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A GENERIC THEOREM IN CARDINAL FUNCTION INEQUALITIES

BY

ALEJANDRO RAMÍREZ-PÁRAMO (Puebla)

Abstract. We establish a general technical result, which provides an algorithm to
prove cardinal inequalities and relative versions of cardinal inequalities.

1. Introduction. Among the best known theorems on cardinal func-
tions are those which give an upper bound on the cardinality of a space in
terms of other cardinal invariants. In [7] Hodel classified the bounds on |X|
in two categories: easy and difficult to prove. The proofs of several inequal-
ities in the difficult category have a common construction that is inspired
by Arkhangel’skĭı’s original proof of the inequality |X| ≤ 2L(X)χ(X) for ev-
ery Hausdorff space X (for a detailed discussion on this topic, the reader is
referred to [5]). This suggests the general problem of finding a result which
captures this common core. In [1], Arkhangel’skĭı established a general result
which yields an algorithm for proving relative versions of cardinal inequal-
ities and also captures the common construction of several inequalities in
the difficult category. However (as Arkhangel’skĭı commented in [1]), it is
not true that all important cardinal inequalities can be proved just following
his algorithm. Arkhangel’skĭı also says he does not know such a proof for
Gryzlov’s theorem [4]. Other results of this kind are also obtained in [5, Ths.
3.1 and 3.3], [11] and [9].

In this paper, following the ideas of Arkhangel’skĭı [1] and Hodel [5],
we formulate a general technical result (Theorem 3.1), closely related to
Theorem 1 in [1], which provides an algorithm for proving a wide range of
cardinal inequalities and relative versions of cardinal inequalities. Later we
will use Theorem 3.1 to prove three cardinal inequalities, in particular we
will prove Gryzlov’s inequality: |X| ≤ 2ψ(X) for every compact T1-space X,

and a relative version of Sun’s inequality: |X| ≤ 2qL(X)ψc(X)t(X) for every

T2-space X.

2. Notation and terminology. We refer the reader to [7] and [8] for
definitions and terminology on cardinal functions not explicitly given. Let
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L, wL, χ, ψ and ψc denote the following standard cardinal functions: Lin-
delöf degree, weak Lindelöf number, character, pseudocharacter and closed
pseudocharacter, respectively.

For any topological space X and any subset A of X, clX(A) is the closure
of A in X. For any set X and cardinal κ, [X]≤κ denotes the collection of all
subsets of X with cardinality ≤ κ; [X]<κ and [X]κ are defined analogously.

Definition 2.1 ([9]). Let X be a nonempty set and let τ , κ be infinite
cardinals. An operator c : P(X) → P(X) will be called a (τ, κ)-closure

operator if:

(1) A ⊆ c(A) for every A ∈ P(X),
(2) if A ⊆ B, then c(A) ⊆ c(B) for every A,B ∈ P(X),
(3) if |A| ≤ τκ, then |c(A)| ≤ τκ.

If the operator c : P(X) → P(X) satisfies (1) and (3) only, we say that it
is a quasi-(τ, κ)-closure operator .

Remark 2.2. It is clear that if κ+ = τ , then τκ = 2κ; hence in this case,
condition (3) in the previous definition states: if |A| ≤ 2κ, then |c(A)| ≤ 2κ.

Clearly every (τ, κ)-closure operator is a quasi-(τ, κ)-closure operator;
the following examples show that the converse need not be true.

Example 2.3. Let X be a compact T1-space and let κ be an infinite
cardinal. Define c : P(X) → P(X) by c(A) = A ∪ A′ where A′ is obtained
as follows: For every infinite subset B of A with |B| ≤ κ choose a complete
accumulation point of B, and let A′ be the set of points chosen in this way
(this operator was defined by Stephenson [13]). Then c is a quasi-(κ+, κ)-
closure operator.

Example 2.4. Let X be an ℵ1-compact space. Define c : P(X) → P(X)
by c(A) = A ∪ A′ where A′ is obtained as follows: For each infinite subset
B of A with |B| = ℵ1 choose a limit point of B, and let A′ be the set of
points chosen in this way (this operator was defined by Hodel [5]). It is not
difficult to prove that c is a quasi-(κ+, κ)-closure operator.

We shall use the notation and terminology employed in [1]. For the
reader’s convenience, we repeat some of the relevant definitions.

Let X be a set and Y be a nonempty subset of X. Here and in what
follows, let τ , κ be infinite cardinals such that κ < cf(τ) and let µ = τκ.

Let L be the family of subsets of Y of cardinality not greater than µ,
that is, L = [Y ]≤µ.

A τ -long increasing sequence in L is a transfinite sequence {Fα : α < τ}
of elements of L such that Fα ⊆ Fβ if α < β < τ .

A sensor is a pair (A,F), where A is a family of subsets of Y and F is
a collection of families of subsets of X.
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We assume that with each sensor s = (A,F) a subset Θ(s) of X is
associated, called the Θ-closure of s.

Definition 2.5. A sensor s = (A,F) will be called small if:

(1) |A| ≤ κ and |A| ≤ κ for every A ∈ A,
(2) |F| ≤ κ and |C| ≤ κ for every C ∈ F ,
(3) Y \Θ(s) 6= ∅.

Let H be a subset of Y and G a family of subsets of X. A sensor (A,F)
is said to be generated by the pair (H,G) if A ⊆ H for each A ∈ A, and
C ⊆ G for each C ∈ F .

Let Q be the set of all families G of subsets of X such that |G| ≤ µ. If g
is a mapping of L into Q and E ⊆ L, then Ug(E) =

⋃
{g(F ) : F ∈ E}.

Let g be a mapping of L into Q, and let E be a subfamily of L. A sensor
s will be called good for E if it is generated by the pair (

⋃
E ,Ug(E)) and⋃

E ⊆ Θ(s).

A propeller (with respect to (g,Θ)) in L is a τ -long increasing sequence
E in L such that no small sensor s is good for E .

Definition 2.6. A quasi-propeller (with respect to (g,Θ)) in L is a
τ -long sequence E in L such that no small sensor s is good for E .

Clearly every propeller is a quasi-propeller.

3. The main theorem and some consequences. Now we are ready
to state and prove our main result which is a slight generalization of the
main result in [9] (see Corollary 3.2 below). The proof of Theorem 3.1 below
follows the same pattern as the proof of Theorem 1 in [1], therefore some of
the details are omitted.

Theorem 3.1. Let X be a set , Y a nonempty subset of X, and τ and

κ infinite cardinals such that κ < cf(τ). Set µ = τκ. If c : P(X) → P(X) is

a quasi-(τ, κ)-closure operator , then for every function g : L = [Y ]≤µ → Q,
there exists a family {Eα : α ∈ τ} ⊆ L such that :

(1) for each 0 < α < τ ,
⋃
{c(Eβ) ∩ Y : β < α} ⊆ Eα,

(2) E = {c(Eα) ∩ Y : α ∈ τ} is a quasi-propeller in L.

Proof. Let g :L→Q be a function. We construct a sequence {Eα :α<τ}
of subsets of Y and a collection {Uα : 0 < α < τ} of families of subsets of
X such that:

(a) |Eα| ≤ µ, 0 ≤ α < τ ,
(b) Uα =

⋃
{g(c(Eβ ∩ Y )) : β < α}, 0 < α < τ ,

(c) if s is a small sensor generated by (
⋃
{c(Eβ)∩ Y : β < α},Uα), then

Eα ∩ (Y \Θ(s)) 6= ∅.
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Fix 0 < α < τ and assume that Eβ and Uβ are already defined such that
(a)–(c) hold for each β ∈ α. Note that Uα has been defined by (2). Put
Hα =

⋃
{c(Eβ) ∩ Y : β < α}. Clearly |Hα| ≤ µ and |Uα| ≤ µ. For each

small sensor s generated by (Hα,Uα), choose a point m(s) ∈ Y \Θ(s) and
let Aα be the set of points chosen in this way. Let Eα = Hα ∪ Aα. Clearly
Eα ∈ L, |Eα| ≤ µ and Eα satisfies (c). This completes the construction.

Clearly the collection {Eα : α < τ} ⊆ L satisfies (1). Now, it is sufficient
to prove that E = {c(Eα) ∩ Y : α < τ} is a quasi-propeller in L. To see
this, let P =

⋃
E and suppose there is a small sensor s0 = (A,F) generated

by the pair (P,Ug(E)) such that P ⊆ Θ(s0). Since κ < cf(τ), there exists
α0 < τ such that A ⊆ Hα0

for each A ∈ A, and B ⊆ Uα0
for each B ∈ F .

Hence the sensor s0 is generated by the pair (Hα0
,Uα0

). Hence by (c), there
exists ms0 ∈ Eα0

∩ (Y \ Θ(s0)); but then ms0 ∈ c(Eα0
) ∩ Y ⊆ P ⊆ Θ(s0),

which is a contradiction.

Corollary 3.2 ([9]). If c : P(X) → P(X) is a (τ, κ)-closure operator ,
then for every function g : L → Q, there exists a family {Eα : α ∈ τ} ⊆ L
such that :

(1) for each 0 < α < τ ,
⋃
{c(Eβ) ∩ Y : β < α} ⊆ Eα,

(2) E = {c(Eα) ∩ Y : α ∈ τ} is a propeller in L.

Now we will use Theorem 3.1 to prove four cardinal inequalities and one
relative version. The first one is the following well-known inequality due to
Bell, Ginsburg and Woods [2]:

Corollary 3.3. Let X be a T4-space. Then |X| ≤ 2wL(X)χ(X).

Proof. Let κ = wL(X)χ(X), τ = κ+ and µ = 2κ. For every x ∈ X,
let Bx be a local base of x in X with |Bx| ≤ κ. For each F ∈ L = [X]≤µ,
set g(F ) =

⋃
{Bx : x ∈ clX(F )}, and for every sensor s = (∅, {F}), put

Θ(s) = clX(
⋃

F). Define c : P(X) → P(X) by c(A) = clX(A). Notice that
c is a (κ+, κ)-closure operator. Thus by Theorem 3.1 there exists a family
{Eα : α ∈ κ+} ⊆ L such that

⋃
{c(Eβ) : β < α} ⊆ Eα for every 0 < α < κ+,

and E = {c(Eα) : α ∈ κ+} is a quasi-propeller in L. Let H =
⋃

E and note
that |H| ≤ 2κ and c(H) = H.

The proof will be complete if we prove that X ⊆ H. Suppose not and
let p ∈ X \ H. Since X is T4, there is an open subset U of X such that
H ⊆ U and p /∈ clX(U). Let F = {V : V ∈ Bx, x ∈ H and V ⊆ U} and
note that G =

⋃
F . Clearly H ⊆ G ⊆ U and p /∈ clX(G). Since X is T4,

there exists an open subset W of X such that H ⊆ W ⊆ clX(W ) ⊆ G. It
is not difficult to prove that the collection F ∪ {X \ clX(W )} is an open
cover of X; hence since wL(X) ≤ κ, there exists F ′ ∈ [F ]≤κ such that
X = clX(

⋃
F ′) ∪ clX(X \ clX(W )).
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Let s = (∅, {F ′}). It is clear that p /∈ Θ(s) while H ⊆ Θ(s). We see that
s is a small sensor good for E , which is a contradiction.

We now give a proof of Gryzlov’s theorem using Theorem 3.1. First, we
need a lemma due to Gryzlov.

Lemma 3.4 ([4]). Let X be a compact T1-space with ψ(X) ≤ κ and let

H be a subset of X such that every infinite subset of H of cardinality ≤ κ
has a complete accumulation point in H. Then H is compact.

Now we are ready to prove Gryzlov’s inequality.

Corollary 3.5 ([4]). Let X be a compact T1-space. Then |X| ≤ 2ψ(X).

Proof. Let κ = ψ(X), τ = κ+ and µ = 2κ. For every x ∈ X, let Bx
be a local pseudobase of x in X with |Bx| ≤ κ. For each F ∈ L = [X]≤µ,
set g(F ) =

⋃
{Bx : x ∈ clX(F )}, and for every sensor s = (∅, {F}), put

Θ(s) =
⋃

F . Let c : P(X) → P(X) be defined as in Example 2.3 (i.e.,
c(A) = A ∪A′). Since c is a quasi-(κ+, κ)-closure operator, by Theorem 3.1
there exists a family {Eα : α ∈ κ+} ⊆ L such that

⋃
{c(Eβ) : β < α} ⊆ Eα

for every 0 < α < κ+, and E = {c(Eα) : α ∈ κ+} is a quasi-propeller in L.
Let H =

⋃
E and note that |H| ≤ 2κ and H = c(H), hence by Lemma 3.4,

H is compact.

Now, it is enough to prove that X ⊆ H. Suppose not and let p ∈ X \H.
For each x ∈ H, let Vx ∈ Bx be such that p /∈ Vx. It is clear that the
collection {Vx : x ∈ H} covers H, hence there exist x1, . . . , xn ∈ H such
that H ⊆

⋃
{Vxi

: i ∈ {1, . . . , n}}. Let F = {Vxi
: i ∈ {1, . . . , n}} and

s = (∅, {F}). It is clear that p /∈ Θ(s) while H ⊆ Θ(s). We see that s is a
small sensor good for E , which is a contradiction.

The following result was proved in [5]. We will use Theorem 3.1 to
prove it.

Corollary 3.6 ([5]). Let X be an ℵ1-compact space, and assume that

(1) ψ(X) ≤ 2ℵ1 ,
(2) if Y ⊆ X and |Y | ≤ 2ℵ1 , then Y is meta-Lindelöf.

Then |X| ≤ 2ℵ1 .

Proof. Let τ = ℵ2 and let µ = ℵℵ1

2 = 2ℵ1 . For every x ∈ X, let Bx be
a local pseudobase of x in X with |Bx| ≤ 2ℵ1 . For each F ∈ L = [X]≤µ,
set g(F ) =

⋃
{Bx : x ∈ clX(F )}, and for every sensor s = (∅, {F}), put

Θ(s) =
⋃

F . Let c : P(X) → P(X) be defined as in Example 2.4. Since
c is a quasi-(ℵ2,ℵ1)-closure operator, by Theorem 3.1 there exists a family
{Eα : α ∈ κ+} ⊆ L such that

⋃
{c(Eβ) : β < α} ⊆ Eα for every 0 < α < ℵ2,

and E = {c(Eα) : α ∈ ℵ2} is a quasi-propeller in L. Let H =
⋃

E and
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note that |H| ≤ 2ℵ1 and H = c(H); hence H is ℵ1-compact and, by (2),
meta-Lindelöf; therefore H is Lindelöf.

The proof will be complete if we prove that X ⊆ H. Suppose not and
let p ∈ X \H. For each x ∈ H, let Vx ∈ Bx be such that p /∈ Vx. It is clear
that the collection {Vx : x ∈ H} covers H, hence there exist x1, . . . , xn ∈ H
such that H ⊆

⋃
{Vxi

: i ∈ {1, . . . , n}}. Let F = {Vxi
: i ∈ {1, . . . , n}} and

let s = (∅, {F}). It is clear that p /∈ Θ(s) while H ⊆ Θ(s). We see that s is
a small sensor good for E , which is a contradiction.

Before presenting our next result (Corollary 3.9), we need some notations
and results.

Definition 3.7 ([10]). The Urysohn pseudocharacter of X, denoted by
Uψ(X), is the smallest infinite cardinal κ such that for each x ∈ X, there
is a collection Bx of open neighborhoods of X such that:

(1) |Bx| ≤ κ,
(2) if x 6= y, then there exist Vx ∈ Bx and Vy ∈ By such that clX(Vx) ∩

clX(Vy) = ∅.

We have the inequalities ψc(X) ≤ Uψ(X) ≤ χ(X) for every Urysohn
space X.

Let κ be an infinite cardinal, and let X be a set. Suppose that for each
x ∈ X, Vx is a family of subsets of X which contains x. For every L ⊆ X,
let L∗ = {x ∈ X : V ∩ L 6= ∅ for all V ∈ Vx}. This operator was defined by
Hodel in [6].

We shall use the following result proved in [6].

Theorem 3.8. Let κ be an infinite cardinal and X a set. For each x ∈ X,
let Vx = {Vγ(x) : γ < κ} be a family of subsets of X which contains x such

that if x 6= y, then there exists γ ∈ κ with Vγ(x) ∩ Vγ(y) = ∅. Then

(1) |L∗| ≤ |L|κ.
(2) If L =

⋃
α<κ+ E∗

α, where {Eα : 0 ≤ α < κ+} is a sequence of subsets

of X with
⋃
β<αE

∗
β ⊆ Eα for all α < κ+, then L∗ = L.

Finally, we recall that a subset Y of a space X is called an H-set in X
if for every open family U in X such that Y ⊆

⋃
U there exists V ∈ [U ]<ω

satisfying Y ⊆ clX(
⋃
V).

The next result is another consequence of Theorem 3.1.

Corollary 3.9. If Y is an H-set in the Urysohn space X, then |Y | ≤
2Uψ(X).

Proof. Let κ = Uψ(X), τ = κ+ and µ = 2κ. For every x ∈ X, let Bx be
a collection of open neighborhoods of x in X with |Bx| ≤ κ, closed under
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finite intersections, and satisfying (2) of Definition 3.7. For each F ∈ L =
[Y ]≤µ, set g(F ) =

⋃
{Bx : x ∈ F}, and for every sensor s = (∅, {F}) put

Θ(s) = clX(
⋃
F). Define c : P(X) → P(X) by c(L) = L∗ = {x ∈ X :

clX(V ) ∩ L 6= ∅ for all V ∈ Bx}. By Theorem 3.8, c is a (κ+, κ)-closure
operator, hence by Theorem 3.1 there exists a family {Eα : α ∈ κ+} ⊆ L
such that

⋃
{c(Eβ) ∩ Y : β < α} ⊆ Eα for every 0 < α < κ+, and E =

{c(Eα) ∩ Y : α ∈ κ+} is a quasi-propeller in L. Let H =
⋃

E and note that
|H| ≤ 2κ, hence |c(H)| ≤ 2κ. Moreover, it is not difficult to prove that if
x ∈ c(H), then there exists α < κ+ such that x ∈ c(Eα).

To finish the proof let us show that Y ⊆ c(H). Suppose not and let
p ∈ Y \ c(H). For each y ∈ Y ∩ c(H), fix Vy ∈ By and let V (y, p) ∈ Bp be
such that clX(Vy)∩clX(V (y, p)) = ∅, and for every y ∈ Y \c(H), let Vy ∈ By
be such that clX(Vy) ∩ H = ∅. It is clear that the collection {Vx : x ∈ Y }
covers Y , hence since Y is an H-set in X, there exist x1, . . . , xn ∈ Y such
that Y ⊆ clX(

⋃
{Vxi

: i ∈ {1, . . . , n}}). Let C = {x1, . . . , xn} ∩ c(H), F =
{Vx : x ∈ C} and s = (∅, {F}). It is clear that p /∈ Θ(s) while H ⊆ Θ(s).
We see that s is a small sensor good for E , which is a contradiction.

As a consequence of Corollary 3.9, we have:

Corollary 3.10 ([3]). If Y is an H-set in the Urysohn space X, then

|Y | ≤ 2χ(X).

At the moment the author does not know the answer to the following
question:

Question 3.11. Let Y be an H-set in the Hausdorff space X. Is it true
that |Y | ≤ 2Hψ(X)? (The definition of Hψ(X) can be found in [6].)

Now we turn to the final result of this paper. The following inequality was
proved in [12]: |X| ≤ 2qL(X)ψc(X)t(X) for every Hausdorff space X. We will
prove a relative version of this result. To formulate it, we have to introduce
a relative version of qL.

Definition 3.12. LetX be a topological space, Y ⊆ X, and κ an infinite
cardinal.

(1) We say that A ∈ [Y ]≤2κ

is κ-quasi-dense in Y with respect to X if
for every open cover U of X, there exist B ∈ [A]≤κ and V ∈ [U ]κ

such that Y ⊆ clX(B) ∪
⋃

V .
(2) We define qL(Y,X) as the smallest infinite cardinal κ such that there

is a subset κ-quasi-dense in Y with respect to X.

It follows from Definition 3.12 that if Y = X, then qL(Y,X) = qL(X).

Corollary 3.13. Let X be a T1-space and let Y be a subspace of X.

Suppose that :
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(1) t(X) ≤ κ,
(2) |clX(B)| ≤ 2κ for every B ∈ [X]≤2κ

,
(3) ψ(X) ≤ 2κ.

If qL(Y,X) ≤ κ, then |Y | ≤ 2κ.

Proof. Let τ = κ+, µ = 2κ and for each x ∈ X let Bx be a local
pseudobase of x in X with |Bx| ≤ κ. Since qL(Y,X) ≤ κ, there exists
A ∈ [Y ]≤µ which is κ-quasi-dense in Y with respect to X. For every F ∈
L = [Y ]≤µ we put g(F ) =

⋃
{Bx : x ∈ clX(F )}. For every sensor s = (A,F)

we put Θ(s) = clX(
⋃
A) ∪

⋃
{
⋃
C : C ∈ F}. Since c(D) = clX(D) is a

(τ, κ)-closure operator, by Theorem 3.1 there is {Eα : α < τ} ⊆ L such that⋃
{c(Eβ)∩Y : β < α} ⊆ Eα for every α < κ and E = {c(Eα)∩Y : α < τ} is

a quasi-propeller in L. We suppose, without loss of generality, that E0 = A.
Let P =

⋃
E and note that |P | ≤ µ; hence |clX(P )| ≤ µ.

Now, let us show that Y ⊆ clX(P ). Suppose not and fix p ∈ Y \ clX(P ).
For every x ∈ clX(P ), let Vx ∈ Bx be such that p /∈ Vx. It is clear that the
collection {Vx : x ∈ clX(P )} ∪ {X\ clX(P )} covers X. Since qL(Y,X) ≤ κ,
there exist D ∈ [A]≤κ and B ∈ [clX(P )]≤κ such that Y ⊆ clX(D) ∪

⋃
{Vx :

x ∈ B} ∪ X\ clX(P ). Let A = {D}, F = {Vx : x ∈ B} and s = (A,F).
Clearly p /∈ Θ(s) and P ⊆ Θ(s). Thus s is a small sensor good for E ,
a contradiction.

Corollary 3.14. If X is a T2-space, then |Y | ≤ 2qL(Y,X)ψc(X)t(X).
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[9] A. Ramı́rez-Páramo and N. T. Tapia-Bonilla, Other generic theorem in the theory of

cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 48 (2007),
177–187.

[10] D. Stavrova, Separation pseudocharacter and the cardinality of topological spaces,
Topology Proc. 25 (2000), 333–343.

[11] —, Unified approach to the theory of topological cardinal invariants, C. R. Acad.
Bulgare Sci. 50 (1997), 5–8.

[12] S. H. Sun, Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104
(1988), 313–316.

[13] R. M. Stephenson, Initially κ-compact and related spaces, in: Handbook of Set-
Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam,
1984, 63–109.

Facultad de Ciencias de la Electrónica
Universidad Autónoma de Puebla
Av. San Claudio y 18 sur
Col. Jardines de San Manuel
Puebla, Pue., México
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