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COARSE STRUCTURES AND GROUP ACTIONSBYN. BRODSKIY, J. DYDAK and A. MITRA (Knoxville, TN)Abstra
t. The main results of the paper are:Proposition 0.1. A group G a
ting 
oarsely on a 
oarse spa
e (X, C) indu
es a 
oarseequivalen
e g 7→ g · x0 from G to X for any x0 ∈ X.Theorem 0.2. Two 
oarse stru
tures C1 and C2 on the same set X are equivalent ifthe following 
onditions are satis�ed:(1) Bounded sets in C1 are identi
al with bounded sets in C2.(2) There is a 
oarse a
tion φ1 of a group G1 on (X, C1) and a 
oarse a
tion φ2 of agroup G2 on (X, C2) su
h that φ1 
ommutes with φ2.They generalize the following two basi
 results of 
oarse geometry:Proposition 0.3 (Shvarts�Milnor lemma [5, Theorem 1.18℄). A group G a
ting prop-erly and 
o
ompa
tly via isometries on a length spa
e X is �nitely generated and indu
esa quasi-isometry equivalen
e g 7→ g · x0 from G to X for any x0 ∈ X.Theorem 0.4 (Gromov [4, p. 6℄). Two �nitely generated groups G and H are quasi-isometri
 if and only if there is a lo
ally 
ompa
t spa
e X admitting proper and 
o
ompa
ta
tions of both G and H that 
ommute.
1. Introdu
tion. The proof in [2℄ of the Shvarts�Milnor lemma wasbased on the idea that isometri
 a
tions of groups ought to indu
e a 
oarsestru
ture on the group under reasonable 
onditions. Sin
e left 
oarse stru
-tures on 
ountable groups are unique (in the sense of independen
e from theleft-invariant proper metri
), the Shvarts�Milnor lemma follows.In this paper we investigate 
ases where group a
tions on sets indu
e anatural 
oarse stru
ture on the set. As usual, the uniqueness of the 
oarsestru
ture is of interest.2000 Mathemati
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We will use two approa
hes to 
oarse stru
tures on a set X:(1) The original one of Roe [5℄, based on 
ontrolled subsets of X ×X.(2) The one from [3℄, based on uniformly bounded families in X.The reason is that 
ertain 
on
epts and results have a more natural meaningin a parti
ular approa
h to 
oarse stru
tures. Re
all that one 
an swit
hfrom one approa
h to another using the following basi
 fa
ts (see [3℄):(a) If {Bs}s∈S is uniformly bounded, then ⋃

s∈S Bs ×Bs is 
ontrolled.(b) If E is 
ontrolled, then there is a uniformly bounded family {Bs}s∈Ssu
h that E ⊂
⋃
s∈S Bs ×Bs.To de�ne a 
oarse stru
ture using uniformly bounded families one needsto verify the following 
onditions:(1) B1 is uniformly bounded implies B2 is uniformly bounded if ea
helement of B2 
onsisting of more than one point is 
ontained in someelement of B1.(2) B1,B2 uniformly bounded implies St(B1,B2) is uniformly bounded.Definition 1.1. A fun
tion f : (X, CX) → (Y, CY ) of 
oarse spa
es is:

• large s
ale uniform (or bornologous) if f(B) ∈ CY for every B ∈ CX ,
• 
oarsely proper if f−1(U) is bounded for every bounded subset U of Y ,
• 
oarse if it is large s
ale uniform and 
oarsely proper.Re
all that two fun
tions f, g : S → (X, CX) from a set S to a 
oarsespa
e (X, CX) are 
lose if the family {{f(s), g(s)}}s∈S is bounded.Definition 1.2. A 
oarse fun
tion f : (X, CX) → (Y, CY ) of 
oarsespa
es is a 
oarse equivalen
e if there is a 
oarse fun
tion g : (Y, CY ) →

(X, CX) su
h that f ◦ g is 
lose to idY and g ◦ f is 
lose to idX .Here is a simple 
riterion for being a 
oarse equivalen
e using the ap-proa
h of [3℄:Lemma 1.3. A surje
tive 
oarse fun
tion f : (X, CX) → (Y, CY ) of 
oarsespa
es is a 
oarse equivalen
e if and only if f−1(B) is a uniformly boundedfamily in X for ea
h uniformly bounded family B in Y .Proof. Let g : Y → X be a sele
tion for y 7→ f−1(y), and de�ne B′ =
{f−1(y)}y∈Y ∈ CX .If g : (Y, CY ) → (X, CX) is bornologous, then f−1(B) re�nes St(g(B),B′),resulting in f−1(B) being uniformly bounded.Let us show that g is bornologous if f is a 
oarse equivalen
e. Choose
h : (Y, CY ) → (X, CX) that is bornologous and h ◦ f is B1-
lose to idX forsome B1 ∈ CX . Therefore h = h ◦ f ◦ g is B1-
lose to g and g is bornologous.Assume f−1(B) is a uniformly bounded family in X for ea
h uniformlybounded family B in Y . If g is bornologous, then f is a 
oarse equivalen
e as
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f ◦ g = idY and g ◦ f is B′-
lose to idX . If B ∈ CY , then g(B) re�nes f−1(B),so it is uniformly bounded and g is bornologous.Corollary 1.4. Suppose f : X → Y is a surje
tive fun
tion and C1, C2are two 
oarse stru
tures on Y . If CX is a 
oarse stru
ture on X su
h thatboth f : (X, CX) → (Y, Ci), i = 1, 2, are 
oarse equivalen
es, then C1 = C2.Proof. Suppose B ∈ C1 is uniformly bounded. Sin
e f−1(B) ∈ CX by 1.3and f : (X, CX) → (Y, C2) is bornologous, B = f(f−1(B)) ∈ C2. Similarly,
C2 ⊂ C1.Remark 1.5. We will see in 2.2 that f being surje
tive is ne
essary.2. Coarse stru
tures on groups. Given a group G one 
an equip itwith either the left 
oarse stru
ture Cl(G) or right 
oarse stru
ture Cr(G). For
ountable groups G those stru
tures are metrizable by proper left-invariant(proper right-invariant) metri
s on G.In terms of 
ontrolled sets, E ∈ Cl(G) if and only if there is a �nitesubset F of G su
h that x−1 · y ∈ F for all (x, y) ∈ E. Similarly, E ∈ Cr(G)if and only if there is a �nite subset F of G su
h that x · y−1 ∈ F for all
(x, y) ∈ E. Noti
e all fun
tions x 7→ g · x (g ∈ G being �xed) are 
oarseself-equivalen
es of (G, Cl(G)) and all fun
tions x 7→ x · g are 
oarse self-equivalen
es of (G, Cr(G)). We will primarily deal with the stru
ture Cl(G)(noti
e x 7→ x−1 indu
es isomorphism of stru
tures Cl(G) and Cr(G)) but�rst we will 
hara
terize 
ases where the two stru
tures are identi
al.Proposition 2.1. The following are equivalent for any group G:(1) Cl(G) = Cr(G),(2) Cl(G) ⊂ Cr(G),(3) Cr(G) ⊂ Cl(G),(4) G is an FC-group (
onjuga
y 
lasses of all elements are �nite).Proof. (3)⇒(4). Fix a ∈ G and 
onsider the family {{x, a · x}}x∈G. It isuniformly bounded in Cr(G), so it must be uniformly bounded in Cl(G), butthat means the set {x−1 · a · x}x∈G is �nite, i.e. the set of 
onjuga
y 
lassesof a is �nite. The same proof shows (2)⇒(4).(4)⇒(1). Given a uniformly bounded family B in Cl(G) there is a �nitesubset F of G su
h that u−1 ·v ∈ F for all u, v belonging to the same elementof B. Let E be the set of 
onjuga
y 
lasses of all elements of F . If u, v belongto the same element of B, then there is f ∈ F so that u−1 · v = f . Thus
v = u ·f and v ·u−1 = u ·f ·u−1 ∈ E. Thus B is uniformly bounded in Cr(G).The same argument shows Cr(G) ⊂ Cl(G).Corollary 2.2. There is a monomorphism i : Z → Dih∞ from the in-tegers to the in�nite dihedral group Dih∞ that indu
es 
oarse equivalen
es
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for both left 
oarse stru
tures and right 
oarse stru
tures but Cl(Dih∞) 6=
Cr(Dih∞).Proof. Consider the presentation {x, t | t−1xt = x−1 and t2 = 1} of
Dih∞. Identify Z with the subgroup of Dih∞ generated by x. Noti
e Z isof index 2 in Dih∞, so Z → Dih∞ is a 
oarse equivalen
e for both left andright 
oarse stru
tures. Sin
e Z is Abelian, those 
oin
ide on that group but
Cl(Dih∞) 6= Cr(Dih∞) as the 
onjuga
y 
lass of x equals Z.Proposition 2.3. The multipli
ation m : (G × G, Cl(G) × Cl(G)) →
(G, Cl(G)) is large s
ale uniform if and only if Cl(G) = Cr(G).Proof. Suppose F is a �nite subset of G. Consider the uniformly boundedfamily {F ×{x}}x∈G in Cl(G)×Cl(G). Sin
e m(F ×{x}) = F ·x, the family
{F · x}x∈G ∈ C(G)l. Thus Cr(G) ⊂ Cl(G) and Cl(G) = Cr(G) by 2.1.Suppose Cl(G) = Cr(G). It su�
es to show that {m(x·F×y·E)}(x,y)∈G×Gis uniformly bounded for any �nite subsets F and E of G. Choose a �nitesubset E′ and a fun
tion f : G→ G su
h that x ·E ⊂ E′ · f(x) for all x ∈ G.Pi
k a �nite subset F ′ of G and a fun
tion g : G→ G su
h that F ·E′ · y ⊂
g(y) ·F ′ for all y ∈ G. Now m(x ·F ×y ·E) ⊂ x ·F ·E′ ·f(y) ⊂ x ·g(f(y)) ·F ′and the proof is 
omplete.3. Indu
ing 
oarse stru
tures by group a
tions. Our �rst task isto dis
uss 
ases of group a
tions of a group G on a set X indu
ing a 
oarsestru
ture CG on X su
h that g 7→ g ·x0 is a 
oarse equivalen
e from (G, Cl(G))to (X, CG) for all x0 ∈ X.Proposition 3.1. Suppose a group G a
ts transitively on a set X.(1) If there is a 
oarse stru
ture CG on X so that g 7→ g · x0 is a 
oarseequivalen
e from (G, Cl(G)) to (X, CG), then the stabilizer of x0 is�nite.(2) If the stabilizer of x0 is �nite, then there is a unique 
oarse stru
ture

CG on X so that g 7→ g · x0 is large s
ale uniform. In that 
ase
g 7→ g · x0 is a 
oarse equivalen
e from (G, Cl(G)) to (X, CG).Proof. (1) If γ : g 7→ g · x0 is a 
oarse equivalen
e, then γ−1(x0) must bebounded in G, i.e. �nite. Noti
e that γ−1(x0) is pre
isely the stabilizer of x0.(2) Assume the stabilizer S of x0 is �nite. De�ne CG as follows: B ∈ CGif γ−1(B) is uniformly bounded in Cl(G). If CG is a 
oarse stru
ture and

γ : (G, Cl(G)) → (X, CG) is bornologous, then 1.3 says γ is a 
oarse equiva-len
e, and the uniqueness of CG follows from 1.4.Sin
e γ−1(St(B1,B2)) = St(γ−1(B1), γ
−1(B2)), we see that B1,B2 ∈ CGimplies St(B1,B2) ∈ CG. Given B ∈ CG we need to 
he
k that any family B′,whose elements 
ontaining more than one point re�ne B, also belongs to CG.There is a �nite subset F of G su
h that γ−1(B) re�nes the family {g ·F}g∈G.
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Put E = F ∪ S. If {x} ∈ B′, then γ−1(x) = h · S, where h ∈ G satis�es
x = h · x0. Thus γ−1(B′) re�nes {g · E}g∈G, so B′ ∈ CG.Proposition 3.2. Suppose a group G a
ts on a set X. If there is asubset U of X su
h that X = G · U and the stabilizer

SU = {g ∈ G | U ∩ (g · U) 6= ∅}of U is �nite, then there is a 
oarse stru
ture CG on X so that g 7→ g · x0 isa 
oarse equivalen
e from (G, Cl(G)) to (X, CG) for all x0 ∈ X.Proof. First de�ne the bounded sets of CG. Those are subsets of sets ofthe form F · U , where F is any �nite subset of G. Se
ond, de�ne CG asfamilies B su
h that there is a bounded set V so that B re�nes {g · V }g∈G.Noti
e that, if B′ is a family whose elements 
ontaining more than one pointre�ne B, then B′ re�nes {g ·(V ∪U)}g∈G and V ∪U is bounded. Thus B′ ∈ CG.The important property of bounded sets V is that their stabilizers SV =
{g ∈ G | V ∩ (g · V ) 6= ∅} are �nite. It su�
es to prove that for V = F · U ,
F ⊂ G being �nite. If V ∩ (g · V ) 6= ∅, then there exist elements fi ∈ F ,
i = 1, 2, su
h that (f1 ·U)∩(g ·f2 ·U) 6= ∅, whi
h implies U∩(f−1

1 gf2 ·U) 6= ∅.Thus f−1
1 gf2 ∈ SU and g ∈ F · SU · F−1, whi
h proves SV is �nite.The se
ond useful observation is that St(V,B) is bounded for any boundedset V and any B ∈ CG. Indeed, if B re�nes {g ·W}g∈G for some bounded W ,we may assume V ⊂ W , in whi
h 
ase V interse
ts only �nitely many el-ements of {g · W}g∈G. Sin
e those are all bounded and a �nite union ofbounded sets is bounded, we are done.Suppose B1,B2 ∈ CG and 
hoose bounded sets Vi, i = 1, 2, su
h that Bire�nes {g ·Vi}g∈G. Put V = St(V1, {g ·V2}g∈G) and noti
e V is bounded. Ouraim is to show St(B1,B2) re�nes {g · V }g∈G. If (h · V1) ∩ (g · V2) 6= ∅, then

V1∩ (h−1 · g ·V2) 6= ∅, so V1∪ (h−1 · g ·V2) ⊂ V , hen
e St(h ·V1,B2) ⊂ h ·V .Let us point out that, surprisingly, the stru
ture CG in 3.2 does not haveto be unique, 
ontrary to typi
al 
ategori
al intuition.Proposition 3.3. There is an a
tion of integers Z on the in�nite dihe-dral group Dih∞ su
h that g 7→ g · x0 are 
oarse equivalen
es for both leftand right 
oarse stru
tures but Cl(Dih∞) 6= Cr(Dih∞).Proof. Consider the presentation {x, t | t−1xt = x−1 and t2 = 1} of
Dih∞. Identify Z with the subgroup of Dih∞ generated by x. Noti
e Z is ofindex 2 in Dih∞, so Z → Dih∞ is a 
oarse equivalen
e for both left and right
oarse stru
tures. Sin
e Z is Abelian, those 
oin
ide on that group but 2.2says that Cl(Dih∞) 6= Cr(Dih∞).4. A
tions by uniformly bornologous fun
tions. We want to gener-alize isometri
 a
tions to the framework of 
oarse geometry. The appropriate
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on
ept is not only to require that ea
h fun
tion x 7→ g · x is bornologousbut that those fun
tions are uniformly bornologous.Definition 4.1. A group G a
ts on a 
oarse spa
e (X, CX) by uniformlybornologous fun
tions if for any 
ontrolled set E there is a 
ontrolled set E′su
h that (g · x, g · y) ∈ E′ for all (x, y) ∈ E and all g ∈ G.Proposition 4.2. A group G a
ts on a 
oarse spa
e X by uniformlybornologous fun
tions if and only if for any uniformly bounded family B =
{Bs}s∈S in X the family G · B = {g ·Bs}(g,s)∈G×S is uniformly bounded.Proof. Suppose the a
tion is by uniformly bornologous fun
tions and
B = {Bs}s∈S is a uniformly bounded family. Put E =

⋃
s∈S Bs × Bs andnoti
e it is a 
ontrolled set. Pi
k a 
ontrolled set E′ su
h that (g ·x, g ·y) ∈ E′for all g ∈ G and all (x, y) ∈ E. De�ne B′ as the family of allB ⊂ X satisfying

B ×B ⊂ E′. It is a uniformly bounded family 
ontaining G · B.Suppose the family G · B = {g · Bs}(g,s)∈G×S is uniformly bounded forany uniformly bounded family B = {Bs}s∈S in X. Assume E is a symmetri

ontrolled set 
ontaining the diagonal. Consider the family B of all sets
B ⊂ X su
h that B ×B ⊂ E ◦E ◦ E ◦E and let

E′ =
⋃

B∈B, g∈G

g ·B × g ·B.

It is a 
ontrolled set and, if (x, y) ∈ E, then {x, y} × {x, y} ⊂ E ◦E ◦E ◦Eand (g · x, g · y) ∈ E′.Corollary 4.3. Let G be a group and (X, CX) be a 
oarse spa
e. If
φ : (G ×X, Cl(G) × CX) → (X, CX) is bornologous , then the a
tion of G on
(X, CX) is by uniformly bornologous fun
tions.Proof. Given a uniformly bounded family B = {Bs}s∈S in X, the family
{{g}×Bs}(g,s)∈G×S is uniformly bounded in G×X, so {φ({g}×Bs)}(g,s)∈G×Sis uniformly bounded, whi
h means G · B is uniformly bounded.Remark 4.4. Noti
e that the in�nite dihedral group Dih∞ a
ts on itselfby left multipli
ation so that the a
tion is by uniformly bornologous fun
tionsbut the multipli
ation is not bornologous (see 2.3 and 2.2).5. Coarsely proper and 
obounded a
tionsDefinition 5.1. An a
tion φ of a group G on a 
oarse spa
e (X, CX) is
oarsely proper if φx : G→ G · x is 
oarsely proper for all x ∈ X.Lemma 5.2. An a
tion φ of a group G on a 
oarse spa
e (X, CX) is
oarsely proper if and only if for every bounded subset U of X the family
{g · U}g∈G is point-�nite.
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Proof. This follows from the fa
t that φ−1
x (U) = {g ∈ G | x ∈ g−1 · U}for all x ∈ X and U ⊂ X.Corollary 5.3. If an a
tion φ of a group G on a 
oarse spa
e (X, CX) is
oarsely proper and by uniformly bornologous fun
tions , then φx : G→ G · xis a 
oarse equivalen
e for all x ∈ X.Proof. Noti
e the stabilizer of x0 is �nite by 5.2 and use (2) of 3.1.Lemma 5.4. Let φ be an a
tion of a group G on a 
oarse spa
e (X, CX)by uniformly bornologous fun
tions. Then it is 
oarsely proper if and only ifthe stabilizer

SU = {g ∈ G | U ∩ (g · U) 6= ∅}of U is �nite for every bounded subset U of X.Proof. One dire
tion is obvious in view of 5.2, so assume φ is an a
tion byuniformly bornologous fun
tions that is 
oarsely proper. If SU = {g ∈ G | U∩
(g·U) 6= ∅} is in�nite for some bounded set U , then put V = St(U, {g·U}g∈G)and noti
e that φ−1

x (V ) 
ontains SU for all x ∈ U , a 
ontradi
tion.Definition 5.5. An a
tion of a group G on a 
oarse spa
e (X, CX) is
obounded if X = G · U for some bounded subset U of X.Proposition 5.6. If an a
tion φ of a group G on a 
oarse spa
e (X, CX)is 
obounded and by uniformly bornologous fun
tions , then for everyuniformly bounded family B there is a bounded set U su
h that B re�nes
{g · U}g∈G.Proof. Pi
k a bounded set V su
h that G · V = X. Given B = {Bs}s∈S
∈ CX put U = St(V,G · B). Then U is bounded and B re�nes {g · V }g∈G.Corollary 5.7. If an a
tion φ of a group G on a set X is 
oboundedand by uniformly bornologous fun
tions under two 
oarse stru
tures C1 and
C2 on X, then C1 = C2 if and only if bounded sets in both stru
tures areidenti
al.Proof. By 5.6 both stru
tures are generated by families {g ·U}g∈G, where
U is bounded.6. Coarse a
tionsDefinition 6.1. An a
tion of a group G on a 
oarse spa
e (X, C) is
oarse if it is 
oarsely proper, 
obounded, and by uniformly bornologousfun
tions.Corollary 6.2. If an a
tion φ of a group G on a 
oarse spa
e (X, CX) is
oarse, then φx : (G, Cl(G)) → (X, CX) is a 
oarse equivalen
e for all x ∈ X.
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Proof. By 5.3 the fun
tion g 7→ g · x0 is a 
oarse equivalen
e from Gto G · x0. Noti
e the in
lusion G · x0 → X is a 
oarse equivalen
e by the
oboundedness of the a
tion.Theorem 6.3. Suppose αi : Gi×X → X, i = 1, 2, are two 
ommutativeleft a
tions of groups Gi on the same set X. If there are 
oarse stru
tures

Ci, i = 1, 2, whose bounded sets 
oin
ide su
h that αi is 
oarse with respe
tto Ci, then(a) G1 is 
oarsely equivalent to G2,(b) (X, C1) is 
oarsely equivalent to (X, C2).Proof. Pi
k a bounded set (in both 
oarse stru
tures) U with Gi ·U = Xfor i = 1, 2. Pi
k x0 ∈ U . De�ne ψ : G2 → G1 so that h−1 · x0 ∈ ψ(h) · U forall h ∈ G2.To show ψ is large s
ale uniform 
onsider a �nite subset F of G2 
ontain-ing identity, de�ne V = F−1 ·U and de�ne E as the set of all g ∈ G1 so that
V ∩(g ·V ) 6= ∅. Suppose h = h−1

1 h2 ∈ F and gi = ψ(hi) for i = 1, 2. Consider
y = g−1

1 (h−1
2 · x0) and put g = g−1

1 g2. Our goal is to show y ∈ V ∩ (g · V ),resulting in g ∈ E. Sin
e g−1 · y = g−1
2 (h−1

2 ·x0) ∈ U ⊂ V , we have y ∈ g ·V .Now, as h2 = h1 · h, we see that y = g−1
1 (h−1

2 · x0) = g−1
1 (h−1 · h−1

1 · x0) =
h−1(g−1

1 (h−1
1 · x0)) ⊂ h−1 · U ⊂ F−1 · U = V .Similarly, de�ne φ : G1 → G2 so that g−1 · x0 ∈ φ(g) · U for all g ∈ G1and noti
e it is large s
ale uniform.Let B be a uniformly bounded family in C1 so that all sets g ·U , g ∈ G1,re�ne B. Observe g 7→ g · x0 and g 7→ ψ(φ(g)) · x0 are St(B,B)-
lose.Indeed, using the de�nition of φ and 
ommutativity of the two a
tions, weget φ(g)−1 ·x0 ∈ g ·U , and by de�nition of ψ we have φ(g)−1 ·x0 ∈ ψ(φ(g))·U .Sin
e g 7→ g · x0 is a 
oarse equivalen
e from G1 to (X1, C1) (see 6.2), ψ ◦ φis 
lose to the identity of G1. Similarly, φ ◦ψ is 
lose to the identity of G2.7. Topologi
al a
tions. LetX be a topologi
al spa
e and G be a group.Re
all that an a
tion of G on X is topologi
ally proper if ea
h point x ∈ Xhas a neighborhood Ux su
h that the stabilizer {g ∈ G | Ux ∩ (g · Ux) 6= ∅}of Ux is �nite. An a
tion of G on X is 
o
ompa
t if there exists a 
ompa
tsubspa
e K ⊂ X su
h that G ·K = X.Definition 7.1. LetX be a lo
ally 
ompa
t topologi
al spa
e. An a
tionof a group G on X is topologi
al if it is by homeomorphisms, it is 
o
ompa
tand topologi
ally proper.Proposition 7.2. Suppose X is a lo
ally 
ompa
t topologi
al spa
e. If φis a topologi
al a
tion of G on X, then there is a unique 
oarse stru
ture Cφon X su
h that the a
tion φ of G on (X, Cφ) is 
oarse and the bounded sets
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in Cφ are pre
isely the relatively 
ompa
t subsets of X. The stru
ture Cφ isgenerated by the families {g ·K}g∈G where K is a 
ompa
t subset of X.Proof. Uniqueness of φ follows from 5.7. Let us show that the stabilizerof ea
h 
ompa
t subset K of X is �nite. If it is not, then there is an in�nitesubset I of G and points xg ∈ K ∩ (g ·K) for ea
h g ∈ I. The set {xg}g∈Imust be dis
rete (otherwise the a
tion would not be topologi
ally proper atits a

umulation point), so in�nitely many xg's are equal, a 
ontradi
tion.Consider the stru
ture Cφ on X des
ribed in the proof of 3.2. Noti
e ithas the required properties.Corollary 7.3. Suppose φ : G×X → X and ψ : H ×X → X are twotopologi
al a
tions on a lo
ally 
ompa
t spa
e X. If φ 
ommutes with ψ, then
(X, Cφ) and (X, Cψ) are 
oarsely equivalent.Proof. Use 6.3.Remark 7.4. It is not true that Cφ = Cψ in general. Use 3.3 and equipgroups with dis
rete topologies.Theorem 7.5. If G and H are 
oarsely equivalent groups , then there isa lo
ally 
ompa
t topologi
al spa
e X and topologi
al a
tions φ : G×X → Xand ψ : H ×X → X that 
ommute.Proof. Pi
k a 
oarse equivalen
e α : G→ H. Choose a fun
tion c assign-ing to ea
h �nite subset F of G a �nite subset c(F ) of H with the propertythat u−1 · v ∈ F implies α(u)−1 · α(v) ∈ c(F ).Choose a fun
tion d assigning to ea
h �nite subset F of H a �nite subset
d(F ) of G with the property that α(u)−1 · α(v) ∈ F implies u−1 · v ∈ d(F ).Let E be a �nite subset of H so that H = α(G) · E.Let X be the spa
e of all fun
tions β : G → H satisfying the following
onditions:(1) u−1 · v ∈ F implies β(u)−1 · β(v) ∈ c(F ) for all �nite subsets F of G,(2) β(u)−1 · β(v) ∈ F implies u−1 · v ∈ d(F ) for all �nite subsets F of H,(3) H = β(G) · E.We 
onsider X with the 
ompa
t-open topology provided both G and Hare given the dis
rete topologies. Noti
e X is 
losed in the spa
e HG of allfun
tions from G to H equipped with the 
ompa
t-open topology. Indeed,
onditions (1) and (2) above hold for all β ∈ cl(X), so it remains to 
he
k
H = β(G) ·E for su
h β. Given h ∈ H 
onsider the set F = β(1G)−1 ·h ·E−1and 
hoose γ ∈ X so that γ(g) = β(g) for all g ∈ d(F ) ∪ {1G}. Pi
k g1 ∈ Gand e ∈ E so that h = γ(g1) · e. Sin
e γ(1G)−1 · γ(g1) ∈ F , we see that
g1 = 1−1

G · g1 ∈ d(F ) and γ(g1) = β(g1). Thus h ∈ β(G) · E.Noti
e X is lo
ally 
ompa
t. Indeed, given β ∈ X 
onsider U = {γ ∈ X |
γ(1G) = β(1G)}. It is 
learly open and equals X ∩K, where K ⊂ HG is the
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set of all fun
tions u satisfying u(g) ∈ β(1G) · c({g}). Noti
e K is 
ompa
t(it is a produ
t of �nite sets). Sin
e X is 
losed in HG, X ∩K is 
ompa
tas well.The a
tion of G on X is given by (g · β)(x) := β(g · x). The a
tion of Hon X is given by (h ·β)(x) := h ·β(x). Noti
e that the two a
tions 
ommute.The a
tion of H on X is 
o
ompa
t: X = H · K, where K = {β ∈ X |
β(1G) = 1H}. The a
tion of G on X is 
o
ompa
t: X = G · L, where L isthe set of β ∈ X su
h that β(1G) ∈ E−1 (whi
h implies β(g) ∈ E−1 · c({g})for all g ∈ G so that L is 
ompa
t). Indeed, for any γ ∈ X there is e ∈ Esu
h that 1H = γ(g1) · e for some g1 ∈ G. Put β(x) = γ(g1 · x) and noti
e
β(1G) = e−1 ∈ E−1, so β ∈ L and γ = g1 · β.The a
tion of H is proper: for β ∈ X put U = {γ ∈ X | γ(1G) = β(1G)}.If λ ∈ U ∩ (h · U), then λ(1G) = β(1G) and h−1 · λ(1G) = β(1G). Thus
h = 1H .The a
tion of G is proper: for β ∈ X put U = {γ ∈ X | γ(1G) = β(1G)}.If λ ∈ U ∩ (g · U), then λ(1G) = β(1G) and λ(g−1) = β(1G). Thus λ(g−1) =
λ(1G), whi
h implies g−1 ∈ d({1H}), so the set of su
h g is �nite.
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