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COARSE STRUCTURES AND GROUP ACTIONSBYN. BRODSKIY, J. DYDAK and A. MITRA (Knoxville, TN)Abstrat. The main results of the paper are:Proposition 0.1. A group G ating oarsely on a oarse spae (X, C) indues a oarseequivalene g 7→ g · x0 from G to X for any x0 ∈ X.Theorem 0.2. Two oarse strutures C1 and C2 on the same set X are equivalent ifthe following onditions are satis�ed:(1) Bounded sets in C1 are idential with bounded sets in C2.(2) There is a oarse ation φ1 of a group G1 on (X, C1) and a oarse ation φ2 of agroup G2 on (X, C2) suh that φ1 ommutes with φ2.They generalize the following two basi results of oarse geometry:Proposition 0.3 (Shvarts�Milnor lemma [5, Theorem 1.18℄). A group G ating prop-erly and oompatly via isometries on a length spae X is �nitely generated and induesa quasi-isometry equivalene g 7→ g · x0 from G to X for any x0 ∈ X.Theorem 0.4 (Gromov [4, p. 6℄). Two �nitely generated groups G and H are quasi-isometri if and only if there is a loally ompat spae X admitting proper and oompatations of both G and H that ommute.
1. Introdution. The proof in [2℄ of the Shvarts�Milnor lemma wasbased on the idea that isometri ations of groups ought to indue a oarsestruture on the group under reasonable onditions. Sine left oarse stru-tures on ountable groups are unique (in the sense of independene from theleft-invariant proper metri), the Shvarts�Milnor lemma follows.In this paper we investigate ases where group ations on sets indue anatural oarse struture on the set. As usual, the uniqueness of the oarsestruture is of interest.2000 Mathematis Subjet Classi�ation: Primary 54F45, 54C55; Seondary 54E35,18B30, 54D35, 54D40, 20H15.Key words and phrases: oarse strutures, oompat group ations, Shvarts�Milnorlemma.The seond-named author was partially supported by grant no. 2004047 from theUnited States�Israel Binational Siene Foundation (BSF), Jerusalem, Israel.[149℄ © Instytut Matematyzny PAN, 2008
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We will use two approahes to oarse strutures on a set X:(1) The original one of Roe [5℄, based on ontrolled subsets of X ×X.(2) The one from [3℄, based on uniformly bounded families in X.The reason is that ertain onepts and results have a more natural meaningin a partiular approah to oarse strutures. Reall that one an swithfrom one approah to another using the following basi fats (see [3℄):(a) If {Bs}s∈S is uniformly bounded, then ⋃

s∈S Bs ×Bs is ontrolled.(b) If E is ontrolled, then there is a uniformly bounded family {Bs}s∈Ssuh that E ⊂
⋃
s∈S Bs ×Bs.To de�ne a oarse struture using uniformly bounded families one needsto verify the following onditions:(1) B1 is uniformly bounded implies B2 is uniformly bounded if eahelement of B2 onsisting of more than one point is ontained in someelement of B1.(2) B1,B2 uniformly bounded implies St(B1,B2) is uniformly bounded.Definition 1.1. A funtion f : (X, CX) → (Y, CY ) of oarse spaes is:

• large sale uniform (or bornologous) if f(B) ∈ CY for every B ∈ CX ,
• oarsely proper if f−1(U) is bounded for every bounded subset U of Y ,
• oarse if it is large sale uniform and oarsely proper.Reall that two funtions f, g : S → (X, CX) from a set S to a oarsespae (X, CX) are lose if the family {{f(s), g(s)}}s∈S is bounded.Definition 1.2. A oarse funtion f : (X, CX) → (Y, CY ) of oarsespaes is a oarse equivalene if there is a oarse funtion g : (Y, CY ) →

(X, CX) suh that f ◦ g is lose to idY and g ◦ f is lose to idX .Here is a simple riterion for being a oarse equivalene using the ap-proah of [3℄:Lemma 1.3. A surjetive oarse funtion f : (X, CX) → (Y, CY ) of oarsespaes is a oarse equivalene if and only if f−1(B) is a uniformly boundedfamily in X for eah uniformly bounded family B in Y .Proof. Let g : Y → X be a seletion for y 7→ f−1(y), and de�ne B′ =
{f−1(y)}y∈Y ∈ CX .If g : (Y, CY ) → (X, CX) is bornologous, then f−1(B) re�nes St(g(B),B′),resulting in f−1(B) being uniformly bounded.Let us show that g is bornologous if f is a oarse equivalene. Choose
h : (Y, CY ) → (X, CX) that is bornologous and h ◦ f is B1-lose to idX forsome B1 ∈ CX . Therefore h = h ◦ f ◦ g is B1-lose to g and g is bornologous.Assume f−1(B) is a uniformly bounded family in X for eah uniformlybounded family B in Y . If g is bornologous, then f is a oarse equivalene as
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f ◦ g = idY and g ◦ f is B′-lose to idX . If B ∈ CY , then g(B) re�nes f−1(B),so it is uniformly bounded and g is bornologous.Corollary 1.4. Suppose f : X → Y is a surjetive funtion and C1, C2are two oarse strutures on Y . If CX is a oarse struture on X suh thatboth f : (X, CX) → (Y, Ci), i = 1, 2, are oarse equivalenes, then C1 = C2.Proof. Suppose B ∈ C1 is uniformly bounded. Sine f−1(B) ∈ CX by 1.3and f : (X, CX) → (Y, C2) is bornologous, B = f(f−1(B)) ∈ C2. Similarly,
C2 ⊂ C1.Remark 1.5. We will see in 2.2 that f being surjetive is neessary.2. Coarse strutures on groups. Given a group G one an equip itwith either the left oarse struture Cl(G) or right oarse struture Cr(G). Forountable groups G those strutures are metrizable by proper left-invariant(proper right-invariant) metris on G.In terms of ontrolled sets, E ∈ Cl(G) if and only if there is a �nitesubset F of G suh that x−1 · y ∈ F for all (x, y) ∈ E. Similarly, E ∈ Cr(G)if and only if there is a �nite subset F of G suh that x · y−1 ∈ F for all
(x, y) ∈ E. Notie all funtions x 7→ g · x (g ∈ G being �xed) are oarseself-equivalenes of (G, Cl(G)) and all funtions x 7→ x · g are oarse self-equivalenes of (G, Cr(G)). We will primarily deal with the struture Cl(G)(notie x 7→ x−1 indues isomorphism of strutures Cl(G) and Cr(G)) but�rst we will haraterize ases where the two strutures are idential.Proposition 2.1. The following are equivalent for any group G:(1) Cl(G) = Cr(G),(2) Cl(G) ⊂ Cr(G),(3) Cr(G) ⊂ Cl(G),(4) G is an FC-group (onjugay lasses of all elements are �nite).Proof. (3)⇒(4). Fix a ∈ G and onsider the family {{x, a · x}}x∈G. It isuniformly bounded in Cr(G), so it must be uniformly bounded in Cl(G), butthat means the set {x−1 · a · x}x∈G is �nite, i.e. the set of onjugay lassesof a is �nite. The same proof shows (2)⇒(4).(4)⇒(1). Given a uniformly bounded family B in Cl(G) there is a �nitesubset F of G suh that u−1 ·v ∈ F for all u, v belonging to the same elementof B. Let E be the set of onjugay lasses of all elements of F . If u, v belongto the same element of B, then there is f ∈ F so that u−1 · v = f . Thus
v = u ·f and v ·u−1 = u ·f ·u−1 ∈ E. Thus B is uniformly bounded in Cr(G).The same argument shows Cr(G) ⊂ Cl(G).Corollary 2.2. There is a monomorphism i : Z → Dih∞ from the in-tegers to the in�nite dihedral group Dih∞ that indues oarse equivalenes
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for both left oarse strutures and right oarse strutures but Cl(Dih∞) 6=
Cr(Dih∞).Proof. Consider the presentation {x, t | t−1xt = x−1 and t2 = 1} of
Dih∞. Identify Z with the subgroup of Dih∞ generated by x. Notie Z isof index 2 in Dih∞, so Z → Dih∞ is a oarse equivalene for both left andright oarse strutures. Sine Z is Abelian, those oinide on that group but
Cl(Dih∞) 6= Cr(Dih∞) as the onjugay lass of x equals Z.Proposition 2.3. The multipliation m : (G × G, Cl(G) × Cl(G)) →
(G, Cl(G)) is large sale uniform if and only if Cl(G) = Cr(G).Proof. Suppose F is a �nite subset of G. Consider the uniformly boundedfamily {F ×{x}}x∈G in Cl(G)×Cl(G). Sine m(F ×{x}) = F ·x, the family
{F · x}x∈G ∈ C(G)l. Thus Cr(G) ⊂ Cl(G) and Cl(G) = Cr(G) by 2.1.Suppose Cl(G) = Cr(G). It su�es to show that {m(x·F×y·E)}(x,y)∈G×Gis uniformly bounded for any �nite subsets F and E of G. Choose a �nitesubset E′ and a funtion f : G→ G suh that x ·E ⊂ E′ · f(x) for all x ∈ G.Pik a �nite subset F ′ of G and a funtion g : G→ G suh that F ·E′ · y ⊂
g(y) ·F ′ for all y ∈ G. Now m(x ·F ×y ·E) ⊂ x ·F ·E′ ·f(y) ⊂ x ·g(f(y)) ·F ′and the proof is omplete.3. Induing oarse strutures by group ations. Our �rst task isto disuss ases of group ations of a group G on a set X induing a oarsestruture CG on X suh that g 7→ g ·x0 is a oarse equivalene from (G, Cl(G))to (X, CG) for all x0 ∈ X.Proposition 3.1. Suppose a group G ats transitively on a set X.(1) If there is a oarse struture CG on X so that g 7→ g · x0 is a oarseequivalene from (G, Cl(G)) to (X, CG), then the stabilizer of x0 is�nite.(2) If the stabilizer of x0 is �nite, then there is a unique oarse struture

CG on X so that g 7→ g · x0 is large sale uniform. In that ase
g 7→ g · x0 is a oarse equivalene from (G, Cl(G)) to (X, CG).Proof. (1) If γ : g 7→ g · x0 is a oarse equivalene, then γ−1(x0) must bebounded in G, i.e. �nite. Notie that γ−1(x0) is preisely the stabilizer of x0.(2) Assume the stabilizer S of x0 is �nite. De�ne CG as follows: B ∈ CGif γ−1(B) is uniformly bounded in Cl(G). If CG is a oarse struture and

γ : (G, Cl(G)) → (X, CG) is bornologous, then 1.3 says γ is a oarse equiva-lene, and the uniqueness of CG follows from 1.4.Sine γ−1(St(B1,B2)) = St(γ−1(B1), γ
−1(B2)), we see that B1,B2 ∈ CGimplies St(B1,B2) ∈ CG. Given B ∈ CG we need to hek that any family B′,whose elements ontaining more than one point re�ne B, also belongs to CG.There is a �nite subset F of G suh that γ−1(B) re�nes the family {g ·F}g∈G.
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Put E = F ∪ S. If {x} ∈ B′, then γ−1(x) = h · S, where h ∈ G satis�es
x = h · x0. Thus γ−1(B′) re�nes {g · E}g∈G, so B′ ∈ CG.Proposition 3.2. Suppose a group G ats on a set X. If there is asubset U of X suh that X = G · U and the stabilizer

SU = {g ∈ G | U ∩ (g · U) 6= ∅}of U is �nite, then there is a oarse struture CG on X so that g 7→ g · x0 isa oarse equivalene from (G, Cl(G)) to (X, CG) for all x0 ∈ X.Proof. First de�ne the bounded sets of CG. Those are subsets of sets ofthe form F · U , where F is any �nite subset of G. Seond, de�ne CG asfamilies B suh that there is a bounded set V so that B re�nes {g · V }g∈G.Notie that, if B′ is a family whose elements ontaining more than one pointre�ne B, then B′ re�nes {g ·(V ∪U)}g∈G and V ∪U is bounded. Thus B′ ∈ CG.The important property of bounded sets V is that their stabilizers SV =
{g ∈ G | V ∩ (g · V ) 6= ∅} are �nite. It su�es to prove that for V = F · U ,
F ⊂ G being �nite. If V ∩ (g · V ) 6= ∅, then there exist elements fi ∈ F ,
i = 1, 2, suh that (f1 ·U)∩(g ·f2 ·U) 6= ∅, whih implies U∩(f−1

1 gf2 ·U) 6= ∅.Thus f−1
1 gf2 ∈ SU and g ∈ F · SU · F−1, whih proves SV is �nite.The seond useful observation is that St(V,B) is bounded for any boundedset V and any B ∈ CG. Indeed, if B re�nes {g ·W}g∈G for some bounded W ,we may assume V ⊂ W , in whih ase V intersets only �nitely many el-ements of {g · W}g∈G. Sine those are all bounded and a �nite union ofbounded sets is bounded, we are done.Suppose B1,B2 ∈ CG and hoose bounded sets Vi, i = 1, 2, suh that Bire�nes {g ·Vi}g∈G. Put V = St(V1, {g ·V2}g∈G) and notie V is bounded. Ouraim is to show St(B1,B2) re�nes {g · V }g∈G. If (h · V1) ∩ (g · V2) 6= ∅, then

V1∩ (h−1 · g ·V2) 6= ∅, so V1∪ (h−1 · g ·V2) ⊂ V , hene St(h ·V1,B2) ⊂ h ·V .Let us point out that, surprisingly, the struture CG in 3.2 does not haveto be unique, ontrary to typial ategorial intuition.Proposition 3.3. There is an ation of integers Z on the in�nite dihe-dral group Dih∞ suh that g 7→ g · x0 are oarse equivalenes for both leftand right oarse strutures but Cl(Dih∞) 6= Cr(Dih∞).Proof. Consider the presentation {x, t | t−1xt = x−1 and t2 = 1} of
Dih∞. Identify Z with the subgroup of Dih∞ generated by x. Notie Z is ofindex 2 in Dih∞, so Z → Dih∞ is a oarse equivalene for both left and rightoarse strutures. Sine Z is Abelian, those oinide on that group but 2.2says that Cl(Dih∞) 6= Cr(Dih∞).4. Ations by uniformly bornologous funtions. We want to gener-alize isometri ations to the framework of oarse geometry. The appropriate
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onept is not only to require that eah funtion x 7→ g · x is bornologousbut that those funtions are uniformly bornologous.Definition 4.1. A group G ats on a oarse spae (X, CX) by uniformlybornologous funtions if for any ontrolled set E there is a ontrolled set E′suh that (g · x, g · y) ∈ E′ for all (x, y) ∈ E and all g ∈ G.Proposition 4.2. A group G ats on a oarse spae X by uniformlybornologous funtions if and only if for any uniformly bounded family B =
{Bs}s∈S in X the family G · B = {g ·Bs}(g,s)∈G×S is uniformly bounded.Proof. Suppose the ation is by uniformly bornologous funtions and
B = {Bs}s∈S is a uniformly bounded family. Put E =

⋃
s∈S Bs × Bs andnotie it is a ontrolled set. Pik a ontrolled set E′ suh that (g ·x, g ·y) ∈ E′for all g ∈ G and all (x, y) ∈ E. De�ne B′ as the family of allB ⊂ X satisfying

B ×B ⊂ E′. It is a uniformly bounded family ontaining G · B.Suppose the family G · B = {g · Bs}(g,s)∈G×S is uniformly bounded forany uniformly bounded family B = {Bs}s∈S in X. Assume E is a symmetriontrolled set ontaining the diagonal. Consider the family B of all sets
B ⊂ X suh that B ×B ⊂ E ◦E ◦ E ◦E and let

E′ =
⋃

B∈B, g∈G

g ·B × g ·B.

It is a ontrolled set and, if (x, y) ∈ E, then {x, y} × {x, y} ⊂ E ◦E ◦E ◦Eand (g · x, g · y) ∈ E′.Corollary 4.3. Let G be a group and (X, CX) be a oarse spae. If
φ : (G ×X, Cl(G) × CX) → (X, CX) is bornologous , then the ation of G on
(X, CX) is by uniformly bornologous funtions.Proof. Given a uniformly bounded family B = {Bs}s∈S in X, the family
{{g}×Bs}(g,s)∈G×S is uniformly bounded in G×X, so {φ({g}×Bs)}(g,s)∈G×Sis uniformly bounded, whih means G · B is uniformly bounded.Remark 4.4. Notie that the in�nite dihedral group Dih∞ ats on itselfby left multipliation so that the ation is by uniformly bornologous funtionsbut the multipliation is not bornologous (see 2.3 and 2.2).5. Coarsely proper and obounded ationsDefinition 5.1. An ation φ of a group G on a oarse spae (X, CX) isoarsely proper if φx : G→ G · x is oarsely proper for all x ∈ X.Lemma 5.2. An ation φ of a group G on a oarse spae (X, CX) isoarsely proper if and only if for every bounded subset U of X the family
{g · U}g∈G is point-�nite.
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Proof. This follows from the fat that φ−1
x (U) = {g ∈ G | x ∈ g−1 · U}for all x ∈ X and U ⊂ X.Corollary 5.3. If an ation φ of a group G on a oarse spae (X, CX) isoarsely proper and by uniformly bornologous funtions , then φx : G→ G · xis a oarse equivalene for all x ∈ X.Proof. Notie the stabilizer of x0 is �nite by 5.2 and use (2) of 3.1.Lemma 5.4. Let φ be an ation of a group G on a oarse spae (X, CX)by uniformly bornologous funtions. Then it is oarsely proper if and only ifthe stabilizer

SU = {g ∈ G | U ∩ (g · U) 6= ∅}of U is �nite for every bounded subset U of X.Proof. One diretion is obvious in view of 5.2, so assume φ is an ation byuniformly bornologous funtions that is oarsely proper. If SU = {g ∈ G | U∩
(g·U) 6= ∅} is in�nite for some bounded set U , then put V = St(U, {g·U}g∈G)and notie that φ−1

x (V ) ontains SU for all x ∈ U , a ontradition.Definition 5.5. An ation of a group G on a oarse spae (X, CX) isobounded if X = G · U for some bounded subset U of X.Proposition 5.6. If an ation φ of a group G on a oarse spae (X, CX)is obounded and by uniformly bornologous funtions , then for everyuniformly bounded family B there is a bounded set U suh that B re�nes
{g · U}g∈G.Proof. Pik a bounded set V suh that G · V = X. Given B = {Bs}s∈S
∈ CX put U = St(V,G · B). Then U is bounded and B re�nes {g · V }g∈G.Corollary 5.7. If an ation φ of a group G on a set X is oboundedand by uniformly bornologous funtions under two oarse strutures C1 and
C2 on X, then C1 = C2 if and only if bounded sets in both strutures areidential.Proof. By 5.6 both strutures are generated by families {g ·U}g∈G, where
U is bounded.6. Coarse ationsDefinition 6.1. An ation of a group G on a oarse spae (X, C) isoarse if it is oarsely proper, obounded, and by uniformly bornologousfuntions.Corollary 6.2. If an ation φ of a group G on a oarse spae (X, CX) isoarse, then φx : (G, Cl(G)) → (X, CX) is a oarse equivalene for all x ∈ X.
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Proof. By 5.3 the funtion g 7→ g · x0 is a oarse equivalene from Gto G · x0. Notie the inlusion G · x0 → X is a oarse equivalene by theoboundedness of the ation.Theorem 6.3. Suppose αi : Gi×X → X, i = 1, 2, are two ommutativeleft ations of groups Gi on the same set X. If there are oarse strutures

Ci, i = 1, 2, whose bounded sets oinide suh that αi is oarse with respetto Ci, then(a) G1 is oarsely equivalent to G2,(b) (X, C1) is oarsely equivalent to (X, C2).Proof. Pik a bounded set (in both oarse strutures) U with Gi ·U = Xfor i = 1, 2. Pik x0 ∈ U . De�ne ψ : G2 → G1 so that h−1 · x0 ∈ ψ(h) · U forall h ∈ G2.To show ψ is large sale uniform onsider a �nite subset F of G2 ontain-ing identity, de�ne V = F−1 ·U and de�ne E as the set of all g ∈ G1 so that
V ∩(g ·V ) 6= ∅. Suppose h = h−1

1 h2 ∈ F and gi = ψ(hi) for i = 1, 2. Consider
y = g−1

1 (h−1
2 · x0) and put g = g−1

1 g2. Our goal is to show y ∈ V ∩ (g · V ),resulting in g ∈ E. Sine g−1 · y = g−1
2 (h−1

2 ·x0) ∈ U ⊂ V , we have y ∈ g ·V .Now, as h2 = h1 · h, we see that y = g−1
1 (h−1

2 · x0) = g−1
1 (h−1 · h−1

1 · x0) =
h−1(g−1

1 (h−1
1 · x0)) ⊂ h−1 · U ⊂ F−1 · U = V .Similarly, de�ne φ : G1 → G2 so that g−1 · x0 ∈ φ(g) · U for all g ∈ G1and notie it is large sale uniform.Let B be a uniformly bounded family in C1 so that all sets g ·U , g ∈ G1,re�ne B. Observe g 7→ g · x0 and g 7→ ψ(φ(g)) · x0 are St(B,B)-lose.Indeed, using the de�nition of φ and ommutativity of the two ations, weget φ(g)−1 ·x0 ∈ g ·U , and by de�nition of ψ we have φ(g)−1 ·x0 ∈ ψ(φ(g))·U .Sine g 7→ g · x0 is a oarse equivalene from G1 to (X1, C1) (see 6.2), ψ ◦ φis lose to the identity of G1. Similarly, φ ◦ψ is lose to the identity of G2.7. Topologial ations. LetX be a topologial spae and G be a group.Reall that an ation of G on X is topologially proper if eah point x ∈ Xhas a neighborhood Ux suh that the stabilizer {g ∈ G | Ux ∩ (g · Ux) 6= ∅}of Ux is �nite. An ation of G on X is oompat if there exists a ompatsubspae K ⊂ X suh that G ·K = X.Definition 7.1. LetX be a loally ompat topologial spae. An ationof a group G on X is topologial if it is by homeomorphisms, it is oompatand topologially proper.Proposition 7.2. Suppose X is a loally ompat topologial spae. If φis a topologial ation of G on X, then there is a unique oarse struture Cφon X suh that the ation φ of G on (X, Cφ) is oarse and the bounded sets
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in Cφ are preisely the relatively ompat subsets of X. The struture Cφ isgenerated by the families {g ·K}g∈G where K is a ompat subset of X.Proof. Uniqueness of φ follows from 5.7. Let us show that the stabilizerof eah ompat subset K of X is �nite. If it is not, then there is an in�nitesubset I of G and points xg ∈ K ∩ (g ·K) for eah g ∈ I. The set {xg}g∈Imust be disrete (otherwise the ation would not be topologially proper atits aumulation point), so in�nitely many xg's are equal, a ontradition.Consider the struture Cφ on X desribed in the proof of 3.2. Notie ithas the required properties.Corollary 7.3. Suppose φ : G×X → X and ψ : H ×X → X are twotopologial ations on a loally ompat spae X. If φ ommutes with ψ, then
(X, Cφ) and (X, Cψ) are oarsely equivalent.Proof. Use 6.3.Remark 7.4. It is not true that Cφ = Cψ in general. Use 3.3 and equipgroups with disrete topologies.Theorem 7.5. If G and H are oarsely equivalent groups , then there isa loally ompat topologial spae X and topologial ations φ : G×X → Xand ψ : H ×X → X that ommute.Proof. Pik a oarse equivalene α : G→ H. Choose a funtion c assign-ing to eah �nite subset F of G a �nite subset c(F ) of H with the propertythat u−1 · v ∈ F implies α(u)−1 · α(v) ∈ c(F ).Choose a funtion d assigning to eah �nite subset F of H a �nite subset
d(F ) of G with the property that α(u)−1 · α(v) ∈ F implies u−1 · v ∈ d(F ).Let E be a �nite subset of H so that H = α(G) · E.Let X be the spae of all funtions β : G → H satisfying the followingonditions:(1) u−1 · v ∈ F implies β(u)−1 · β(v) ∈ c(F ) for all �nite subsets F of G,(2) β(u)−1 · β(v) ∈ F implies u−1 · v ∈ d(F ) for all �nite subsets F of H,(3) H = β(G) · E.We onsider X with the ompat-open topology provided both G and Hare given the disrete topologies. Notie X is losed in the spae HG of allfuntions from G to H equipped with the ompat-open topology. Indeed,onditions (1) and (2) above hold for all β ∈ cl(X), so it remains to hek
H = β(G) ·E for suh β. Given h ∈ H onsider the set F = β(1G)−1 ·h ·E−1and hoose γ ∈ X so that γ(g) = β(g) for all g ∈ d(F ) ∪ {1G}. Pik g1 ∈ Gand e ∈ E so that h = γ(g1) · e. Sine γ(1G)−1 · γ(g1) ∈ F , we see that
g1 = 1−1

G · g1 ∈ d(F ) and γ(g1) = β(g1). Thus h ∈ β(G) · E.Notie X is loally ompat. Indeed, given β ∈ X onsider U = {γ ∈ X |
γ(1G) = β(1G)}. It is learly open and equals X ∩K, where K ⊂ HG is the
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set of all funtions u satisfying u(g) ∈ β(1G) · c({g}). Notie K is ompat(it is a produt of �nite sets). Sine X is losed in HG, X ∩K is ompatas well.The ation of G on X is given by (g · β)(x) := β(g · x). The ation of Hon X is given by (h ·β)(x) := h ·β(x). Notie that the two ations ommute.The ation of H on X is oompat: X = H · K, where K = {β ∈ X |
β(1G) = 1H}. The ation of G on X is oompat: X = G · L, where L isthe set of β ∈ X suh that β(1G) ∈ E−1 (whih implies β(g) ∈ E−1 · c({g})for all g ∈ G so that L is ompat). Indeed, for any γ ∈ X there is e ∈ Esuh that 1H = γ(g1) · e for some g1 ∈ G. Put β(x) = γ(g1 · x) and notie
β(1G) = e−1 ∈ E−1, so β ∈ L and γ = g1 · β.The ation of H is proper: for β ∈ X put U = {γ ∈ X | γ(1G) = β(1G)}.If λ ∈ U ∩ (h · U), then λ(1G) = β(1G) and h−1 · λ(1G) = β(1G). Thus
h = 1H .The ation of G is proper: for β ∈ X put U = {γ ∈ X | γ(1G) = β(1G)}.If λ ∈ U ∩ (g · U), then λ(1G) = β(1G) and λ(g−1) = β(1G). Thus λ(g−1) =
λ(1G), whih implies g−1 ∈ d({1H}), so the set of suh g is �nite.
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