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ON A PARTICULAR CLASS OF WARPED PRODUCTSWITH FIBRES LOCALLY ISOMETRICTO GENERALIZED CARTAN HYPERSURFACESBYRYSZARD DESZCZ (Wroªaw) and MIKE SCHERFNER (Berlin)Dediated to Professor Marek Abramowiz on his sixtieth birthdayAbstrat. We prove that every generalized Cartan hypersurfae satis�es the soalled Roter type equation. Using this fat, we onstrut a partiular lass of general-ized Robertson�Walker spaetimes.1. Introdution. Aording to [8℄ a semi-Riemannian manifold (M, g)with dimM = n ≥ 4 is said to be a Roter type manifold if
R =

φ

2
S ∧ S + µg ∧ S + ηG(1)holds on UC ∩ US ⊂ M , where φ, µ and η are some funtions on this set,

UC = {x ∈ M | C 6= 0 at x} and US =
{
x ∈ M | S − κ

ng 6= 0 at x}; here
C denotes the Weyl tensor and S the Rii tensor. For preise de�nitionsof the symbols used here, we refer to Setion 2 of this paper (and also toSetions 2 and 3 of [13℄).Obviously, we onsider Roter type manifolds with UC ∩ US non-empty.We refer to [8℄ and [15℄ for a review of results on Roter type manifolds.In this paper we investigate warped produts M ×F Ñ with dimM = 1and dim Ñ = n−1 ≥ 3 satisfying (1). We show that if they are of Roter typethen the �bres (Ñ , g̃) satisfy a speial form of (1). We remark that manifolds
M ×F Ñ with dimM = p ≥ 2 and dim Ñ = n − p ≥ 2 satisfying (1) wereinvestigated in [13℄ and [16℄.In Setion 2 basi de�nitions are presented and we also give �rst results(see espeially Theorem 2.1) relating to 3-dimensional manifolds or onfor-mally �at quasi-Einstein manifolds, of dimension ≥ 4 satisfying (1). Thenext setion ontains preliminary results on warped produts M ×F Ñ with2000 Mathematis Subjet Classi�ation: Primary 53B20, 53B25; Seondary 53C25.Key words and phrases: pseudosymmetri manifold, warped produt, generalizedRobertson�Walker spaetime, Roter type manifold, generalized Cartan hypersurfae.The �rst named author is supported by grants of DAAD and TU Berlin (Germany).[13℄ © Instytut Matematyzny PAN, 2007



14 R. DESZCZ AND M. SCHERFNER
dimM = n−1 ≥ 3 and dim Ñ = 1 satisfying (1). In Setion 4 we onsider soalled generalized Cartan hypersurfaes, i.e., tubular hypersurfaes aroundminimal surfaes, introdued in [3℄. We prove that suh hypersurfaes sat-isfy speial relations for the Rii tensor and the salar urvature. Manifoldswhih are loally isometri to open subsets of suh hypersurfaes will be usedas �bres in the onstrution of Roter type warped produts M ×F Ñ with
dimM = 1 and dim Ñ = n−1 ≥ 3, whih are generalized Robertson�Walkerspaetimes. Setion 5 ontains results relating to this onstrution. We reallthat if n ≥ 4, p = 1, g11 = −1, and the �bre manifold (Ñ , g̃) is a Riemannianmanifold, then M ×F Ñ is alled a generalized Robertson�Walker spaetime(see [1℄ and referenes therein).The authors wish to express their sinere thanks to Professor Udo Simonand to the referee for their helpful omments and remarks.2. Preliminaries. Throughout this paper all manifolds are assumed tobe onneted paraompat C∞-manifolds. Let (M, g) be an n-dimensionalsemi-Riemannian manifold, n ≥ 3, ∇ its Levi-Civita onnetion and Ξ(M)the Lie algebra of vetor �elds on M . We de�ne the endomorphisms X ∧A Yand R(X,Y ) of Ξ(M) by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,respetively, where A is a symmetri (0, 2)-tensor onM andX,Y, Z ∈ Ξ(M).The Rii tensor S, the Rii operator S and the salar urvature κ of (M, g)are de�ned by
S(X,Y ) = tr{Z 7→ R(Z,X)Y }, g(SX,Y ) = S(X,Y ), κ = trS.The endomorphism C(X,Y ) is de�ned by

C(X,Y )Z = R(X,Y )Z −
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.The (0, 4)-tensor G, the Riemann�Christo�el urvature tensor R and theWeyl onformal urvature tensor C of (M, g) are de�ned by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),where X1, X2, . . . ∈ Ξ(M). Let B(X,Y ) be a skew-symmetri endomorphismof Ξ(M) and let B be the (0, 4)-tensor assoiated with B(X,Y ) by
B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).(2)



WARPED PRODUCTS 15

The tensor B is said to be a generalized urvature tensor if
B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).Let B(X,Y ) be a skew-symmetri endomorphism of Ξ(M) and let B bethe tensor de�ned by (2). We extend B(X,Y ) to a derivation B(X,Y )· of thealgebra of tensor �elds on M , assuming that it ommutes with ontrationsand B(X,Y ) · f = 0 for every smooth funtion f on M . Now, for a (0, k)-tensor �eld T , k ≥ 1, we de�ne the (0, k + 2)-tensor B · T by
(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk)

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).In addition, if A is a symmetri (0, 2)-tensor, we de�ne the (0, k+ 2)-tensor
Q(A, T ) by
Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk)

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).In this manner we obtain the (0, 6)-tensors B · B and Q(A,B). Setting inthe above formulas B = R or B = C, T = R or T = C or T = S, A = g or
A = S, we get the tensors R ·R, Q(g,R), Q(S,R), Q(g, C) and Q(S,G). Forsymmetri (0, 2)-tensors E and F we de�ne their Kulkarni�Nomizu produt
E ∧ F by
(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

− E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3).Clearly, the tensors R, C, G and E∧F are generalized urvature tensors. Fora symmetri (0, 2)-tensor E we de�ne the (0, 4)-tensor E by E = 1
2E ∧ E.Thus in partiular we have g = G = 1

2g ∧ g and
C = R−

1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.(3)We also have the following identity (see e.g. [9, Setion 3℄):

Q(E,E ∧ F ) = −Q(F,E).(4) Let (M, g), n ≥ 3, be a quasi-Einstein manifold, that is, a semi-Rieman-nian manifold with the Rii tensor S given by
S = αg + βw ⊗ w(5)for every x ∈M , where w ∈ T ∗

xM , α, β ∈ R. Quasi-Einstein manifolds arosein the study of exat solutions of the Einstein �eld equations as well as inonsiderations of quasi-umbilial hypersurfaes of onformally �at spaes.We note that for every point of US ⊂M the ondition (5) is equivalent to
rank(S − αg) = 1
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and this is equivalent to

(S − αg) ∧ (S − αg) = 0.(6) Let now (M, g) be a quasi-Einstein manifold of dimension ≥ 4. It is easyto verify that if (1) is satis�ed on US ⊂ M then C = 0 on this set. Also aonverse statement is true (see Theorem 2.1).A semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmet-ri (see e.g. [2℄) if the (0, 6)-tensors R ·R and Q(g,R) are linearly dependentat every point of M . This is equivalent to
R ·R = LRQ(g,R)(7)on UR =

{
x ∈ M | R − κ

(n−1)nG 6= 0 at x}, where LR is some funtionon UR. It is easy to hek that LR is uniquely determined on UR. Aordingto [17℄, if LR is a onstant on UR, then the pseudosymmetri manifold (M, g)is alled of onstant type. It is obvious that every semisymmetri manifold(R ·R = 0) is pseudosymmetri. The onverse is not true (see [2℄).Aording to [8℄, (1) is alled a Roter type equation and a semi-Rieman-nian manifold (M, g) (with n ≥ 4) suh that (1) holds on UC ∩ US is alleda Roter type manifold. We mention that the deomposition of R on UC ∩USin terms of S ∧ S, g ∧ S and G is unique ([12, Lemma 3.2℄). It is easy tohek that (1) implies (7) on UC ∩ US with
LR = φ−1((n− 2)(µ2 − φη) − µ).(8)Further, we note that (1) an be presented in the form

R+ φ−1(µ2 − φη)G =
φ

2
(S + φ−1µg) ∧ (S + φ−1µg).The equation (1) also implies (see e.g. [8℄)

R ·R−Q(S,R) = LQ(g, C),(9)with
L = LR + φ−1µ = (n− 2)φ−1(µ2 − φη).

Remark 2.1(i) In [5, Theorem 4.1℄ it was shown that every warped produtM×F Ñwith dimM = 1 and dim Ñ = 3 satis�es (9) with some funtion L. Inpartiular, every 4-dimensional generalized Robertson�Walker spae-time has this property.(ii) From Theorem 6.1 of [5℄ it follows that the warped produt M ×F Ñof an (n − 1)-dimensional spae (M, g) of onstant urvature with
n ≥ 4 and a 1-dimensional manifold (Ñ , g̃) satis�es (9) with L =
−κ/(n− 1), where κ is the salar urvature of (M, g).



WARPED PRODUCTS 17

We �nish this setion withTheorem 2.1. Let (M, g) be a 3-dimensional semi-Riemannian manifoldor a onformally �at semi-Riemannian manifold of dimension ≥ 4 and let
(6) hold on US ⊂M with α 6= κ/n at every point of this set.(i) If
(10) R− βG =

φ

2
(S − (n− 1)βg) ∧ (S − (n− 1)βg)on US for some funtions β and φ on US , then

(11) β =
κ

n− 1
− α,

(12) φ =
1

n− 2
(α− (n− 1)β)−1on this set.(ii) If β and φ are de�ned by (11) and (12) then (10) holds on US.Proof. (i) The relations (3) and (6) yield

(
φ(α− (n− 1)β) −

1

n− 2

)
g ∧ S

=

(
φ((n− 1)2β2 − α2) + β +

κ

(n− 2)(n− 1)

)
G,whih implies

φ(α− (n− 1)β) =
1

n− 2
,

φ(α2 − (n− 1)2β2) = β +
κ

(n− 2)(n− 1)
.This immediately leads to (11) and (12).(ii) Using (11) and (12) we obtain

1

n− 2
− αφ =

1

n− 2

(
1 +

α

(n− 1)β − α

)(13)
=
n− 1

n− 2

β

(n− 1)β − α
= −(n− 1)βφ,

(14) α2φ−
κ

(n− 2)(n− 1)
− β = α2φ−

1

n− 2
(β + α) − β

=

(
αφ−

1

n− 2

)
α−

n− 1

n− 2
β = (n− 1)αβφ−

n− 1

n− 2
β

= (n− 1)β

(
αφ−

1

n− 2

)
= (n− 1)2β2φ.Furthermore, (3) and (6) give
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R =

1

n− 2

(
g ∧ S −

κ

n− 1
G

)
,

R− βG =
φ

2
S ∧ S +

(
1

n− 2
− αφ

)
g ∧ S +

(
α2φ−

κ

(n− 2)(n− 1)
− β

)
G.But the last equation, by making use of (13) and (14), turns into (10), whihompletes the proof.

Example 2.1. Let M ×F Ñ be a Robertson�Walker spaetime, i.e. thewarped produt of a line or a irle (M, g), g11 = ε = ±1, and an (n − 1)-dimensional Riemannian spae (Ñ , g̃) of onstant urvature with the warpingfuntion F and n − 1 ≥ 3. It is known that (5) holds on US ⊂ M ×F Ñ ,with β = κ
n−1 − ε(F ′)2

4F 2 (see e.g. [6, Lemma 3.1℄). In view of Theorem 2.1, if
β 6= κ/n for every point of US , then (10) holds on US . We an easily provethat β = κ/n on US if and only if

2FF ′′ + (n− 2)(F ′)2 −
2εκ̃

n− 1
F = 0on this set, where κ̃ and κ denote the salar urvatures of (Ñ , g̃) andM×F Ñ ,respetively.3. Warped produts satisfying (1). Let (M, g) and (Ñ , g̃), with

dimM = p and dim Ñ = n − p, 1 ≤ p < n, be semi-Riemannian manifoldsovered by systems of harts {U ;xa} and {Ṽ ; yα}, respetively. Further, let
F : M → R

+ be a positive smooth funtion on M . The warped produt
M ×F Ñ is the produt manifold M × Ñ with the metri g = g ×F g̃ =

π∗1g + (F ◦ π1)π
∗

2 g̃, where π1 : M × Ñ → M and π2 : M × Ñ → Ñ arethe natural projetions. Let {U × Ṽ ;x1, . . . , xp, xp+1 = y1, . . . , xn = yn−p}be a produt hart for M × Ñ . The loal omponents of the metri g withrespet to this hart read: ghk = gab if h = a and k = b, ghk = F g̃αβ if
h = α and k = β, and ghk = 0 otherwise, where a, b, c, . . . ∈ {1, . . . , p},
α, β, γ, . . . ∈ {p + 1, . . . , n} and h, i, j, k, . . . ∈ {1, . . . , n}. We will mark bybars (resp., tildes) tensors formed from g (resp., g̃). The loal omponents
Rhijk of the urvature tensor R and the loal omponents Shk of the Riitensor S of M ×F Ñ whih generally do not vanish identially are the fol-lowing (see e.g. [13℄, [14℄):
(15) Rabcd = Rabcd,

Rαbcβ = −
1

2
Tbcg̃αβ,

Rαβγδ = F

(
R̃αβγδ −

∆1F

4F
G̃αβγδ

)
,
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(16) Sab = Sab −
n− p

2F
Tab,

Sαβ = S̃αβ −

(
trT

2
+ (n− p− 1)

∆1F

4F

)
g̃αβ,(17) Tab = ∇bFa −

1

2F
FaFb, ∆1F = ∆1gF = gabFaFb,where T denotes the (0, 2)-tensor with loal omponents Tab and trT =

trg T = gabTab. The salar urvature κ of M ×F Ñ satis�es the relation
κ = κ+

κ̃

F
−
n− p

F

(
trT + (n− p− 1)

∆1F

4F

)
.(18)Using (15), (16) and (18), we �nd the following relations for the loal om-ponents Chijk of the Weyl tensor C of M ×F Ñ ([7℄):

Cabcd = Rabcd −
1

n− 2
(gadSbc − gacSbd + gbcSad − gbdSac)(19)

+
n− p

2(n− 2)F
(gadTbc − gacTbd + gbcTad − gbdTac)

+
κ

(n− 2)(n− 1)
Gabcd,

Cαbcβ = −
1

n− 2

(
p− 2

2
Tab + FSab

)
g̃αβ −

1

n− 2
gabS̃αβ(20)

+
1

(n− 2)(n− 1)

(
Fκ+ κ̃−

(n− 2p+ 1) trT

2

+
(p− 1)(n− p− 1)∆1F

4F

)
gabg̃αβ,

Cαβγδ = FR̃αβγδ −
F

n− 2
(g̃αδS̃βγ − g̃αγS̃βδ + g̃βγS̃αδ − g̃βδS̃αγ)(21)

+ FPG̃αβγδ,

Cabcα = Cabαβ = Caαβγ = 0,(22)
P =

1

n− 2

(
F

n− 1
+ trT +

(n− 2p)∆1F

4F

)
.(23)We now onsider the warped produts M ×F Ñ with dimM = 1 and

dim Ñ = n− 1 ≥ 3. Then
T11 = g11g

11T11 = trTg11,

H11 =
1

2
T11 + FLRg11 =

(
trT

2
+ FLR

)
g11,(24)where T11 is de�ned by (17), i.e.

T11 = ∇1F1 −
1

2F
F1F1 = ∂1F1 − F1Γ

1
11 −

1

2F
F 2

1 .
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Using (18)�(24), we �nd

Cα11δ = −
1

n− 2

(
S̃αδ −

κ̃

n− 1
g̃αδ

)
g11,(25)

Cαβγδ = F (C̃αβγδ +
1

(n− 3)(n− 2)

(
g̃αδ

(
S̃βγ −

κ̃

n− 1
g̃βγ

)(26)
+ g̃βγ

(
S̃αδ −

κ̃

n− 1
g̃αδ

)
− g̃αγ

(
S̃βδ −

κ̃

n− 1
g̃βδ

)

− g̃βδ

(
S̃αγ −

κ̃

n− 1
g̃αγ

))
.In partiular, if n = 4, (25) and (26) redue to

Cα11δ = −
1

2

(
S̃αδ −

κ̃

3
g̃αδ

)
g11,(27)

Cαβγδ =
F

2

(
g̃αδ

(
S̃βγ −

κ̃

3
g̃βγ

)
+ g̃βγ

(
S̃αδ −

κ̃

3
g̃αδ

)(28)
− g̃αγ

(
S̃βδ −

κ̃

3
g̃βδ

)
− g̃βδ

(
S̃αγ −

κ̃

3
g̃αγ

))
,respetively. Further, from Lemma 4 of [7℄, it follows that (7) holds on UC ∩

US ⊂M ×F Ñ , where dimM = 1 and dim Ñ = n− 1 ≥ 3, if and only if
H11

(
R̃δαβγ −

(
∆1F

4F
−

trT

2

)
G̃δαβγ

)
= 0,(29)

(R̃ · R̃)αβγδλµ =

(
FLR +

∆1F

4F

)
Q(g̃, R̃)αβγδλµ(30)on this set. By suitable ontrations, (29) yields

H11

(
S̃αβ − (n− 2)

(
∆1F

4F
−

trT

2

)
g̃αβ

)
= 0,

H11

(
κ̃− (n− 2)(n− 1)

(
∆1F

4F
−

trT

2

))
= 0.Substituting the last relation into (29) we obtain

H11

(
R̃δαβγ −

κ̃

(n− 2)(n− 1)
G̃δαβγ

)
= 0.(31)We note that at every point x ∈ UC ∩ US the tensor R̃ − κ̃

(n−2)(n−1)G̃ isnon-zero. In fat, if R̃ = κ̃
(n−2)(n−1)G̃ at x, then, by making use of (19)�(21)we get C = 0 at x, a ontradition. Thus, from (31) it follows that H11 = 0on UC ∩ US . This, by (24), yields

FLR +
trT

2
= 0,(32)
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and using (30) we get
FLR +

∆1F

4F
= C1, C1 = const,(33)on UC ∩ US . Evidently, (32) and (33) lead to

∆1F

4F
−

trT

2
= C1.(34)Thus we haveLemma 3.1. The warped produt M×F Ñ with dimM = 1 and dim Ñ =

n− 1 ≥ 3 satis�es (7) on UC ∩ US ⊂ M ×F Ñ if and only if (30), (33) and(34) hold on this set.If g11 = g11 = ε = ±1, then (34) yields
(F ′)2 − 2F

(
∇1F1 −

1

2F
(F ′)2

)
= 4εFC1,(35)where F1 = F ′ = ∂F/∂x1. Sine ∇1F1 = ∂F1/∂x
1 = F ′′, (35) now beomes

FF ′′ − (F ′)2 + 2εC1F = 0.(36)We an easily hek that the following funtions are solutions of (36) (f.[11, Remark 3.7℄):
F (x1) = εC1

(
x1 +

εc

C1

)2

, εC1 > 0,

F (x1) =
c

2

(
exp

(
±
b

2
x1

)
−

2εC1

b2c
exp

(
∓
b

2
x1

))2

, c > 0, b 6= 0,(37)
F (x1) =

2εC1

c2
(1 + sin(cx1 + b)), εC1 > 0, c 6= 0,where b and c are onstants and x1 belongs to a suitable non-empty openinterval of R.Now letM×F Ñ with dimM = 1 and dim Ñ = n−1 ≥ 3 be a Roter typemanifold. Thus (1) holds on UC ∩US ⊂M×F Ñ . In the loal representation,(1) reads

Rhijk = Φ(ShkSij − ShjSik) + ηGhijk(38)
+ µ(ghkSij + gijShk − ghjSik − gikShj),where Rhijk, Ghijk, Shk and ghk are the loal omponents of the tensors R,

G, S and g, respetively. Sine (7) holds on UC ∩ US , it follows that (34) is
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satis�ed on this set. Now (15)�(16) and (18) beome

Rα11β = −
trT

2
g11g̃αβ,(39)

Rαβγδ = F

(
R̃αβγδ −

(
trT

2
+ C1

)
G̃αβγδ

)
,(40)

S11 = −
(n− 1) trT

2F
g11,(41)

Sαβ = S̃αβ −

(
(n− 1) trT

2
+ (n− 2)C1

)
g̃αβ,(42)respetively. Using (38)�(42) we an proveLemma 3.2. Let U ⊂ UC ∩ US be a oordinate neighbourhood of x ∈

UC ∩ US in the warped produt M ×F Ñ with dimM = 1 and dim Ñ =
n− 1 ≥ 3. Then (38) holds on U if and only if

R1αβ1 = φS11Sαβ + µ(g11Sαβ + S11gαβ) + ηg11gαβ,(43)
Rαβγδ = φ(SαδSβγ − SαγSβδ) + ηGαβγδ(44)

+ µ(gαδSβγ + gβγSαδ − gαγSβδ − gβδSαγ)on this set.In addition we haveLemma 3.3. If the warped produt M ×F Ñ with dimM = 1, g11 = ε =

±1, and dim Ñ = n − 1 ≥ 3 satis�es (1) on UC ∩ US ⊂ M ×F Ñ , then thefollowing relations hold on this set : (33), (34) and
(a) µ =

(n− 1) trT

2F
φ, (b) η =

µ2

φ
−

trT

2F
,(45)

R̃− C1G̃ =
φ

2F
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃).(46)Proof. Let U ⊂ UC ∩US be a oordinate neighbourhood of x ∈ UC ∩US .First of all we prove that (43) implies (45) on U . From (43), using (39), (41)and (42), we obtain

(47)

(
(n− 1) trT

2F
φ− µ

)
S̃αβ

=

((
trT

2
+

(n− 2)∆1F

4F

)(
(n− 1) trT

2F
φ− µ

)
+ Fη

+ (1 − (n− 1)µ)
trT

2

)
g̃αβ.We suppose that S̃ − κ̃

n−1 g̃ = 0 at x. Then (41) and (42) lead to
S11 = ̺1g11, Sαβ = ̺2gαβ,(48)
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for some ̺1, ̺2 ∈ R. From (48) we have
Sij = ̺2gij + (̺1 − ̺2)εwiwj ,(49)where w1 = 1 and w2 = · · · = wn = 0. Substituting (49) into (38), aftersome standard tensor alulations, we �nd Chijk = 0, i.e. C = 0 at x, a on-tradition. Therefore S̃− κ̃

n−1 g̃ 6= 0 at x, and onsequently, (47) implies (45).Applying (40) and (42) to (44), we obtain
(50) R̃αβγδ =

φ

F
(S̃αδS̃βγ − S̃αγS̃βδ)

+

(
µ−

φ

F

(
trT

2
+ (n− 2)

∆1F

4F

))
(g̃αδS̃βγ + g̃βγS̃αδ − g̃αγS̃βδ − g̃βδS̃αγ)

+

(
ηF +

∆1F

4F
− 2µ

(
trT

2
+ (n− 2)

∆1F

4F

)

+
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)2)
G̃αβγδ.Aording to (34) and (45) we onlude that

(51) µ−
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)
= (n− 2)

(
trT

2
−
∆1F

4F

)
φ

F

= −(n− 2)C1
φ

F
,

(52) ηF +
∆1F

4F
− 2µ

(
trT

2
+ (n− 2)

∆1F

4F

)
+
φ

F

(
trT

2
+ (n− 2)

∆1F

4F

)2

=

(
∆1F

4F
−

trT

2

)(
1 + (n− 2)2

(
∆1F

4F
−

trT

2

)
φ

F

)

= C1

(
1 + (n− 2)2C1

φ

F

)
.Applying (51) and (52) to (50) we immediately get (46).

Remark 3.1. The relations (8) and (45) yield (32).4. Generalized Cartan hypersurfaes. In this setion we show thatevery generalized Cartan hypersurfae is a Riemannian manifold satisfying(46). Thus, suh manifolds are examples of �ber manifolds of dimension ≥ 3satisfying (46).Let Nn
s (c), n ≥ 4, be a semi-Riemannian spae of onstant urvature

c = τ
(n−1)n with signature (s, n − s), where τ is its salar urvature. Inaddition let M̃ be a hypersurfae isometrially immersed in Nn

s (c). The
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Gauss equation of M̃ in Nn

s (c) reads (see e.g. [10℄ or [12℄)
R̃hijk = ε1(HhkHij −HhjHik) +

τ

(n− 1)n
G̃hijk, ε1 = ±1,(53)where R̃hijk, G̃hijk and Hij denote the loal omponents of the urvaturetensor R̃, the tensor G̃ and the seond fundamental tensor H of M̃ , respe-tively. Contrating (53) with g̃ij and g̃kh, respetively, we obtain

S̃hk = ε1(trHHhk −H2
hk) +

(n− 2)τ

(n− 1)n
g̃hk,(54)

κ̃ = ε1((trH)2 − tr(H2)) +
(n− 2)τ

n
,(55)where H2

hk = g̃ijHhiHkj , trH = g̃hkHhk, tr(H2) = g̃hkH2
hk, S̃hk are the loalomponents of the Rii tensor S̃, and κ̃ is the salar urvature of M̃ . Wereall that the following ondition of pseudosymmetry type is ful�lled on M̃(see e.g. [10℄ or [12℄):

R̃ · R̃−Q(S̃, R̃) = −
(n− 3)τ

(n− 1)n
Q(g̃, C̃),(56)where C̃ is the Weyl onformal tensor of M̃ . By making use of (3), (56) turnsinto

R̃ · R̃−Q(S̃, R̃) = −
(n− 3)τ

(n− 1)n
Q(g̃, R̃) +

τ

(n− 1)n
Q(g̃, g̃ ∧ S̃),and from (4) we get Q(g̃, g̃ ∧ S̃) = −Q(S̃, G̃). Applying this to the relationabove, we �nd

R̃ · R̃ = Q

(
S̃, R̃−

τ

(n− 1)n
G̃

)
−

(n− 3)τ

(n− 1)n
Q

(
g̃, R̃−

τ

(n− 1)n
G̃

)
.(57)In addition, we assume that

R̃ · R̃ =
τ

(n− 1)n
Q(g̃, R̃)(58)on U

S̃
⊂ U

R̃
⊂ M̃ . Comparing the right hand sides of (57) and (58) weobtain
Q

(
S̃ −

(n− 2)τ

(n− 1)n
g̃, R̃−

τ

(n− 1)n
G̃

)
= 0.(59)If we set C1 = τ

(n−1)n , then (59) beomes
Q(S̃ − (n− 2)C1g̃, R̃− C1G̃) = 0.(60)Further, we assume that

rank(S̃ − (n− 2)C1g̃) > 1(61)
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on U
S̃
. Now from (60), in view of Proposition 4.1 of [4℄, it follows that

R̃− C1G̃ =
ψ̃

2
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃),(62)where Ψ̃ only takes positive or negative values on U

S̃
. Thus we haveProposition 4.1. Let M̃ be a hypersurfae in Nn

s (c) with n ≥ 4. If (58)and (61) hold on U
S̃
⊂ M̃ then (62) is satis�ed on this set.Let N2(c1) be a minimal surfae with non-zero onstant urvature c1in the standard unit n-sphere Sn(1) of E

n+1, n ≥ 4. We denote by M̃ thetubular hypersurfae Tπ/2(N
2(c1)) with radius π/2 around N2(c1). Suha hypersurfae is alled a generalized Cartan hypersurfae ([3, Setion 6℄).Clearly, M̃ is an (n − 1)-dimensional hypersurfae in Sn(1), ε1 = 1, and

C1 = τ
(n−1)n = 1 on M̃ . It is known that the seond fundamental tensor

H of M̃ has three distint eigenvalues (i.e. prinipal urvatures): λ1 = λ,
λ2 = −λ, λ3 = · · · = λn−1 = 0, and λ 6= 0 at every point. Therefore thetensor H2 has two distint eigenvalues at every point of M̃ : µ1 = µ2 = λ2,
µ3 = · · · = µn−1 = 0, trH = 0 and rankH = 2, i.e. the type number of M̃is 2. The last fat implies (58) on M̃ , i.e. R̃ · R̃ = Q(g̃, R̃) on M̃ (see e.g. [12,Setion 5℄). Evidently, M̃ is a pseudosymmetri manifold of onstant type.The Rii tensor S̃ and the salar urvature κ̃ of M̃ , by making use of (54),(55), and the relations above, an be expressed by

S̃ = −H2 + (n− 2)g̃,(63)
κ̃ = − tr(H2) + (n− 2)(n− 1) = −2λ2 + (n− 2)(n− 1).(64)Now, we onsider the ase where the hypersurfae M̃ is of dimension

≥ 4, i.e. the ambient spae is of dimension n ≥ 5. We suppose that (5) holdsat a point of M̃ . Comparing the right hand sides of (5) and (63) we get
H2 = (n − 2 − α)g̃ − βw ⊗ w. It follows that n − 2 − α is an eigenvalueof H2 of multipliity n − 2, a ontradition. Thus, a relation of the form(5) annot be satis�ed for any point of M̃ , and (61) holds on M̃ . Finally,in view of Proposition 4.1, every generalized Cartan hypersurfae satis�es(62). At every point of suh a hypersurfae there are three distint prinipalurvatures and therefore its Weyl onformal urvature tensor C̃ is non-zeroeverywhere. We note that (25) and (26) imply that every warped produtof a line or a irle and a manifold of dimension n − 1 ≥ 4, isometri toan open part of a generalized Cartan hypersurfae, is a non-onformally �atmanifold.Now, let M̃ be a 3-dimensional generalized Cartan hypersurfae. Then(63) and (64) turn into
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S̃ −

κ̃

3
g̃ = −H2 +

tr(H2)

3
g̃ 6= 0,

κ̃ = − tr(H2) + 6 = 2(3 − λ2),respetively. It follows from our onsiderations that the Rii tensor S̃ of M̃has two distint eigenvalues ̺1 = 2 and ̺2 = ̺3 = 2−λ2 = κ̃/2− 1 at everypoint. Therefore rank(S̃ − (2 − λ2)g̃) = 1 on M̃ . For every point of M̃ , thelast relation is equivalent to (f. (6))
(S̃ − (2 − λ2)g̃) ∧ (S̃ − (2 − λ2)g̃) = 0,whih yields

−
1

λ2

(
1

2
S̃ ∧ S̃ − (2 − λ2)g̃ ∧ S̃ + (2 − λ2)2G̃

)
= 0.(65)

Furthermore, C̃ = 0, whih by (3), gives R̃ = g̃ ∧ S̃ − (κ̃/2)G̃. The lastrelation, by making use of (65), turns into
R̃− G̃ = −

1

2λ2
(S̃ − 2g̃) ∧ (S̃ − 2g̃),i.e. (10) with β = C1 = 1, κ̃/2 − C1 = 2 − λ2 = α and φ = (α − 2C1)

−1 =
−λ−2. Finally, we note that (27) and (28) imply that every warped produtof a line or a irle and a 3-dimensional manifold isometri to an open partof generalized Cartan hypersurfae is a non-onformally �at manifold. Thuswe haveTheorem 4.1.(i) For every generalized Cartan hypersurfae M̃ of dimension ≥ 4, therelation (62) with C1 = 1 holds on US̃ ∩ UC̃ = M̃ .(ii) For every 3-dimensional generalized Cartan hypersurfae M̃ the re-lation (62) with C1 = 1 holds on U

S̃
= M̃ .(iii) Every warped produt of a 1-dimensional manifold and an (n − 1)-dimensional manifold , n ≥ 4, isometri to an open part of a gener-alized Cartan hypersurfae is a non-onformally �at manifold.We �nish this setion with another example of a hypersurfae satisfy-ing (62). Let M̃ be a hypersurfae in Nn

s (c), n ≥ 4, satisfying
H2 = αH + βg(66)on U

S̃
⊂ M̃ , where α and β are some funtions on U

S̃
. Using (53)�(55) and(66) we obtain (f. [15, Proposition 3.3℄)
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R̃− C1G̃ = ε(trH − α)−2

(
1

2
S̃ ∧ S̃ − ((n− 2)C1 − εβ)g̃ ∧ S̃(67)

+ ((n− 2)C1 − εβ)2G̃

)
,where C1 = τ

(n−1)n and τ is the salar urvature of the ambient spae.Clearly, if β = 0 on U
S̃
, then (67) redues to

R̃− C1G̃ =
ε

2
(trH − α)−2(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃).(68)Thus we haveTheorem 4.2. If M̃ is a hypersurfae in Nn

s (c), n ≥ 4, satisfying
H2 = αH(69)on U

S̃
⊂ M̃ for some funtion α on U

S̃
, then (68) holds on this set.An example of a hypersurfae in a semi-Eulidean spae E

n
s , n ≥ 4,satisfying (69) is given in [15, Example 3.1℄. In addition, the hypersurfae

M̃ = Sp × E
n−1−p in E

n, 2 ≤ p ≤ n− 2, also satis�es (69).5. Main resultsTheorem 5.1. Let M ×F Ñ be the warped produt of a line or a irle
(M, g), with g11 = ε = ±1, and an (n − 1)-dimensional semi-Riemannianmanifold (Ñ , g̃), n− 1 ≥ 3, satisfying

R̃− C1G̃ =
φ̃

2
(S̃ − (n− 2)C1g̃) ∧ (S̃ − (n− 2)C1g̃)(70)on U

S̃
⊂ Ñ , where φ̃ is some funtion on U

S̃
⊂ Ñ and C1 is a onstant ,with F de�ned by one of the three equalities in (37). Then (1) holds on

UC ∩ US ⊂M ×F Ñ .Proof. It follows from our assumptions that (34)�(36) hold on UC ∩ US .Further, we set LR = − tr T
2F . Thus (33) is satis�ed. Now (15)�(16) turn into(39)�(42). Next we set φ = Fφ̃. Thus (70) turns into (46). We now de�ne thefuntions µ and η by (45). It is easy to verify that (43) and (44) are satis�ed.Thus, in view of Lemma 3.2, we have (38), i.e. (1), whih ompletes the proof.Theorem 5.1, together with Proposition 4.1, leads toTheorem 5.2. Let (M, g) be a line or a irle, with g11 = ε = ±1, andlet (Ñ , g̃) with dim Ñ = n−1 ≥ 3 be a semi-Riemannian manifold isometrito an open part of a hypersurfae M̃ in an n-dimensional spae of onstanturvature Nn

s (c), n ≥ 4, satisfying (70) and C1 = τ
(n−1)n on US̃ ⊂ M̃ . Then
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the warped produt M ×F Ñ with F de�ned by one of the three equalities in
(37) satis�es (1) on UC ∩ US ⊂M ×F Ñ .Now Theorem 4.1, together with Theorem 5.2, impliesTheorem 5.3. Let (M, g) be a line or a irle, with g11 = ε = ±1, andlet (Ñ , g̃) with dim Ñ = n − 1 ≥ 3 be a Riemannian manifold isometri toan open part of a generalized Cartan hypersurfae M̃ in Sn(1), n ≥ 4. Thenthe warped produt M ×F Ñ with F de�ned by one of the three equalities in
(37) satis�es (1) on UC ∩ US ⊂M ×F Ñ .We �nish our paper with the following remarks:
Remark 5.1. Our investigations on semi-Riemannian manifolds (M, g),

n ≥ 3, satisfying (1) on US ⊂ M lead to a partiular sublass of manifoldsonsisting of all manifolds (M, g), n ≥ 3, for whih (10) holds on US ⊂M .
Remark 5.2. Consider the warped produt M ×F Ñ of a line or a irle

(M, g), with g11 = ±1, the warping funtion F and an (n− 1)-dimensionalsemi-Riemannian manifold (Ñ , g̃), n − 1 ≥ 3, loally isometri to an openpart of a hypersurfae in Nn
s (c). Thus (56) holds on Ñ . Moreover, let Fsatisfy (37) with C1 = τ

(n−1)n . Then (34) reads
trT

2
−
∆1F

4F
= −

τ

(n− 1)n
.In addition we set L = n−2

2
tr T
F . Using the last two equations, (56) beomes

R̃ · R̃−Q(S̃, R̃) = (n− 3)

(
LF

n− 2
−
∆1F

4F

)
Q(g̃, C̃).Now, in view of Theorem 4.2 of [5℄, we see that M ×F Ñ satis�es (9).
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