VOL. 109

2007

NO. 1

THE LJUNGGREN EQUATION REVISITED

ΒY

KONSTANTINOS A. DRAZIOTIS (Thessaloniki)

Abstract. We study the Ljunggren equation $Y^2 + 1 = 2X^4$ using the "multiplication by 2" method of Chabauty.

1. Introduction. In [5], Ljunggren proved that the only positive integral solutions of the diophantine equation

$$L_2: \quad Y^2 + 1 = 2X^4$$

are (X, Y) = (1, 1), (13, 239). Since the proof was quite complicated, Mordell asked if one could find a simpler proof.

In [8] Tzanakis and Steiner gave a proof using the theory of Baker. Another proof was given by Chen [3], using the Thue–Siegel method combined with Padé approximation of algebraic functions.

In this paper we solve this equation with another method. Our approach is inspired by Chabauty [2] and uses the group structure of an elliptic curve and the multiplication by 2 map. This method was used by Poulakis [6] and later by Bugeaud [1] to obtain an upper bound for the height of integral points. This method eventually also uses Baker's theory since we need to solve a unit equation.

2. The integral solutions of L_2 . The proof consists of two parts. The first uses the group structure of the elliptic curve and the second is a reduction to a unit equation in a certain quartic number field.

To solve the equation L_2 it is enough to solve E_2 , where

$$E_2: \quad F(X,Y) = Y^2 - (X^3 - 2X) = 0.$$

Let $(x, y) \in L_2(\mathbb{Z})$, and set $a = 2x^2$, b = 2xy. Then $P = (a, b) \in E_2(\mathbb{Z})$. We assume that $|a| \ge 2$. Let R = (s, t) be a point of E_2 over the algebraic

²⁰⁰⁰ Mathematics Subject Classification: 11D25, 11G05, 11Y50.

Key words and phrases: Ljunggren equation, elliptic curves, multiplication by 2 on elliptic curves, S-unit equation.

Research supported by the Hellenic State Scholarships Foundation-I.K.Y.

closure $\overline{\mathbb{Q}}$ of \mathbb{Q} such that 2R = P. By [7, Chapter 3, p. 59], we have

(1)
$$a = \frac{(s^2 + 2)^2}{4s(s^2 - 2)}$$

and so s is a root of the polynomial

$$\Theta_a(S) = S^4 - 4aS^3 + 4S^2 + 8aS + 4.$$

The roots of $\Theta_a(S)$ are

$$a \pm \sqrt{a^2 - 2} \pm \sqrt{2a^2 \pm 2a\sqrt{a^2 - 2}},$$

where the first \pm coincides with the third. Put $L = \mathbb{Q}(s)$. Since $a = 2x^2$, we have $a^2 - 2 = 4x^4 - 2 = 2y^2$ and so $L = \mathbb{Q}(\sqrt{2x^2 \pm y\sqrt{2}})$. Also, $\mathbb{Q}(\sqrt{2}) \subset L$ and $N_K(2x^2 \pm y\sqrt{2}) = 2$. It follows that the only prime dividing the discriminant of L is 2. So the only prime ramified in L is 2. Furthermore, from [4, Chapter 9, Proposition 9.4.1, p. 461], L is a totally real quartic extension of \mathbb{Q} . So from Jones' list (¹) or the database (²) of Jürgen Klüners and Gunter Malle, we conclude that $L = \mathbb{Q}(\sqrt{2 + \sqrt{2}})$.

The element $s_{\pm} = (s \pm \sqrt{2})/2$ is a root of the polynomial with integer coefficients:

$$\lambda(S) = (1/256) \operatorname{res}_W(\Theta_a(2S \mp W), W^2 - 2) = S^8 - 4aS^7 + \dots + 1,$$

where $\operatorname{res}_W(\cdot, \cdot)$ denotes the resultant of two polynomials with respect to W. Thus s_{\pm} is a unit in L. So $u = (s + \sqrt{2})/2$ and $v = (\sqrt{2} - s)/2$ satisfy the unit equation $u + v = \sqrt{2}$ in L. The algorithm of Wildanger [9], which is implemented in the computer algebra system Magma (³) V2.10-22, gives the solutions of this unit equation in L, which are listed in Table 1 where we have put

$$[a_1, a_2, a_3, a_4] = a_0 + a_1\theta + a_2\theta^2 + a_3\theta^3,$$

with $\theta = \sqrt{2 + \sqrt{2}}$. We substitute to (1) each solution of the unit equation and we check if it gives an integer. Thus, it follows that a = 2,338. So, for $|a| \ge 2$, the solutions of E_2 are $(X,Y) = (2,\pm 2)$, $(338,\pm 6214)$, and for |a| < 2, they are $(X,Y) = (0,0), (-1,\pm 1)$. So $L_2(\mathbb{Z}) = \{(\pm 1,\pm 1), (\pm 13,\pm 239)\}$.

Acknowledgments. The author is indebted to Professor D. Poulakis for his valuable remarks. Also the author thanks the referee for his/her suggestions and comments.

^{(&}lt;sup>1</sup>) Jones, W. J., http://math.la.asu.edu/~jj/numberfields/. Tables of number fields with prescribed ramification.

^{(&}lt;sup>2</sup>) http://www.mathematik.uni-kassel.de/~klueners/minimum/minimum.html.

^{(&}lt;sup>3</sup>) http://magma.maths.usyd.edu.au/magma/.

[-1, 0, 0, 0][-1, 0, 1, 0]	$\left[1,0,0,0\right]\left[-30,1,0\right]$	[-1, -1, 0, 0][-1, -1, 1, 0]
[-1, 1, 0, 0][-1, -1, 1, 0]	[-1,-1,1,0][-1,1,0,0]	[-3,0,1,0] [1,0,0,0]
[407, 533, -119, -156] [-409, -533, 120, 156]	[-1,1,1,0][-1,-1,0,0]	[-1,0,1,0][-1,0,0,0]
[-409, 533, 120, -156][407, -533, -119, 156]	[5, 7, -1, -2][-7, -7, 2, 2]	[1,4,0,-1][-3,-4,1,1]
$\left[-71, 39, 120, -65\right]\left[69, -39, -119, 65\right]$	$\left[-1,-1,-1,1\right]\left[-1,1,2,-1\right]$	[1,2,-3,-2][-3,-2,4,2]
[69, 39, -119, -65] [-71, -39, 120, 65]	$\left[-7,7,2,-2\right]\!\left[5,-7,-1,2\right]$	$\left[-3,2,4,-2\right] [1,-2,-3,2]$
$\left[-71, -39, 120, 65\right]\left[69, 39, -119, -65\right]$	[-1,2,0,-1][-1,-2,1,1]	[1,3,0,-1][-3,-3,1,1]
[11, 14, -3, -4][-13, -14, 4, 4]	[-1,2,1,-1][-1,-2,0,1]	[-3,3,1,-1] [1,-3,0,1]
[-1,1,-1,-1][-1,-1,2,1]	$\left[-1,1,2,-1\right]\left[-1,-1,-1,1\right]$	[-3,-4,1,1] [1,4,0,-1]
[11, -14, -3, 4] [-13, 14, 4, -4]	[1, -3, 0, 1][-3, 3, 1, -1]	[-1,-2,0,1][-1,2,1,-1]
$\left[-13,14,4,-4\right]\left[11,-14,-3,4\right]$	$\left[-3, -3, 1, 1\right] [1, 3, 0, -1]$	[-1,-2,1,1][-1,2,0,-1]
[-409, -533, 120, 156][407, 533, -119, -156]	[1, -2, -3, 2][-3, 2, 4, -2]	[5, -7, -1, 2][-7, 7, 2, -2]
[69, -39, -119, 65] [-71, 39, 120, -65]	$\left[-1,-1,2,1\right]\left[-1,1,-1,-1\right]$	[1,-4,0,1][-3,4,1,-1]
$\left[-13,-14,4,4\right]\left[11,14,-3,-4\right]$	$\left[-3,-2,4,2\right]\left[1,2,-3,-2\right]$	[-3,4,1,-1] [1,-4,0,1]
[407, -533, -119, 156] [-409, 533, 120, -156]	[-7, -7, 2, 2][5, 7, -1, -2]	

Table 1. The solutions of the unit equation

REFERENCES

- Y. Bugeaud, On the size of integer solutions of elliptic equations, Bull. Austral. Math. Soc. 57 (1998), 199–206.
- C. Chabauty, Démonstration de quelques lemmes de rehaussement, C. R. Acad. Sci. Paris 217 (1943), 413–415.
- [3] J. H. Chen, A new solution of the Diophantine equation $X^2 + 1 = 2Y^4$, J. Number Theory 48 (1994), 62–74.
- [4] H. Cohen, Advanced Topics in Computational Number Theory, Grad. Texts in Math. 193. Springer, New York, 2000.
- [5] W. Ljunggren, Zur Theorie der Gleichung $x^2 + 1 = Dy^4$, Avh. Norsk. Vid. Akad. Oslo, 1942, 1–27.
- [6] D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. Ser. A 63 (1997), 145–164.
- [7] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986.
- [8] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation $X^2 + 1 = 2Y^4$, J. Number Theory 37 (1991), 123–132.
- K. Wildanger, Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern, ibid. 82 (2000), 188–224.

G. Passalidi 42 54 453 Thessaloniki, Greece E-mail: drazioti@gmail.com