n-1}}$.

Then $c \in H$ and |c| = p. The $K^{\lambda}G$ -module V_j is not the underlying module of a faithful λ -representation of G if and only if $(u_c - \rho u_e)L^{\mu}B \subset (\operatorname{rad} L^{\mu}B)^j$ for some $\rho \in K^*$. Then $u_c^p - \rho^p u_e = 0$, which yields $\rho u_e = \gamma^{p^{r-1}}$. Since

$$u_c - \varrho u_e = (u_b^{p^m} - \gamma)^{p^{r-1}},$$

it follows that V_j is not the underlying module of a faithful λ -representation of G over K if and only if $j \leq p^{r-1}$.

LEMMA 1.7. Let H be a subgroup of a p-group G and $\lambda \in Z^2(G, K^*)$. If V is an absolutely indecomposable $K^{\lambda}H$ -module, then the induced module V^G is also absolutely indecomposable.

Proof. Let \widetilde{K} be the algebraic closure of K, $\widetilde{K}^{\lambda}H = \widetilde{K} \otimes_K K^{\lambda}H$, $\widetilde{K}^{\lambda}G = \widetilde{K} \otimes_K K^{\lambda}G$ and $\widetilde{V} = \widetilde{K} \otimes_K V$. We may consider $\widetilde{K}^{\lambda}H$ to be a subalgebra of $\widetilde{K}^{\lambda}G$. Every cocycle from $Z^2(G, \widetilde{K})$ is a coboundary (see [15, p. 43]). Hence $\widetilde{K}^{\lambda}G$ is the group algebra of G over \widetilde{K} . By Green's theorem (see [10, p. 438]), the induced module

$$\widetilde{V}^G = \widetilde{K}^\lambda G \otimes_{\widetilde{K}^\lambda H} \widetilde{V}$$

is indecomposable. Since

$$\widetilde{K} \otimes_K (K^{\lambda}G \otimes_{K^{\lambda}H} V) \cong \widetilde{K}^{\lambda}G \otimes_{\widetilde{K}^{\lambda}H} (\widetilde{K} \otimes_K V)$$

as $\widetilde{K}^{\lambda}G$ -modules (see [14, p. 209]), the $\widetilde{K}^{\lambda}G$ -module $\widetilde{K} \otimes_{K} V^{G}$ is indecomposable. Consequently, the $K^{\lambda}G$ -module V^{G} is absolutely indecomposable.

Denote by [M] the isomorphism class of $K^{\lambda}G$ -modules that contains M. Let $\operatorname{AInd}(K^{\lambda}G, s)$ be the set of all [V] where V is an absolutely indecomposable $K^{\lambda}G$ -module of K-dimension s. We denote by $\operatorname{FAInd}(K^{\lambda}G, s)$ the set of all [W] where W is the underlying $K^{\lambda}G$ -module of a faithful absolutely indecomposable λ -representation of G over K of dimension s.

LEMMA 1.8. Let G be an abelian p-group, $\lambda, \mu \in Z^2(G, K^*)$, $K^{\lambda}G = K^{\mu}G$, $\{u_g : g \in G\}$ a natural K-basis of $K^{\lambda}G$ corresponding to λ and $\{v_g : g \in G\}$ a natural K-basis of $K^{\lambda}G$ corresponding to μ . Assume that C is the socle of Ker(λ) and $u_x = \alpha_x v_x$ for every $x \in C$, where $\alpha_x \in K^*$. Let D be a subgroup of G, $C \subset D$, V an absolutely indecomposable $K^{\mu}D$ -module and let V_C be the underlying $K^{\lambda}C$ -module of a faithful λ -representation of C. Then the induced module $V^G = K^{\mu}G \otimes_{K^{\mu}D} V$ is the underlying $K^{\lambda}G$ -module of a faithful absolutely indecomposable λ -representation of G. Moreover, if $[V_1^G] = [V_2^G]$ then $[V_1] = [V_2]$.

Proof. In view of Lemma 1.7, V^G is an absolutely indecomposable $K^{\lambda}G$ module. Suppose that $(u_g - \alpha u_e)V^G = 0$ for some $g \in \operatorname{soc} G$ and some $\alpha \in K^*$. Since $(u_g - \alpha u_e)^p V^G = 0$, we have $u_g^p = \alpha^p u_e$, which yields $g \in C$. Therefore, $(u_g - \alpha u_e)V = 0$. It follows that g = e. Consequently, V^G is the underlying $K^{\lambda}G$ -module of a faithful absolutely indecomposable λ -representation of G. If $V_1^G \cong V_2^G$ then $(V_1^G)_D \cong (V_2^G)_D$. Since $(V_j^G)_D \cong V_j \oplus \cdots \oplus V_j$ for j = 1, 2, we have $V_1 \cong V_2$. PROPOSITION 1.9. Let G be an abelian p-group, $\lambda \in Z^2(G, K^*)$, $H = \text{Ker}(\lambda)$ and $p^s = \exp H$. Assume that H is noncyclic. Let

$$l = \begin{cases} 1 & \textit{if } |H| > 4, \\ 2 & \textit{if } |H| = 4. \end{cases}$$

Then the set $\text{FAInd}(K^{\lambda}G, nl|G:H|)$ is infinite for any $n \ge p^{s-1} + 1$.

Proof. In view of Lemmas 1.1 and 1.2, FAInd($K^{\lambda}H, nl$) is infinite for $n \ge p^{s-1} + 1$. By Lemma 1.8, the formula $f([V]) = [V^G]$ defines an injective map f: FAInd($K^{\lambda}H, nl$) → FAInd($K^{\lambda}G, nl|G: H|$).

THEOREM 1.10. Let <u>G</u> be a noncyclic abelian p-group, $G_0 = \operatorname{soc} G$, $\lambda \in Z^2(G, K^*)_{\infty}$, $d = \dim_K \overline{K^{\lambda}G_0}$ and

$$l = \begin{cases} 1 & \text{if } 4d < |G_0|, \\ 2 & \text{if } 4d = |G_0|. \end{cases}$$

Then the set $\text{FAInd}(K^{\lambda}G, nld|G:G_0|)$ is infinite for all $n \geq 2$.

Proof. Let $H = G_0 \cap \text{Ker}(\lambda)$ and B be a maximal subgroup of G_0 with $K^{\lambda}B$ a field. Then $G_0 = B \times C \times H$ and $K^{\lambda}G_0 = K^{\mu}G_0$, where

$$\mu_{bch,b'c'h'} = \lambda_{b,b'}$$

for all $b, b' \in B$, $c, c' \in C$ and $h, h' \in H$. Obviously, $d = \dim_K K^{\lambda}B = |B|$. Let $D = C \times H$. Since $\lambda \in Z^2(G, K^*)_{\infty}$, the group D is noncyclic [4, p. 176]. By Lemmas 1.1 and 1.2, FAInd(KD, nl) is infinite for every $n \geq 2$. Hence, by Lemma 1.8, FAInd $(K^{\lambda}G_0, nld)$ is infinite. Applying again Lemma 1.8, we conclude that FAInd $(K^{\lambda}G, nld|G:G_0|)$ is infinite for any $n \geq 2$.

COROLLARY 1.11. Let G be a noncyclic abelian p-group and

$$t = \begin{cases} 1/p^2 & \text{if } p \neq 2, \\ 1/2 & \text{if } p = 2. \end{cases}$$

Then FAInd $(K^{\lambda}G, nt|G|)$ is infinite for any $n \geq 2$ and any cocycle $\lambda \in Z^2(G, K^*)_{\infty}$.

Let G be a noncyclic abelian p-group with at most i_K invariants. By Proposition 1 of [2], there exists a cocycle $\lambda \in Z^2(G, K^*)_{\infty}$ such that $\dim_K \overline{K^{\lambda}G} = |G| \cdot p^{-2}$. Hence, in this case, Corollary 1.11 gives all dimensions for which the group G has infinitely many faithful absolutely indecomposable λ -representations.

2. Faithful indecomposable projective representations of abelian p-groups over a field K with $i_K = 1$. In this section we assume that K is a field of characteristic p with $i_K = 1$. That is, there exists $\alpha \in$

 K^* such that the K-algebra $K[x]/(x^p - \alpha)$ is a field, and the K-algebra $K[x]/(x^p - \beta) \otimes_K K[x]/(x^p - \gamma)$ is not a field for any $\beta, \gamma \in K^*$. Since K is not perfect, K is an infinite field. For example, if F is a perfect field of characteristic p and L = F(x) is the quotient field of the polynomial ring F[x], then $i_L = 1$ (see [4, p. 174]).

LEMMA 2.1. Let θ be a root of an irreducible polynomial $x^{p^m} - \alpha \in K[x]$ in some extension of K. Then for every $\beta \in K^*$ there exists $\gamma \in K(\theta)^*$ such that $\beta = \gamma^{p^m}$.

Proof. Because $i_K = 1$, we have

(2.1)
$$\beta = \left(\sum_{r=0}^{p-1} \mu_r \theta^{rp^{m-1}}\right)^p$$

for some $\mu_r \in K$. Let $m \geq 2$. We have

(2.2)
$$\mu_r = \Big(\sum_{s=0}^{p-1} \nu_{rs} \theta^{sp^{m-1}}\Big)^p,$$

where $\nu_{rs} \in K$. It follows from (2.1) and (2.2) that

$$\beta = \left(\sum_{i=0}^{p^2-1} \varrho_i \theta^{ip^{m-2}}\right)^{p^2}, \quad \varrho_i \in K.$$

If m > 2, we inductively continue the above construction.

LEMMA 2.2. Let $G = \langle a \rangle$, $|a| = p^n$ and

$$K^{\lambda}G = \bigoplus_{i=0}^{p^n-1} Ku_a^i, \qquad u_a^{p^n} = \gamma^{p^m}u_e,$$

where $\gamma \in K^*$, $\gamma \notin K^p$ and m < n. Then for every $\beta \in K^*$ there exists an invertible element z in $K^{\lambda}G$ such that

$$z^{p^n} = \beta^{p^m} u_e.$$

Proof. Let θ be a root of the polynomial $x^{p^r} - \gamma$, where r = n - m. By Lemma 2.1,

$$\beta = \left(\sum_{j=0}^{p^r-1} \delta_j \theta^j\right)^{p^r}, \quad \delta_j \in K.$$

It follows that

$$\left(\sum_{j=0}^{p^r-1}\delta_j u_a^j\right)^{p^n} = \beta^{p^m} u_e. \bullet$$

THEOREM 2.3. Let G be a noncyclic abelian p-group, $\lambda \in Z^2(G, K^*)_{\infty}$, $d = \dim_K \overline{K^{\lambda}G}$ and

$$l = \begin{cases} 1 & if \ 4d < |G|, \\ 2 & if \ 4d = |G|. \end{cases}$$

Then the set $\operatorname{AInd}(K^{\lambda}G, nld)$ is infinite for any $n \geq 2$.

Proof. By Lemmas 1.2 and 1.3, it is sufficient to consider the case $d \neq 1$. Let $\{u_g : g \in G\}$ be a natural K-basis of $K^{\lambda}G$. There exists a decomposition $G = \langle a \rangle \times B$ such that if $|a| = p^r$ and H is the kernel of the restriction of λ to $B \times B$, then $u_a^{p^r} = \gamma^{p^s} u_e$, where s < r, $\gamma \in K^*$, $\gamma \notin K^p$, and $p^{r-s} \ge \exp(B/H)$. Let $C = \langle c \rangle$ be a group of order p^{r-s} and $D = C \times B$. There exists an algebra homomorphism of $K^{\lambda}G$ onto $K^{\mu}D = K^{\nu}C \otimes_K K^{\lambda}B$, where

$$K^{\nu}C = \bigoplus_{i} Kv_c^i, \quad v_c^{p^{r-s}} = \gamma v_e.$$

By Lemma 2.1, $K^{\mu}D \cong K^{\nu}C \otimes_{K} KB$. Evidently $d = p^{r-s}$. If B is not cyclic and |B| > 4 then, in view of Lemmas 1.3 and 1.7, the set $AInd(K^{\mu}D, n|C|)$ is infinite for every $n \geq 2$.

Now let B be noncyclic and |B| = 4. If s = 0 then $d = 2^r$ and |G| = 4d. By Lemmas 1.2 and 1.7, AInd $(K^{\lambda}G, 2nd)$ is infinite for any n. Assume that $s \neq 0$. We have

$$K^{\lambda}G = \bigoplus_{i,j_1,j_2} K u_a^i u_{b_1}^{j_1} u_{b_2}^{j_2}, \quad u_a^{2^r} = \gamma^{2^s} u_e, \quad u_{b_1}^2 = \delta_1 u_e, \quad u_{b_2}^2 = \delta_2 u_e,$$

where $\delta_1, \delta_2 \in K^*$. Let $\delta_1 \notin K^2$. Then we may suppose that $\delta_2 = 1$. Let $\varrho \in K[u_{b_1}]$ and $\varrho^2 = \gamma^{-1}u_e$. Then

$$(\varrho u_a^{2^{r-s-1}})^{2^{s+1}} = u_e$$

The order of the subgroup of G generated by $a^{2^{r-s-1}}$ and b_2 is equal to $2^{s+2} \ge 8$. It follows from this and Lemmas 1.3 and 1.7 that $AInd(K^{\lambda}G, nd)$ is infinite for every $n \ge 2$.

Assume that $B = \langle b \rangle$ and $|B| = p^t$. Since $K^{\lambda}G$ is not a uniserial algebra, we have

$$K^{\lambda}G = \bigoplus_{i,j} K u_a^i u_b^j, \quad u_a^{p^r} = \gamma^{p^s} u_e, \quad u_b^{p^t} = \delta^{p^m} u_e,$$

where s > 0, $m \leq t$, moreover, if m < t then $\delta \notin K^p$ and if m = t then $\delta = 1$. Let $\delta \notin K^p$. There exists an algebra homomorphism of $K^{\lambda}G$ onto

$$K^{\mu}\overline{G} = \bigoplus_{i,j} K v^{i}_{\overline{a}} v^{j}_{\overline{b}}, \quad v^{p^{r-s+1}}_{\overline{a}} = \gamma^{p} v_{\overline{e}}, \quad v^{p^{t-m+1}}_{\overline{b}} = \delta^{p} v_{\overline{e}}.$$

By Lemma 2.2, we have

$$K^{\mu}\overline{G} = \bigoplus_{i,j} K v^{i}_{\overline{a}} w^{j}_{\overline{b}}, \quad w^{p^{t-m+1}}_{\overline{b}} = v_{\overline{e}}.$$

Because $p^{t-m+1} > 2$, AInd $(K^{\mu}\overline{G}, nd)$ is infinite for any $n \geq 2$ by Lemmas 1.3 and 1.7. Let $\delta = 1$. If $p^t > 2$ or $p^s > 2$ then AInd $(K^{\lambda}G, nd)$ is infinite for any $n \geq 2$. If p = 2, s = 1, t = 1, then 4d = |G|. In view of Lemmas 1.2 and 1.7, AInd $(K^{\lambda}G, 2nd)$ is infinite for all n.

COROLLARY 2.4. Let G be a noncyclic <u>abelian</u> p-group of exponent p^m , $\lambda \in Z^2(G, K^*)_{\infty}$, $\operatorname{Ker}(\lambda) = \{e\}, d = \dim_K \overline{K^{\lambda}G}$ and

$$l = \begin{cases} 1 & \text{if } 4d < |G|, \\ 2 & \text{if } 4d = |G|. \end{cases}$$

Then $d = p^m$ and FAInd $(K^{\lambda}G, nld)$ is infinite for any $n \geq 2$.

Proof. Apply Lemma 1.4. ■

Let us remark that K. Sobolewska in [16] has found some infinite subsets of the set of all natural numbers m for which an abelian p-group G has infinitely many indecomposable λ -representations over K of dimension m, where K is an arbitrary field and $\lambda \in Z^2(G, K^*)_{\infty}$.

THEOREM 2.5. Let $G = A \times B$ be an abelian p-group, $\lambda \in Z^2(G, K^*)_{\infty}$, $H = \text{Ker}(\lambda), \ \overline{H} = B \cap H, \ p^m = \exp A \ and \ p^r = \exp(B/\overline{H}).$ Assume that $|A| > 1, \ |B| > 1 \ and \ \text{soc} B = \text{soc} H.$

(i) Let $m \ge r$ and

$$l = \begin{cases} 1 & \text{if } \exp B \neq 2 \text{ or } \text{if } \exp B = 2 \text{ and } |\operatorname{soc} G| > 8, \\ 2 & \text{if } \exp B = 2 \text{ and } |\operatorname{soc} G| = 8. \end{cases}$$

Then $p^m = \dim_K \overline{K^{\lambda}G}$. If $p^s = \exp B$ then $\operatorname{FAInd}(K^{\lambda}G, nlp^m)$ is infinite for all $n \ge p^{s-1} + 1$. Moreover, the smallest dimension of a faithful indecomposable λ -representation of G over K equals $p^m(p^{s-1}+1)$.

(ii) Let m < r. Denote by D a maximal subgroup of B with $\overline{H} \subset D$ and $\exp(D/\overline{H}) = p^m$. If $p^s = \exp D$ then $\operatorname{FAInd}(K^{\lambda}G, np^m|B:D|)$ is infinite for all $n \ge p^{s-1} + 1$.

Proof. Let $A = A_1 \times A_2$, where A_1 is a cyclic group and $|A_1| = \exp A$. Since $A \cap H = \{e\}$ and $\lambda \in Z^2(G, K^*)_{\infty}$, it follows that $K^{\lambda}A_1$ is a field and $A_2 \times B$ is not a cyclic group.

(i) Assume that $m \geq r$. Denote by $\{u_g : g \in G\}$ a natural K-basis of $K^{\lambda}G$ corresponding to λ . Let $C = A_2 \times B$. Up to cohomology $u_h^{|h|} = u_e$ for every $h \in \operatorname{soc} B$, and if $g = a_1c$, where $a_1 \in A_1$, $c \in C$, then $u_g = u_{a_1}u_c$. We can view $K^{\lambda}G$ as the twisted group algebra $L^{\lambda}C$ of the group C over the

field $L = K^{\lambda}A_1$ with the cocycle λ . By Lemma 2.1, the algebra $L^{\lambda}C$ has a group *L*-basis $\{v_c : c \in C\}$, that is, $v_c v_{c'} = v_{cc'}$ for all $c, c' \in C$. We choose this basis in such a way that $v_h = u_h$ for every $h \in \operatorname{soc} B$. We set $v_g = u_{a_1}v_c$ for every $g = a_1c$, where $a_1 \in A_1$, $c \in C$. If $g' = a'_1c'$, where $a'_1 \in A_1$, $c' \in C$, then $v_g v_{g'} = \lambda_{a_1,a'_1} u_{a_1a'_1} v_{cc'} = \lambda_{a_1,a'_1} v_{gg'}$. Let $\mu_{g,g'} = \lambda_{a_1,a'_1}$ for any $g, g' \in G$. Then $\mu \in Z^2(G, K^*)$, $K^{\lambda}G = K^{\mu}G$ and $\{v_g : g \in G\}$ is a natural K-basis of $K^{\lambda}G$ corresponding to μ .

Let \widetilde{A}_2 be an elementary abelian *p*-group of order $|\operatorname{soc} A_2|$ and $\widetilde{C} = \widetilde{A}_2 \times B$. In view of Lemmas 1.1 and 1.2, FAInd $(K\widetilde{C}, nl)$ is infinite for all $n \geq p^{s-1} + 1$. It follows that AInd(KC, nl) has infinitely many elements [W] such that W_B is the underlying KB-module of a faithful linear representation of B. Hence, by Lemma 1.8, FAInd $(K^{\lambda}G, nlp^m)$ is infinite for all $n \geq p^{s-1} + 1$.

Let $G_1 = A_1 \times B_1$, where B_1 is a cyclic subgroup of B and $|B_1| = p^s$. By [7, p. 170], the algebra $K^{\lambda}G_1$ is uniserial. The nilpotency index of rad $K^{\lambda}G_1$ is equal to p^s . Since soc $B_1 \subset H$, by Proposition 1.6, the smallest dimension of a faithful λ -representation of G_1 over K equals $p^m(p^{s-1} + 1)$. It follows that the smallest dimension of a faithful indecomposable λ -representation of G over K also equals $p^m(p^{s-1} + 1)$.

(ii) Let m < r and $T = A \times D$. Since $\exp D > 2$, by case (i), FAInd $(K^{\lambda}T, np^m)$ is infinite for all $n \ge p^{s-1} + 1$, where $p^s = \exp D$. Hence, in view of Lemma 1.8, FAInd $(K^{\lambda}G, np^m \cdot |G : T|)$ is also infinite. Since |G:T| = |B:D|, the theorem is proved.

COROLLARY 2.6. Let G be an elementary abelian p-group of order p^m , where $m \geq 3$, $\lambda \in Z^2(G, K^*)$, $\operatorname{Ker}(\lambda) \neq G$ and

$$l = \begin{cases} 1 & if \ p \neq 2 \ or \ if \ p = 2 \ and \ m \ge 4, \\ 2 & if \ p = 2 \ and \ m = 3. \end{cases}$$

Then $\dim_K \overline{K^{\lambda}G} = p$ and $\operatorname{FAInd}(K^{\lambda}G, nlp)$ is infinite for all $n \geq 2$.

Acknowledgments. The author is grateful to Professor D. Simson for valuable remarks.

REFERENCES

- I. Assem, D. Simson and A. Skowroński, Elements of Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Student Texts 65, Cambridge Univ. Press, 2006.
- [2] L. F. Barannyk and D. Klein, Twisted group rings of strongly unbounded representation type, Colloq. Math. 100 (2004), 265–287.
- [3] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, ibid. 87 (2001) 181–193.
- [4] —, —, On indecomposable projective representations of finite groups over fields of characteristic p > 0, ibid. 98 (2003), 171–187.

- [5] V. A. Bashev, Representations of the group $Z_2 \times Z_2$ in a field of characteristic 2, Dokl. Akad. Nauk SSSR 141 (1961), 1015–1018 (in Russian).
- [6] A. Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965), 71–73.
- [7] Yu. A. Drozd and V. V. Kirichenko, *Finite Dimensional Algebras*, Springer, Berlin, 1994.
- [8] W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
- [9] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press, New York, 1970.
- [10] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
- P. M. Gudivok, On modular representations of finite groups, Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat. 4 (1961), 86–87 (in Russian).
- [12] G. J. Janusz, Faithful representations of p-groups at characteristic p. I, J. Algebra 15 (1970), 335–351.
- [13] —, Faithful representations of p-groups at characteristic p. II, ibid. 22 (1972), 137–160.
- [14] G. Karpilovsky, Projective Representations of Finite Groups, Dekker, New York, 1985.
- [15] —, Group Representations, Vol. 2, North-Holland Math. Stud. 177, North-Holland, 1993.
- [16] K. Sobolewska, Modular projective representations of finite groups, Ph.D. Thesis, Univ. of Toruń, 2005.

Institute of Mathematics Pomeranian University of Słupsk Arciszewskiego 22b 76-200 Słupsk, Poland E-mail: barannyk@pap.edu.pl, barannykleo@poczta.onet.pl

> Received 30 March 2007; revised 14 May 2007 (4895)

147