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Abstract. The main results of the paper are:

PRropPoOSITION 0.1. A group G acting coarsely on a coarse space (X, C) induces a coarse
equivalence g — g - xo from G to X for any o € X.

THEOREM 0.2. Two coarse structures C1 and C2 on the same set X are equivalent if
the following conditions are satisfied:

(1) Bounded sets in C1 are identical with bounded sets in Ca.
(2) There is a coarse action ¢1 of a group G1 on (X,Ci) and a coarse action ¢2 of a
group G2 on (X,Cz) such that ¢1 commutes with ¢o.

They generalize the following two basic results of coarse geometry:

PRropPosITION 0.3 (Shvarts—Milnor lemma [5, Theorem 1.18]). A group G acting prop-
erly and cocompactly via isometries on a length space X is finitely generated and induces
a quasi-isometry equivalence g — g - xo from G to X for any xo € X.

THEOREM 0.4 (Gromov [4, p. 6]). Two finitely generated groups G and H are quasi-
isometric if and only if there is a locally compact space X admitting proper and cocompact
actions of both G and H that commute.

1. Introduction. The proof in [2| of the Shvarts—Milnor lemma was
based on the idea that isometric actions of groups ought to induce a coarse
structure on the group under reasonable conditions. Since left coarse struc-
tures on countable groups are unique (in the sense of independence from the
left-invariant proper metric), the Shvarts—Milnor lemma follows.

In this paper we investigate cases where group actions on sets induce a
natural coarse structure on the set. As usual, the uniqueness of the coarse
structure is of interest.
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We will use two approaches to coarse structures on a set X:

(1) The original one of Roe [5], based on controlled subsets of X x X.
(2) The one from [3], based on uniformly bounded families in X.

The reason is that certain concepts and results have a more natural meaning
in a particular approach to coarse structures. Recall that one can switch
from one approach to another using the following basic facts (see [3]):

(a) If {Bs}ses is uniformly bounded, then (J, g Bs x Bs is controlled.
(b) If E is controlled, then there is a uniformly bounded family {Bs}scs
such that £ C |J,cg Bs X Bs.

To define a coarse structure using uniformly bounded families one needs
to verify the following conditions:

(1) B; is uniformly bounded implies By is uniformly bounded if each
element of By consisting of more than one point is contained in some
element of B;.

(2) B, By uniformly bounded implies St(B;, B2) is uniformly bounded.

DEFINITION 1.1. A function f: (X,Cx) — (Y,Cy) of coarse spaces is:

e large scale uniform (or bornologous) if f(B) € Cy for every B € Cx,
e coarsely properif f~1(U) is bounded for every bounded subset U of Y,
e coarse if it is large scale uniform and coarsely proper.

Recall that two functions f,g: S — (X,Cx) from a set S to a coarse
space (X,Cx) are close if the family {{f(s), g(s)}}ses is bounded.

DEFINITION 1.2. A coarse function f: (X,Cx) — (Y,Cy) of coarse
spaces is a coarse equivalence if there is a coarse function g: (Y,Cy) —
(X,Cx) such that f o g is close to idy and go f is close to idx.

Here is a simple criterion for being a coarse equivalence using the ap-
proach of [3]:

LEMMA 1.3. A surjective coarse function f: (X,Cx) — (Y,Cy) of coarse
spaces is a coarse equivalence if and only if f~Y(B) is a uniformly bounded
family in X for each uniformly bounded family B in Y.

Proof. Let g: Y — X be a selection for y — f~!(y), and define B’ =
{F ' (y)}yey € Cx.

If g: (Y,Cy) — (X,Cx) is bornologous, then f~1(B) refines St(g(B), B'),
resulting in f~!(B) being uniformly bounded.

Let us show that g is bornologous if f is a coarse equivalence. Choose
h: (Y,Cy) — (X,Cx) that is bornologous and h o f is Bj-close to idx for
some By € Cx. Therefore h = ho f o g is Bi-close to g and g is bornologous.

Assume f~1(B) is a uniformly bounded family in X for each uniformly
bounded family B in Y. If g is bornologous, then f is a coarse equivalence as
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fog=idy and go f is B'-close to idx. If B € Cy, then g(B) refines f~1(1),
so it is uniformly bounded and g is bornologous. m

COROLLARY 1.4. Suppose f: X — Y s a surjective function and Cy, Ca
are two coarse structures on Y. If Cx is a coarse structure on X such that
both f: (X,Cx) — (Y,C;), i = 1,2, are coarse equivalences, then C; = Cs.

Proof. Suppose B € C; is uniformly bounded. Since f~!(B) € Cx by 1.3
and f: (X,Cx) — (Y,C2) is bornologous, B = f(f~1(B)) € Co. Similarly,
CoCCi. m

REMARK 1.5. We will see in 2.2 that f being surjective is necessary.

2. Coarse structures on groups. Given a group G one can equip it
with either the left coarse structure C;(G) or right coarse structure C,(G). For
countable groups G those structures are metrizable by proper left-invariant
(proper right-invariant) metrics on G.

In terms of controlled sets, £ € C;(G) if and only if there is a finite
subset F of G such that 2! -y € F for all (z,y) € E. Similarly, E € C.(G)
if and only if there is a finite subset F' of G such that - y~! € F for all
(z,y) € E. Notice all functions z +— ¢ -z (g € G being fixed) are coarse
self-equivalences of (G,C;(G)) and all functions = +— x - g are coarse self-
equivalences of (G,C,(G)). We will primarily deal with the structure C;(G)
(notice x +— ! induces isomorphism of structures C;(G) and C,(G)) but
first we will characterize cases where the two structures are identical.

PROPOSITION 2.1. The following are equivalent for any group G:

(1) G(G) =Cr(G),
(2) G(G) C G (G),
(3) C(G) CGi(G),
(4) G is an FC-group (conjugacy classes of all elements are finite).

Proof. (3)=-(4). Fix a € G and consider the family {{z,a - x}},eq. It is
uniformly bounded in C,(G), so it must be uniformly bounded in C;(G), but
that means the set {7 !-a-2}.c¢ is finite, i.e. the set of conjugacy classes
of @ is finite. The same proof shows (2)=(4).

(4)=(1). Given a uniformly bounded family B in C;(G) there is a finite
subset F of G such that u=!-v € F for all u, v belonging to the same element
of B. Let E be the set of conjugacy classes of all elements of F. If u, v belong
to the same element of B, then there is f € F so that u=!-v = f. Thus
v=wu-fandv-u~! =u-f-u~! € E. Thus B is uniformly bounded in C,(G).
The same argument shows C,.(G) C C;(G).

COROLLARY 2.2. There s a monomorphism i: 7Z — Dihy from the in-
tegers to the infinite dihedral group Diho that induces coarse equivalences
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for both left coarse structures and right coarse structures but C;(Dihy) #

C,(Diho).

Proof. Consider the presentation {x,t | t71at = 2! and t? = 1} of
Dihy. Identify Z with the subgroup of Dih,, generated by x. Notice Z is
of index 2 in Dihy,, so Z — Dihy, is a coarse equivalence for both left and
right coarse structures. Since Z is Abelian, those coincide on that group but
Ci(Dihy) # Cr(Dihy) as the conjugacy class of z equals Z. =

PROPOSITION 2.3. The multiplication m: (G x G,C/(G) x C(G)) —
(G,Ci(GQ)) is large scale uniform if and only if Ci(G) = C.(Q).

Proof. Suppose Fis a finite subset of G. Consider the uniformly bounded
family {F x {z}}zeq in C/(G) x C;(G). Since m(F x {z}) = F' - z, the family
{F - z}zecc € C(@Q);. Thus C.(G) C C(G) and C;(G) = C,(G) by 2.1.

Suppose C;(G) = C-(G). It suffices to show that {m(z-F'xy-E)}, eaxa
is uniformly bounded for any finite subsets F' and E of GG. Choose a finite
subset £’ and a function f: G — G such that - E C E'- f(x) forall z € G.
Pick a finite subset F’ of G and a function g: G — G such that F'- E' -y C
g(y)-F'forally € G.Nowm(z-Fxy-E) Cx-F-E' - f(y) Cx-g(f(y))-F'
and the proof is complete. m

3. Inducing coarse structures by group actions. Our first task is
to discuss cases of group actions of a group G on a set X inducing a coarse
structure Cg on X such that g — g-x is a coarse equivalence from (G, C;(G))
to (X,Cq) for all zyp € X.

PROPOSITION 3.1. Suppose a group G acts transitively on a set X.

(1) If there is a coarse structure Cq on X so that g — g - xy is a coarse
equivalence from (G,Ci(G)) to (X,Cq), then the stabilizer of xo is
finite.

(2) If the stabilizer of xq is finite, then there is a unique coarse structure
Cqc on X so that g — g - xg 1s large scale uniform. In that case
g — g-xo s a coarse equivalence from (G,Ci(G)) to (X,Cq).

Proof. (1) If v: g — g - xq is a coarse equivalence, then y~!(z0) must be
bounded in G, i.e. finite. Notice that =1 (zq) is precisely the stabilizer of zg.

(2) Assume the stabilizer S of x¢ is finite. Define Cq as follows: B € Cq
if y71(B) is uniformly bounded in C;(G). If Cg is a coarse structure and
v: (G,C(G)) — (X,Cq) is bornologous, then 1.3 says v is a coarse equiva-
lence, and the uniqueness of Cq follows from 1.4.

Since y~1(St(B1, Ba)) = St(yH(B1),7 1(B2)), we see that By, Bs € Cq
implies St(B1, Bs) € Cg. Given B € Ci we need to check that any family B/,
whose elements containing more than one point refine B, also belongs to Cg.
There is a finite subset F' of G such that y~*(B) refines the family {g- F},ec-
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Put E = FUS. If {} € B/, then y7(z) = h- S, where h € G satisfies
x = h-xg. Thus v~ 1 (B') refines {g - F},ec, so B € Cq. m

PROPOSITION 3.2. Suppose a group G acts on a set X. If there is a
subset U of X such that X = G - U and the stabilizer

Sy={9€G|UN(g-U)# 0}

of U 1is finite, then there is a coarse structure Cq on X so that g — g - xqg is
a coarse equivalence from (G,Ci(G)) to (X,Cq) for all zp € X.

Proof. First define the bounded sets of Co. Those are subsets of sets of
the form F' - U, where F' is any finite subset of G. Second, define Cq as
families B such that there is a bounded set V' so that B refines {g - V}4eq.
Notice that, if B is a family whose elements containing more than one point
refine B, then B’ refines {g-(VUU)}4cq and VUU is bounded. Thus B’ € C¢.

The important property of bounded sets V is that their stabilizers Sy =
{g€eG|VN(g-V)+#0} are finite. It suffices to prove that for V.= F - U,
F C G being finite. If VN (g - V) # 0, then there exist elements f; € F,
i = 1,2, such that (f1-U)N(g- fo-U) # 0, which implies UN(f; g f2-U) # 0.
Thus fl_lgfg € Sy and g € F - Sy - F~1, which proves Sy is finite.

The second useful observation is that St(V, B) is bounded for any bounded
set V and any B € Cg. Indeed, if B refines {g- W }4cq for some bounded W,
we may assume V C W, in which case V intersects only finitely many el-
ements of {g - W}geq. Since those are all bounded and a finite union of
bounded sets is bounded, we are done.

Suppose Bi,Bs € Co and choose bounded sets V;, i = 1,2, such that B;
refines {g-Vi}geq. Put V = St(Vi,{g-V2}4eq) and notice V' is bounded. Our
aim is to show St(By,B2) refines {g - V}geq. If (h-Vi)N(g-Va2) # 0, then
Vin(h=t-g-Va) # 0,50 ViU(h™t-g-Va) C V, hence St(h-Vi,B2) Ch-V. =

Let us point out that, surprisingly, the structure Cg in 3.2 does not have
to be unique, contrary to typical categorical intuition.

PROPOSITION 3.3. There is an action of integers Z: on the infinite dihe-
dral group Dihs such that g — ¢ - xg are coarse equivalences for both left
and right coarse structures but C;(Dihs) # Cr(Dihso).

Proof. Consider the presentation {x,t | t7'at = 2~ ! and t*> = 1} of
Dihyo. Identify Z with the subgroup of Dih,, generated by x. Notice Z is of
index 2 in Dihy, so Z — Dihy is a coarse equivalence for both left and right
coarse structures. Since Z is Abelian, those coincide on that group but 2.2

says that C;(Dihy) # Cr(Dihy). =

4. Actions by uniformly bornologous functions. We want to gener-
alize isometric actions to the framework of coarse geometry. The appropriate
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concept is not only to require that each function z — ¢ - is bornologous
but that those functions are uniformly bornologous.

DEFINITION 4.1. A group G acts on a coarse space (X,Cx) by uniformly
bornologous functions if for any controlled set E there is a controlled set E’
such that (g-x,g-y) € E' for all (z,y) € E and all g € G.

PROPOSITION 4.2. A group G acts on a coarse space X by uniformly
bornologous functions if and only if for any uniformly bounded family B =
{Bs}ses in X the family G- B = {g - Bs}(g,s)caxs 15 uniformly bounded.

Proof. Suppose the action is by uniformly bornologous functions and
B = {Bs}scs is a uniformly bounded family. Put E = (J,.g Bs X Bs and
notice it is a controlled set. Pick a controlled set E’ such that (g-z,g-y) € E’
forall g € G and all (x,y) € E. Define B’ as the family of all B C X satisfying
B x B C E'. It is a uniformly bounded family containing G - B.

Suppose the family G- B = {g - Bs}(g.s)cGxs is uniformly bounded for
any uniformly bounded family B = {B;s}scs in X. Assume F is a symmetric
controlled set containing the diagonal. Consider the family B of all sets

B C X suchthat Bx BC EoFEoFEoFE and let

E= |J ¢9-Bxg-B
BeB, geG
It is a controlled set and, if (z,y) € E, then {z,y} x {z,y} CEocEoFEokFE
and (g-z,9-y) € E'. n
COROLLARY 4.3. Let G be a group and (X,Cx) be a coarse space. If
¢: (G x X,C(G) xCx) — (X,Cx) is bornologous, then the action of G on
(X,Cx) is by uniformly bornologous functions.

Proof. Given a uniformly bounded family B = {Bs}scs in X, the family

{{g} x Bs}(g,s)erS is uniformly bounded in Gx X, so {¢({g} XBS)}(g,s)GGXS
is uniformly bounded, which means G - B is uniformly bounded. =

REMARK 4.4. Notice that the infinite dihedral group Dih,, acts on itself
by left multiplication so that the action is by uniformly bornologous functions
but the multiplication is not bornologous (see 2.3 and 2.2).

5. Coarsely proper and cobounded actions

DEFINITION 5.1. An action ¢ of a group G on a coarse space (X,Cx) is
coarsely proper if ¢, G — G - x is coarsely proper for all x € X.

LEMMA 5.2. An action ¢ of a group G on a coarse space (X,Cx) is
coarsely proper if and only if for every bounded subset U of X the family

{9 - U}geq is point-finite.
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Proof. This follows from the fact that ¢, (U) = {g € G |z € g~ - U}
forallze XandU C X. n

COROLLARY 5.3. If an action ¢ of a group G on a coarse space (X,Cx) is
coarsely proper and by uniformly bornologous functions, then ¢.: G — G - x
18 a coarse equivalence for all T € X.

Proof. Notice the stabilizer of zg is finite by 5.2 and use (2) of 3.1. m

LEMMA 5.4. Let ¢ be an action of a group G on a coarse space (X,Cx)
by uniformly bornologous functions. Then it is coarsely proper if and only if
the stabilizer

Su={9€G|UN(g-U)#0}
of U 1is finite for every bounded subset U of X .

Proof. One direction is obvious in view of 5.2, so assume ¢ is an action by
uniformly bornologous functions that is coarsely proper. If Sy = {g € G | UN
(g-U) # (0} is infinite for some bounded set U, then put V' = St(U, {g-U}4cc)
and notice that ¢, 1 (V) contains Sy for all x € U, a contradiction. m

DEFINITION 5.5. An action of a group G on a coarse space (X,Cx) is
cobounded if X = G - U for some bounded subset U of X.

PROPOSITION 5.6. If an action ¢ of a group G on a coarse space (X,Cx)
1s cobounded and by wuniformly bornologous functions, then for every
uniformly bounded family B there is a bounded set U such that B refines

{9 : U}geG-

Proof. Pick a bounded set V such that G-V = X. Given B = {B;s}ses
€ Cx put U = St(V,G - B). Then U is bounded and B refines {g- V}seq. =

COROLLARY 5.7. If an action ¢ of a group G on a set X is cobounded
and by uniformly bornologous functions under two coarse structures C1 and
Co on X, then C1 = Co if and only if bounded sets in both structures are
tdentical.

Proof. By 5.6 both structures are generated by families {g-U }4eq, where
U is bounded. =

6. Coarse actions

DEFINITION 6.1. An action of a group G on a coarse space (X,C) is
coarse if it is coarsely proper, cobounded, and by uniformly bornologous
functions.

COROLLARY 6.2. If an action ¢ of a group G on a coarse space (X,Cx) is
coarse, then ¢5: (G,C(G)) — (X,Cx) is a coarse equivalence for all x € X.
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Proof. By 5.3 the function g — g - x¢ is a coarse equivalence from G
to G - zg. Notice the inclusion G - xyp — X is a coarse equivalence by the
coboundedness of the action. =

THEOREM 6.3. Suppose a;: G; x X — X, i =1, 2, are two commutative
left actions of groups G; on the same set X. If there are coarse structures
Ci, © = 1,2, whose bounded sets coincide such that c; is coarse with respect
to C;, then

(a) Gy is coarsely equivalent to Ga,
(b) (X,Cy) is coarsely equivalent to (X,Ca).

Proof. Pick a bounded set (in both coarse structures) U with G;-U = X
for i = 1,2. Pick 2o € U. Define v: G5 — G1 so that h=! - 29 € ¥(h) - U for
all h € Gs.

To show 1 is large scale uniform consider a finite subset F' of G5 contain-
ing identity, define V' = F~1.U and define E as the set of all g € G so that
VN (g-V) # 0. Suppose h = hy 'hy € F and g; = 9(h;) for i = 1,2. Consider
y = g; "(hy! - x0) and put g = g; 'go. Our goal is to show y € V N (g- V),
resulting in g € E. Since g~y = gz_l(hz_l cxg) €U CV,wehavey e g-V.
Now, as hy = hy - h, we see that y = g; *(hy' - m0) = g7 "(h™' - i - 2p) =
g (it z) Ch T UCF U=V,

Similarly, define ¢: G; — Ga so that g~ -z € ¢(g) - U for all g € G4
and notice it is large scale uniform.

Let B be a uniformly bounded family in C; so that all sets g- U, g € Gy,
refine B. Observe g — ¢ - xo9 and g — ¥(¢p(g)) - xo are St(B, B)-close.
Indeed, using the definition of ¢ and commutativity of the two actions, we
get ¢(g) ' -xo € g-U, and by definition of 1) we have ¢(g)~!-2¢ € 1(¢(g))-U.
Since g — ¢ - xg is a coarse equivalence from G; to (X1,C1) (see 6.2), ¥ o ¢
is close to the identity of G. Similarly, ¢ o is close to the identity of Go. =

7. Topological actions. Let X be a topological space and G be a group.
Recall that an action of G on X is topologically proper if each point x € X
has a neighborhood U, such that the stabilizer {g € G | U, N (g - Uy) # 0}
of U, is finite. An action of G on X is cocompact if there exists a compact
subspace K C X such that G- K = X.

DEFINITION 7.1. Let X be alocally compact topological space. An action
of a group G on X is topological if it is by homeomorphisms, it is cocompact
and topologically proper.

PROPOSITION 7.2. Suppose X is a locally compact topological space. If ¢
is a topological action of G on X, then there is a unique coarse structure Cy
on X such that the action ¢ of G on (X,Cy) is coarse and the bounded sets
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in Cy are precisely the relatively compact subsets of X. The structure Cy is
generated by the families {g - K}4cq where K is a compact subset of X.

Proof. Uniqueness of ¢ follows from 5.7. Let us show that the stabilizer
of each compact subset K of X is finite. If it is not, then there is an infinite
subset I of G' and points 4, € K N (g - K) for each g € I. The set {x4}ger
must be discrete (otherwise the action would not be topologically proper at
its accumulation point), so infinitely many z,’s are equal, a contradiction.

Consider the structure Cy on X described in the proof of 3.2. Notice it
has the required properties. m

COROLLARY 7.3. Suppose ¢: G x X — X and ¢: H x X — X are two
topological actions on a locally compact space X . If ¢ commutes with 1, then
(X,Cy) and (X,Cy) are coarsely equivalent.

Proof. Use 6.3. =

REMARK 7.4. It is not true that Cy = Cy in general. Use 3.3 and equip
groups with discrete topologies.

THEOREM 7.5. If G and H are coarsely equivalent groups, then there is
a locally compact topological space X and topological actions ¢: G x X — X
and Y: H x X — X that commute.

Proof. Pick a coarse equivalence o: G — H. Choose a function c¢ assign-
ing to each finite subset F' of G a finite subset ¢(F') of H with the property
that u=! - v € F implies a(u)~! - a(v) € ¢(F).

Choose a function d assigning to each finite subset F' of H a finite subset
d(F) of G with the property that a(u)~! - a(v) € F implies u~! - v € d(F).

Let E be a finite subset of H so that H = a(G) - E.

Let X be the space of all functions 3: G — H satisfying the following
conditions:

(1) u=!-v € F implies B(u)~! - B(v) € ¢(F) for all finite subsets F of G,
(2) B(u)~!-B(v) € F implies u™! - v € d(F) for all finite subsets F' of H,
(3) H=5(G) - E.

We consider X with the compact-open topology provided both G and H
are given the discrete topologies. Notice X is closed in the space HS of all
functions from G to H equipped with the compact-open topology. Indeed,
conditions (1) and (2) above hold for all § € cl(X), so it remains to check
H = 3(G) - E for such 3. Given h € H consider the set F' = 3(1g)~!-h-E~!
and choose v € X so that v(g) = ((g) for all g € d(F)U{1lg}. Pick g1 € G
and e € F so that h = (g1) - e. Since v(1g)™! - y(g1) € F, we see that
g1 = 15" g1 € d(F) and 7(g1) = A(g1). Thus h € B(G) - E.

Notice X is locally compact. Indeed, given 5 € X consider U = {y € X |
v(1g) = B(1¢)}. It is clearly open and equals X N K, where K C HY is the



158 N. BRODSKIY ET AL.

set of all functions u satisfying u(g) € B(1g) - ¢({g}). Notice K is compact
(it is a product of finite sets). Since X is closed in HS, X N K is compact
as well.

The action of G on X is given by (g - 3)(z) := (g - «). The action of H
on X is given by (h-(3)(x) := h-[(x). Notice that the two actions commute.
The action of H on X is cocompact: X = H - K, where K = {# € X |
B(1lg) = 1g}. The action of G on X is cocompact: X = G - L, where L is
the set of 3 € X such that 8(1g) € E~! (which implies 3(g) € E~' - c¢({g})
for all g € G so that L is compact). Indeed, for any v € X there is e € E
such that 1z = v(g1) - e for some g; € G. Put 5(z) = (g1 - «) and notice
B(lg)=eleE 1 soBcLandy=g;-p.

The action of H is proper: for § € X put U = {y € X | v(1g) = B(1g)}-
If A\ € Un(h-U), then \(1g) = B(1g) and h=! - A(1g) = B(1g). Thus
h=1p.

The action of G is proper: for § € X put U = {v € X | v(1¢) = B(1lg)}-
IfA\cUnN(g-U), then A(1g) = B(1g) and A(g~!) = B(1g). Thus A\(g™!) =
A(1g), which implies g=! € d({1x}), so the set of such g is finite. m
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