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ON COMMUTATIVITY AND OVALS FOR A PAIR OF
SYMMETRIES OF A RIEMANN SURFACE

BY

EWA KOZLOWSKA-WALANIA (Gdansk)

Abstract. We study the upper bounds for the total number of ovals of two sym-
metries of a Riemann surface of genus g, whose product has order n. We show that the
natural bound coming from Bujalance, Costa, Singerman and Natanzon’s original results
is attained for arbitrary even n, and in case of n odd, there is a sharper bound, which is
attained. We also prove that two (M — q)- and (M — ¢')-symmetries of a Riemann surface
X of genus g commute for g > g+¢'+1 (by (M — q)-symmetry we understand a symmetry
having g + 1 — g ovals) and we show that actually, with just one exception for any g > 2,
q¢+ ¢ + 1 is the minimal lower bound for g which guarantees the commutativity of two
such symmetries.

1. Introduction. Let X be a compact Riemann surface of genus g > 1.
By a symmetry of X we mean an antiholomorphic involution a of X which
has fixed points. By the classical result of Harnack the set of fixed points
of a consists of at most g + 1 disjoint simple closed curves, which are called
ovals. If a has g + 1 — ¢ ovals then we shall call it an (M — q)-symmetry.

In [4] we observed (see also Corollary 3 in [1]) that for ¢ > ¢ + ¢
+ 1, arbitrary (M — ¢)- and (M — ¢')-symmetries of a Riemann surface
X commute. Here, using a method developed in [2], we show that with just
one exception for any g > 2, g+¢'+1 is the minimal lower bound for g which
guarantees the commutativity of arbitrary (M —q)- and (M —¢')-symmetries.
We show (Theorems 4.1 and 4.2) that for 2 < g < ¢+ ¢ there exists a con-
figuration of two non-commuting (M — ¢)- and (M — ¢’)-symmetries, unless
g >2and {q,¢'} = {1, g}, as in that case such symmetries always commute.
It is worth recalling here that in [6] Natanzon gives a topological classifica-
tion of pairs of commuting symmetries.

In [1] and [5] it was shown that two symmetries of a Riemann surface of
genus g, whose product has order n, have at most 4g/n+2 or 2(g—1)/n+4
ovals in total for n even and odd respectively. Also it was shown that these
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bounds are attained for arbitrary n such that n divides 4g or g—1, depending
on the parity of n. We recall Bujalance, Costa and Singerman’s result from
[1] and we study natural bounds following from it, i.e. [4g/n] + 2 for n even
and [2(9 — 1)/n] + 4 for n odd. We show (Theorem 3.3) that for n odd
this new bound is not attained for n not dividing g — 1, we find a sharper
bound and show its attainment for given n for infinitely many values of g. In
contrast, for n even, the bound [4g/n]| + 2 is attained for a wider range of g
and n than in [1], as we show in Theorem 3.4. Similar problems, concerning
the numbers of ovals of two symmetries, were also studied in [3].

The author would like to express her gratitude to Prof. G. Gromadzki
for his attention to this work, discussion of the results and all help, which
made it possible for this paper to come up.

The author is also grateful to the referee and Prof. S. M. Natanzon for
their comments and suggestions.

2. Preliminaries. We shall prove our results using the theory of non-
euclidean crystallographic groups (NEC groups for short), by which we mean
discrete and cocompact subgroups of the group G of all isometries of the
hyperbolic plane H. The algebraic structure of such a group A is determined
by its signature

(1) s(A)=(g;x;[ma,....,me}; {(n11, -, n1sy )y ooy (M1, - oo s Mesy ) ),
where the brackets (nii,...,n;s,) are called the period cycles, the integers
n;j are the link periods, m; the proper periods and finally g the orbit genus
of A.

A group A with signature (1) has the presentation with the following
generators, called canonical generators:

L1,y Ty, €4, Cij, 1<:<Ek, 0<7<sy,
ai,bi,...,aq4,bg if the sign is +,
di,...,dg otherwise,
and relators
zt, i=1,...,r,
ng,j—lv C?j, (cijj_lcij)”"j,cioei_lcisiei, 7= 1, RN k‘, j = 1, <.y S,

and
Ty Tp€1-- -ekalblaflbfl e agbgag_lbg_l or Iy1---Tpe1--- ekd% e d;

according as the sign is + or —. The elements z; are elliptic transforma-
tions, a;,b; hyperbolic translations, d; glide reflections and ¢;; hyperbolic
reflections. The reflections ¢; ;_1, ¢;; are said to be consecutive. Every ele-
ment of finite order in A is conjugate to a canonical reflection, a power of
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some canonical elliptic element, or a power of the product of two consecutive
canonical reflections.

Now an abstract group with the above presentation can be realized as an
NEC group A if and only if the value

27r(eg+k 2+Z (1——) ZZ (1— —>)
=1 =1 j=1
is positive where € = 2 or 1 according as the sign is + or —. This value turns
out to be the hyperbolic area pu(A) of an arbitrary fundamental region for
the group, and we have the Hurwitz—Riemann formula

(A A = p(A)/pu(4)
for any subgroup A’ of finite index in an NEC group A.

Now NEC groups having no orientation-reversing elements are classical
Fuchsian groups. They have signatures (g; +; [m1,...,m;]; {—}), which will
be abbreviated as (g;my, ..., m,). Given an NEC group A, the subgroup A™
of A consisting of the orientation-preserving elements is called the canonical
Fuchsian subgroup of A and for a group with signature (1) it has, by [7], the
signature
(2) (eg+k—1ymi,mu,...,mp, My, N1, ..., Ngsy)-

A torsion free Fuchsian group I is called a surface group and it has
signature (g; —). In that case H/I" is a compact Riemann surface of genus g,
and conversely, each compact Riemann surface can be represented as such an
orbit space for some I'. Furthermore, given a Riemann surface so represented,
a finite group G is a group of automorphisms of X if and only if G = A/I"
for some NEC group A. The following result from [2] is crucial for the paper.

PROPOSITION 2.1. Let X = H/I" be a Riemann surface and G the group
of all automorphisms of X. Let G = A/I" for some NEC group A and let
0 : A — G be the canonical epimorphism. Then the number of ovals of a
symmetry a of X equals

> _C(G.0(e) : 0(C(A, )],
where the sum is taken over a set of representatives of all conjugacy classes
of canonical reflections whose images under 0 are conjugate to a.

For a symmetry a we shall denote by ||a|| the number of its ovals. The
index w; = [C(G,0(c;)) : 0(C(A,¢;))] will be called the contribution of ¢;
to ||al|.

LEMMA 2.2 (see also Theorem 2 in [1]). Let D, = A/I" be the group
of automorphisms of a Riemann surface X = H/I" generated by two non-
central symmetries a and b and let C = (n1,...,ns) be a period cycle of A.
If n is odd then the reflections corresponding to C contribute to ||a|| and ||b||
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at most two ovals in total. If n is even then the reflections corresponding to
C' contribute to ||al| and ||b|| at most t ovals in total, where t is the number
of even link periods if s > 1 and some n; is even, and at most two ovals in
total in the remaining cases.

Proof. Let 8 : A — D,, be the canonical epimorphism. The case of n
odd is trivial; here all canonical reflections belonging to C' are conjugate,
C(Dp,0(c)) has order 2 and ¢ € C(4,¢).

Now for n even the centralizer of any non-central element of D,, has
order 4. Since ¢; € C(A,¢;), we have w; < 2, and since a and b are not
conjugate, we can assume that either s > 2, or s = 1 and n; is even. If
¢ belongs to two odd link periods then we can assume that ¢ contributes
to neither ||a|| nor ||b]|, while if ¢ belongs to an even link period n’ and ec/
has order n’ then (c)"'/2 € C(A,c). Now 0((cc’)"/%¢) # 1 since ker 0 is a
Fuchsian group and therefore we see that (C(A,c)) has order 4. =

3. Bounds for the total number of ovals of two symmetries of
a Riemann surface. The starting point for this paper is the result of
Bujalance, Costa and Singerman from [1]| (see also Natanzon [5]), which
we recall below. In this work we show that the natural bound for n not
satisfying the divisibility conditions from [1] is attained for arbitrary even n.
In contrast, for odd n there is a sharper bound, which is attained for arbitrary
n not dividing g — 1 for infinitely many values of g.

THEOREM 3.1 (Bujalance, Costa, Singerman, Natanzon). Let a and b
be two symmetries of a Riemann surface X of genus g, whose product has
order n. Then a and b have at most 2(g — 1)/n + 4 and 4g/n + 2 ovals in
total for n odd and even respectively.

COROLLARY 3.2. Any (M —q)- and (M — ¢')-symmetries of a Riemann
surface of genus g commute for g > q+¢ + 1.

Proof. Observe that for the total number ¢ of ovals of both symmetries,
t =294+2—q—q > g+ 3. Let n denote the order of the product of
our symmetries and assume to the contrary that n # 2. By Theorem 3.1
for n even we get g +3 < 4g/n + 2 < g + 2, a contradiction. For n odd,
g+3<2(g—1)/n+4<2(9—1)/3+4 and so g < 1, which is not the case. m

The bounds given in the previous theorem were shown in [1] to be at-
tained for arbitrary n and g for which n divides g — 1 and 4¢g respectively.
Theorem 3.1 gives in particular the bounds [2(g — 1)/n] 4+ 4 and [4g/n] + 2
(where [-] denotes the integer part), which we shall study now. In particular,
the first bound turns out to be attained only for n dividing g — 1.

THEOREM 3.3. Let a and b be two symmetries of a Riemann surface X
of genus g, whose product has order n. If n is odd and n does not divide
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g — 1, then a and b have at most [2(g — 1)/n] + 3 ovals in total, and this
bound is attained for arbitrary n for infinitely many values of g.

Proof. Let t denote the total number of ovals of a and b, and let G =
(a,b) = D,,. Now G = A/I for some surface Fuchsian group I" and an NEC
group /A with signature

(h; :|:; [ml, Ce ,mT]; {Cl, cey Ck, (nl), ey (nl), (—), .T.n’., (—)}),

where C; = (n;1,...,nis;) with s; > 2. Now as p(A) = 2n(g — 1)/n and n
does not divide g — 1, we see that the signature of A has link periods or
proper periods. If there is a proper period or at least two link periods, then

2r(g—1)/n=pw(A) >2n(k+1+m—2+1/2)
>7n(2(k+1+m)—3)>n(t—3)

and so t < [2(g — 1)/n] + 3 as ¢ is an integer. Obviously the number of
link periods cannot be 1 if » = 0 as otherwise AT = (h/;ng) by (2) for the
unique link period ng in the signature of A. As A*/I" = Z,, the relation
zh[ay, b .. [a),, b)) = 1 in AT would give 6(z}) = 1 for the canonical
epimorphism 6 : A — G, which is impossible.

We now show that for arbitrary m there exist two symmetries a and b
on a Riemann surface X of genus g = n(m + 1), whose product has order n
and which have [2(g — 1)/n] + 3 ovals in common. Indeed, consider an NEC
group with signature

(0; +; [_]; {(_)7 mt‘d? (_)7 (n’ n)}>
and let # : A — D,, be an epimorphism defined by 0(e;) =1 fori = 1,...,
m+2, 6(cio) = a for i = 1,...,m + 1 and §(cmi20) = O(cmi22) = a,
0(¢m+2,1) = b. Then by the Hurwitz—Riemann formula for I = kerf, X =
H/I" is a Riemann surface of genus g, and by Proposition 2.1 each of the
symmetries a and b has m + 2 ovals.

In contrast to the previous theorem, the bound [4g/n| + 2 for n, g not
satisfying the divisibility conditions from [1| cannot be improved for n even.

THEOREM 3.4. For arbitrary even n > 4 there are infinitely many values
of g for which n does not divide 4g and there exists a Riemann surface of
genus g having two symmetries whose product has order n, with [4g/n] + 2
ovals in total.

Proof. Let A be an NEC group with signature

(0 +; [ {(=), (2,2, 2)})
and consider an epimorphism 6 : A — D,, = {(a,b | a?,b?, (ab)") defined by
O(e1) = 6(e2) =1, O(c10) = a and which sends the reflections corresponding
to the unique non-empty period cycle alternately to b and (ab)™? la. As
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before 6 defines the configuration of two symmetries of a Riemann surface of
genus g = mn/2+ 1, which have, by Proposition 2.1, 2m + 2 ovals in total. =

4. Commutativity of a pair of (M — ¢)- and (M — ¢')-symmetries.
By Corollary 3.2, a pair of (M — q)- and (M — ¢’)-symmetries of a Riemann
surface X of genus g commutes for ¢ > ¢ + ¢’ + 1. Now, using the method
introduced in Proposition 2.1, we shall show that ¢ + ¢’ + 1 is in fact the
minimal lower bound for ¢ which guarantees commutativity of a pair of
(M — q)- and (M — ¢')-symmetries of a Riemann surface X of genus g. The
only exception is the case of (M — 1)- and (M — g)-symmetries for g > 2.
Recall that we only consider symmetries with fixed points.

THEOREM 4.1. For 2 < g < q+ ¢ but g > 2 and {q,¢} = {1,4},
there exists a Riemann surface of genus g, having a pair of non-commuting
(M — q)- and (M — ¢')-symmetries.

Proof. Let g < ¢’ and observe that g > ¢’ as both symmetries have ovals.

For ¢ + ¢’ — g = 0 mod 4 consider an NEC group A with signature

(h; —; [ {(2,.9.,2,4,2,.5.,2,4)}),
where h = (¢ +q¢ —g)/4, s = g—¢q, s = g — ¢, and an epimorphism
0: A — G =Dy for which 0(e) = 1, 6(d;) = a and the consecutive canonical
reflections corresponding to the non-empty period cycle are mapped to

a bab a bab ... a(ab)** b aba b aba ... b(ab)* a.
Sj‘rrl s'+1
Then by the Hurwitz—Riemann formula for I = ker §, X = H /I has genus g,
and by Proposition 2.1 the symmetries @ and b have g+1—qgand g+ 1 —¢
ovals respectively.
For ¢’ + ¢ — g = 2 mod 4 consider an NEC group with signature
(h; =5 12:{(2,.5.,2,4,2,.5.,2,4)}),

where h = (¢ +q—2—g)/4, s, s’ are as above, and the epimorphism defined
as in the previous case with 6(z) = 6(e) = (ab)?. As before § defines a
desired configuration of non-commuting (M — ¢)- and (M — ¢')-symmetries
of a Riemann surface of genus g.

Now let ¢’ + ¢ — g = 3 mod 4. Consider an NEC group with signature

(h; —; [4];{(2,.5.,2,4,2,.5.,2,4)}),

where h = (¢ +q¢— 3 — g)/4, s, s’ are as above, and an epimorphism
defined as follows for the consecutive canonical reflections corresponding to
the non-empty period cycle:

a bab a bab ... a(ab)®* b aba b aba ... b(ab)* bab

s+1 s'+1
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and 0(x) = ab, 6(e) = ba. Also here 6§ gives rise to the configuration of
symmetries we looked for.
Now if g+ ¢ —g=1mod 4 and g < g+ ¢’ — 1 consider an NEC group
with signature
(h; —;[2,4];{(2,.5.,2,4,2,.5.,2,4)}),
where h = (¢'+q—5—g)/4, s, s' are as above, and an epimorphism defined for

the consecutive canonical reflections corresponding to the non-empty period
cycle as follows:

a bab a bab ... a(ab)®* b aba b aba ... b(ab)* bab
s+1 s'+1

and 0(z1) = (ab)?, O(x2) = O(e) = ab. As before for I' = ker, X = H/I’
is a Riemann surface of genus ¢ having two non-commuting (M — ¢)- and
(M — ¢')-symmetries.

Finally, for ¢ = ¢ + ¢’ — 1 assume first that ¢ > 2 and let A be an NEC
group with signature

(0545 [—];{(2,972,2,4,2,772,2,4,4,4)})

and an epimorphism 0 : A — G = Dy for which 6(e) = 1 and the reflections
corresponding to the non-empty period cycle are mapped onto

a bab a bab ... a(ab)> ™Y b aba b aba ... b(ab)*? Y a b a.

q—1 q'—1
Here again we get a configuration of two non-commuting symmetries a and b,
which have ¢ and ¢ ovals respectively. For ¢ = 2, {q,q¢'} = {1,2}, we can
take n = 8; in this case the bound 4¢/n + 2 is attained by Theorem 4 in [1],
and one of our symmetries has two ovals and the other has one oval by
Theorem 6 from [1]. =

THEOREM 4.2. For g > 2 any (M — 1)- and (M — g)-symmetries of a
Riemann surface of genus g commute.

Proof. Assume to the contrary that there exists pair a, b of non-commu-
ting (M — 1)- and (M — g)-symmetries, and let n > 2 denote the order of
their product. Observe that the total number ¢ of ovals of both symmetries
isg+1.

Obviously n cannot be odd, as in this case the symmetries would be
conjugate and so they would have the same number of ovals, which is clearly
not the case. So let n be even. By Theorem 3.1 we see that in this case the
two symmetries have at most 4g/n+ 2 ovals in total. In particular for n > 8,
4g/n+2 < g/2+2and so g+ 1 < g/2 + 2 would be necessary for such
symmetries to exist. But then we have g < 2, which is not the case again.
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Assume now that such a pair of symmetries a, b exists for n = 4, and let
a and b have g ovals and 1 oval respectively. Let A be an NEC group with
signature

(h;£5[ma,...,me[; {Ch,y ..., Ck,y (=), 7 (—)}),
where C; = (n41,...,nis;), and set s = s + - -+ + sg. Observe now that if
k = 0, then either m > 3, or m = 2 and h+r > 1. In addition, 2m > t+1 by
Lemma 2.2, as the symmetry b has exactly one oval. So we have m(g—1)/2 =
pw(A)y>2r(m—2+h+7r/2) >2x(m/24+ (h+m+7)/2—2) > 7(-1+1)/2
and hence t < g, a contradiction.

For k > 2 we have 7(g—1)/2 = pu(A) > 2w (m+s/4) > 2w (m/2+s/4) and
ast < s+2m, by Lemma 2.2, we get ¢ < g—1. So we can assume that k = 1.
Ifm>2thenn(g—1)/2=pu(A) >2n(-2+k+m+s/4) > 2n(m/2+ s/4)
and as before we have ¢t < g — 1, which is not the case.

Let now k = m = 1. We can assume h = r = 0 as otherwise m(g — 1)/2
= p(A) > 27(1/2 4 s/4) = 2w (m/2 + s/4) and we would have t < g — 1
as above. Observe now that s > 2, since otherwise AT = (h/;ng) by (2) for
the unique link period ng in the signature of A. As A" /I" = Z4, the relation
zh[a), ]+ [a),, 0] = 1 in AT would give 6(z}) = 1 for the canonical
epimorphism 6 : A — G, which is impossible. Now if all link periods are
equal to 2 then, by Proposition 2.1, the non-empty period cycle contributes
ovals only to the symmetry a as s > 2 and the order of the product of an
element conjugate to a and an element conjugate to b is 4. So by Lemma 2.2
we have s+2 > t+1, which gives m(¢9—1)/2 = p(A) > ws/2 > w(t—1)/2 and
so t < g, which is not the case. Observe now that if there is a link period 4,
then there has to be another link period 4. Indeed, the conjugates of a have
product of order 2 and so 6(¢;) is conjugate to b for the unique 7 in the range
0 <i < s—1.But then for i # 0, 6(c;—1), 0(ci+1) are conjugates of a and so
n; = ni+1 = 4. For i = 0, 6(cs) is conjugate to b, while §(c1) and (cs—1) are
conjugate to a, so n1 = ns = 4. In both cases all other link periods are equal
to 2. Thus m(g—1)/2 = u(A) > 2n((s—2)/4+3/4) = n(s+1)/2 > n(t—1)/2
since s + 2 > t by Lemma 2.2 and so ¢ < g, which is not the case.

So we can assume that A has signature of the form

(ha +; [mh SRR mr]; {(n17 v 7n5)})
and by Proposition 2.1 and Lemma 2.2 we see that t = s = g + 1. Since
both a and b have ovals, it follows, as shown above, that n; = n;11 = 4 for
a unique integer j with 1 < j < s and all other n; are equal to 2.

Observe first that h = 0 as otherwise (g — 1)/2 = u(A) > 27((g — 1)/4
+3/4) and so g +2 < g — 1, a contradiction. Now if » > 0 then we have
m(g—1)/2 = u(A) > 27(—=14 (g —1)/4+3/4+1/2) = 7g/2 and we get
g < g — 1, a contradiction again. So finally let » = 0. Then 7(g — 1)/2 =
w(A) =m(g —2)/2, and also in this case we get a contradiction.
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Observe now that for n = 6, g + 1 < 2g/3 + 2 by Theorem 3.1 and so
g < 3. Now for g = 3, 4g/n = 2 is an integer, 49/n + 2 = g + 1 and by
Theorems 4 and 6 from [1] each of our symmetries has two ovals, which is
not the case. =
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