COLLOQUIUM MATHEMATICUM

THE LJUNGGREN EQUATION REVISITED

KONSTANTINOS A. DRAZIOTIS (Thessaloniki)

Abstract

We study the Ljunggren equation $Y^{2}+1=2 X^{4}$ using the "multiplication by 2 " method of Chabauty.

1. Introduction. In [5], Ljunggren proved that the only positive integral solutions of the diophantine equation

$$
L_{2}: \quad Y^{2}+1=2 X^{4}
$$

are $(X, Y)=(1,1),(13,239)$. Since the proof was quite complicated, Mordell asked if one could find a simpler proof.

In [8] Tzanakis and Steiner gave a proof using the theory of Baker. Another proof was given by Chen [3], using the Thue-Siegel method combined with Padé approximation of algebraic functions.

In this paper we solve this equation with another method. Our approach is inspired by Chabauty [2] and uses the group structure of an elliptic curve and the multiplication by 2 map. This method was used by Poulakis [6] and later by Bugeaud [1] to obtain an upper bound for the height of integral points. This method eventually also uses Baker's theory since we need to solve a unit equation.
2. The integral solutions of L_{2}. The proof consists of two parts. The first uses the group structure of the elliptic curve and the second is a reduction to a unit equation in a certain quartic number field.

To solve the equation L_{2} it is enough to solve E_{2}, where

$$
E_{2}: \quad F(X, Y)=Y^{2}-\left(X^{3}-2 X\right)=0 .
$$

Let $(x, y) \in L_{2}(\mathbb{Z})$, and set $a=2 x^{2}, b=2 x y$. Then $P=(a, b) \in E_{2}(\mathbb{Z})$. We assume that $|a| \geq 2$. Let $R=(s, t)$ be a point of E_{2} over the algebraic

[^0]closure $\overline{\mathbb{Q}}$ of \mathbb{Q} such that $2 R=P$. By [7, Chapter 3, p. 59], we have
\[

$$
\begin{equation*}
a=\frac{\left(s^{2}+2\right)^{2}}{4 s\left(s^{2}-2\right)} \tag{1}
\end{equation*}
$$

\]

and so s is a root of the polynomial

$$
\Theta_{a}(S)=S^{4}-4 a S^{3}+4 S^{2}+8 a S+4
$$

The roots of $\Theta_{a}(S)$ are

$$
a \pm \sqrt{a^{2}-2} \pm \sqrt{2 a^{2} \pm 2 a \sqrt{a^{2}-2}}
$$

where the first \pm coincides with the third. Put $L=\mathbb{Q}(s)$. Since $a=2 x^{2}$, we have $a^{2}-2=4 x^{4}-2=2 y^{2}$ and so $L=\mathbb{Q}\left(\sqrt{2 x^{2} \pm y \sqrt{2}}\right)$. Also, $\mathbb{Q}(\sqrt{2}) \subset L$ and $N_{K}\left(2 x^{2} \pm y \sqrt{2}\right)=2$. It follows that the only prime dividing the discriminant of L is 2 . So the only prime ramified in L is 2 . Furthermore, from [4, Chapter 9, Proposition 9.4.1, p. 461], L is a totally real quartic extension of \mathbb{Q}. So from Jones' list $\left({ }^{1}\right)$ or the database $\left({ }^{2}\right)$ of Jürgen Klüners and Gunter Malle, we conclude that $L=\mathbb{Q}(\sqrt{2+\sqrt{2}})$.

The element $s_{ \pm}=(s \pm \sqrt{2}) / 2$ is a root of the polynomial with integer coefficients:

$$
\begin{aligned}
\lambda(S) & =(1 / 256) \operatorname{res}_{W}\left(\Theta_{a}(2 S \mp W), W^{2}-2\right) \\
& =S^{8}-4 a S^{7}+\cdots+1
\end{aligned}
$$

where $\operatorname{res}_{W}(\cdot, \cdot)$ denotes the resultant of two polynomials with respect to W. Thus $s_{ \pm}$is a unit in L. So $u=(s+\sqrt{2}) / 2$ and $v=(\sqrt{2}-s) / 2$ satisfy the unit equation $u+v=\sqrt{2}$ in L. The algorithm of Wildanger [9], which is implemented in the computer algebra system Magma $\left(^{3}\right.$) V2.10-22, gives the solutions of this unit equation in L, which are listed in Table 1 where we have put

$$
\left[a_{1}, a_{2}, a_{3}, a_{4}\right]=a_{0}+a_{1} \theta+a_{2} \theta^{2}+a_{3} \theta^{3}
$$

with $\theta=\sqrt{2+\sqrt{2}}$. We substitute to (1) each solution of the unit equation and we check if it gives an integer. Thus, it follows that $a=$ 2,338. So, for $|a| \geq 2$, the solutions of E_{2} are $(X, Y)=(2, \pm 2)$, $(338, \pm 6214)$, and for $|a|<2$, they are $(X, Y)=(0,0),(-1, \pm 1)$. So $L_{2}(\mathbb{Z})=$ $\{(\pm 1, \pm 1),(\pm 13, \pm 239)\}$.

Acknowledgments. The author is indebted to Professor D. Poulakis for his valuable remarks. Also the author thanks the referee for his/her suggestions and comments.

[^1]Table 1. The solutions of the unit equation

$[-1,1,0,0][-1,-1,1,0]$	$[-1,-1,1,0][-1,1,0,$	
[407	$[-1,1,1,0][-1,-1,0,0]$	
[-409, 533, 120, -156][407, -533, -119, 156]	$[5,7,-1,-2][-7,-7,2,2]$	$[1,4,0,-1][-3,-4,1,1]$
$[-71,39,120,-65][69,-39,-119,65]$	$[-1,-1,-1,1][-1,1,2,-1]$	$[1,2,-3,-2][-3,-2,4,2]$
[6	$[-7,7,2,-2][5,-7,-1,2]$	$[-3,2,4,-2][1,-2,-3,2]$
[-	$[-1,2,0,-1][-1,-2,1,1]$	$[1,3,0,-1][-3,-3,1,1]$
$[11,14,-3,-4][-13,-14,4,4]$	[-	
$[-1,1,-1,-1][-1,-1,2,1]$	$[-1,1,2,-1][-1,-1,-1,1]$	$[-3,-4,1,1][1,4,0,-1]$
[11	1	$1]$
$[-13,14,4,-4][11,-14,-3,4]$	$[-3,-3,1,1][1,3,0,-1]$	$[-1,2,0,-1]$
[-	$[1,-2,-3,2][-3,2,4,-2]$	2]
$[69,-39,-119,65][-71,39,120,-65]$	$[-1,-1,2,1][-1,1,-1,-1]$	$-1]$
$[-13,-14,4,4][11,14,-3,-4]$	$[-3,-2,4,2][1,2,-3,-2]$	$[-3,4,1,-1][1,-4,0,1]$
$[407,-533,-119,156][-409,533,120,-156]$	$[-7,-7,2,2][5,7,-1,-2]$	

REFERENCES

[1] Y. Bugeaud, On the size of integer solutions of elliptic equations, Bull. Austral. Math. Soc. 57 (1998), 199-206.
[2] C. Chabauty, Démonstration de quelques lemmes de rehaussement, C. R. Acad. Sci. Paris 217 (1943), 413-415.
[3] J. H. Chen, A new solution of the Diophantine equation $X^{2}+1=2 Y^{4}$, J. Number Theory 48 (1994), 62-74.
[4] H. Cohen, Advanced Topics in Computational Number Theory, Grad. Texts in Math. 193. Springer, New York, 2000.
[5] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Avh. Norsk. Vid. Akad. Oslo, 1942, 1-27.
[6] D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. Ser. A 63 (1997), 145-164.
[7] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
[8] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation $X^{2}+1$ $=2 Y^{4}$, J. Number Theory 37 (1991), 123-132.
[9] K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, ibid. 82 (2000), 188-224.
G. Passalidi 42

54453 Thessaloniki, Greece
E-mail: drazioti@gmail.com

[^0]: 2000 Mathematics Subject Classification: 11D25, 11G05, 11Y50.
 Key words and phrases: Ljunggren equation, elliptic curves, multiplication by 2 on elliptic curves, S-unit equation.

 Research supported by the Hellenic State Scholarships Foundation-I.K.Y.

[^1]: (${ }^{1}$) Jones, W. J., http://math.la.asu.edu/~jj/numberfields/. Tables of number fields with prescribed ramification.
 $\left(^{2}\right)$ http://www.mathematik.uni-kassel.de/ ${ }^{\text {klueners } / m i n i m u m / m i n i m u m . h t m l . ~}$
 $\left.{ }^{3}\right)$ http://magma.maths.usyd.edu.au/magma/.

