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ON COMMUTATIVITY AND OVALS FOR A PAIR OFSYMMETRIES OF A RIEMANN SURFACEBYEWA KOZ�OWSKA-WALANIA (Gda«sk)Abstra
t. We study the upper bounds for the total number of ovals of two sym-metries of a Riemann surfa
e of genus g, whose produ
t has order n. We show that thenatural bound 
oming from Bujalan
e, Costa, Singerman and Natanzon's original resultsis attained for arbitrary even n, and in 
ase of n odd, there is a sharper bound, whi
h isattained. We also prove that two (M − q)- and (M − q′)-symmetries of a Riemann surfa
e
X of genus g 
ommute for g ≥ q+q′+1 (by (M−q)-symmetry we understand a symmetryhaving g + 1 − q ovals) and we show that a
tually, with just one ex
eption for any g > 2,
q + q′ + 1 is the minimal lower bound for g whi
h guarantees the 
ommutativity of twosu
h symmetries.1. Introdu
tion. Let X be a 
ompa
t Riemann surfa
e of genus g > 1.By a symmetry of X we mean an antiholomorphi
 involution a of X whi
hhas �xed points. By the 
lassi
al result of Harna
k the set of �xed pointsof a 
onsists of at most g + 1 disjoint simple 
losed 
urves, whi
h are 
alledovals. If a has g + 1 − q ovals then we shall 
all it an (M − q)-symmetry.In [4℄ we observed (see also Corollary 3 in [1℄) that for g ≥ q + q′

+ 1, arbitrary (M − q)- and (M − q′)-symmetries of a Riemann surfa
e
X 
ommute. Here, using a method developed in [2℄, we show that with justone ex
eption for any g > 2, q+q′+1 is the minimal lower bound for g whi
hguarantees the 
ommutativity of arbitrary (M−q)- and (M−q′)-symmetries.We show (Theorems 4.1 and 4.2) that for 2 ≤ g ≤ q + q′ there exists a 
on-�guration of two non-
ommuting (M − q)- and (M − q′)-symmetries, unless
g > 2 and {q, q′} = {1, g}, as in that 
ase su
h symmetries always 
ommute.It is worth re
alling here that in [6℄ Natanzon gives a topologi
al 
lassi�
a-tion of pairs of 
ommuting symmetries.In [1℄ and [5℄ it was shown that two symmetries of a Riemann surfa
e ofgenus g, whose produ
t has order n, have at most 4g/n+2 or 2(g−1)/n+4ovals in total for n even and odd respe
tively. Also it was shown that these2000 Mathemati
s Subje
t Classi�
ation: Primary 30F50; Se
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bounds are attained for arbitrary n su
h that n divides 4g or g−1, dependingon the parity of n. We re
all Bujalan
e, Costa and Singerman's result from[1℄ and we study natural bounds following from it, i.e. [4g/n] + 2 for n evenand [2(g − 1)/n] + 4 for n odd. We show (Theorem 3.3) that for n oddthis new bound is not attained for n not dividing g − 1, we �nd a sharperbound and show its attainment for given n for in�nitely many values of g. In
ontrast, for n even, the bound [4g/n] + 2 is attained for a wider range of gand n than in [1℄, as we show in Theorem 3.4. Similar problems, 
on
erningthe numbers of ovals of two symmetries, were also studied in [3℄.The author would like to express her gratitude to Prof. G. Gromadzkifor his attention to this work, dis
ussion of the results and all help, whi
hmade it possible for this paper to 
ome up.The author is also grateful to the referee and Prof. S. M. Natanzon fortheir 
omments and suggestions.2. Preliminaries. We shall prove our results using the theory of non-eu
lidean 
rystallographi
 groups (NEC groups for short), by whi
h we meandis
rete and 
o
ompa
t subgroups of the group G of all isometries of thehyperboli
 plane H. The algebrai
 stru
ture of su
h a group Λ is determinedby its signature

s(Λ) = (g;±; [m1, . . . , mr]; {(n11, . . . , n1s1
), . . . , (nk1, . . . , nksk

)}),(1)where the bra
kets (ni1, . . . , nisi
) are 
alled the period 
y
les, the integers

nij are the link periods, mi the proper periods and �nally g the orbit genusof Λ.A group Λ with signature (1) has the presentation with the followinggenerators, 
alled 
anoni
al generators:
x1, . . . , xr, ei, cij, 1 ≤ i ≤ k, 0 ≤ j ≤ si,

a1, b1, . . . , ag, bg if the sign is +,

d1, . . . , dg otherwise,and relators
xmi

i , i = 1, . . . , r,

c2
i,j−1, c

2
ij , (ci,j−1cij)

nij , ci0e
−1
i cisi

ei, i = 1, . . . , k, j = 1, . . . , si,and
x1 · · ·xre1 · · · eka1b1a

−1
1 b−1

1 · · · agbga
−1
g b−1

g or x1 · · ·xre1 · · · ekd
2
1 · · · d

2
ga

ording as the sign is + or −. The elements xi are ellipti
 transforma-tions, ai, bi hyperboli
 translations, di glide re�e
tions and cij hyperboli
re�e
tions. The re�e
tions ci,j−1, cij are said to be 
onse
utive. Every ele-ment of �nite order in Λ is 
onjugate to a 
anoni
al re�e
tion, a power of
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some 
anoni
al ellipti
 element, or a power of the produ
t of two 
onse
utive
anoni
al re�e
tions.Now an abstra
t group with the above presentation 
an be realized as anNEC group Λ if and only if the value
2π

(

εg + k − 2 +
r∑

i=1

(

1 −
1

mi

)

+
1

2

k∑

i=1

si∑

j=1

(

1 −
1

nij

))

is positive where ε = 2 or 1 a

ording as the sign is + or −. This value turnsout to be the hyperboli
 area µ(Λ) of an arbitrary fundamental region forthe group, and we have the Hurwitz�Riemann formula
[Λ : Λ′] = µ(Λ′)/µ(Λ)for any subgroup Λ′ of �nite index in an NEC group Λ.Now NEC groups having no orientation-reversing elements are 
lassi
alFu
hsian groups. They have signatures (g; +; [m1, . . . , mr]; {−}), whi
h willbe abbreviated as (g; m1, . . . , mr). Given an NEC group Λ, the subgroup Λ+of Λ 
onsisting of the orientation-preserving elements is 
alled the 
anoni
alFu
hsian subgroup of Λ and for a group with signature (1) it has, by [7℄, thesignature

(εg + k − 1; m1, m1, . . . , mr, mr, n11, . . . , nksk
).(2) A torsion free Fu
hsian group Γ is 
alled a surfa
e group and it hassignature (g;−). In that 
ase H/Γ is a 
ompa
t Riemann surfa
e of genus g,and 
onversely, ea
h 
ompa
t Riemann surfa
e 
an be represented as su
h anorbit spa
e for some Γ . Furthermore, given a Riemann surfa
e so represented,a �nite group G is a group of automorphisms of X if and only if G = Λ/Γfor some NEC group Λ. The following result from [2℄ is 
ru
ial for the paper.Proposition 2.1. Let X = H/Γ be a Riemann surfa
e and G the groupof all automorphisms of X. Let G = Λ/Γ for some NEC group Λ and let

θ : Λ → G be the 
anoni
al epimorphism. Then the number of ovals of asymmetry a of X equals
∑

[C(G, θ(ci)) : θ(C(Λ, ci))],where the sum is taken over a set of representatives of all 
onjuga
y 
lassesof 
anoni
al re�e
tions whose images under θ are 
onjugate to a.For a symmetry a we shall denote by ‖a‖ the number of its ovals. Theindex wi = [C(G, θ(ci)) : θ(C(Λ, ci))] will be 
alled the 
ontribution of cito ‖a‖.Lemma 2.2 (see also Theorem 2 in [1℄). Let Dn = Λ/Γ be the groupof automorphisms of a Riemann surfa
e X = H/Γ generated by two non-
entral symmetries a and b and let C = (n1, . . . , ns) be a period 
y
le of Λ.If n is odd then the re�e
tions 
orresponding to C 
ontribute to ‖a‖ and ‖b‖
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at most two ovals in total. If n is even then the re�e
tions 
orresponding to
C 
ontribute to ‖a‖ and ‖b‖ at most t ovals in total , where t is the numberof even link periods if s ≥ 1 and some ni is even, and at most two ovals intotal in the remaining 
ases.Proof. Let θ : Λ → Dn be the 
anoni
al epimorphism. The 
ase of nodd is trivial; here all 
anoni
al re�e
tions belonging to C are 
onjugate,
C(Dn, θ(c)) has order 2 and c ∈ C(Λ, c).Now for n even the 
entralizer of any non-
entral element of Dn hasorder 4. Sin
e ci ∈ C(Λ, ci), we have wi ≤ 2, and sin
e a and b are not
onjugate, we 
an assume that either s ≥ 2, or s = 1 and n1 is even. If
c belongs to two odd link periods then we 
an assume that c 
ontributesto neither ‖a‖ nor ‖b‖, while if c belongs to an even link period n′ and cc′has order n′ then (cc′)n′/2 ∈ C(Λ, c). Now θ((cc′)n′/2c) 6= 1 sin
e ker θ is aFu
hsian group and therefore we see that θ(C(Λ, c)) has order 4.3. Bounds for the total number of ovals of two symmetries ofa Riemann surfa
e. The starting point for this paper is the result ofBujalan
e, Costa and Singerman from [1℄ (see also Natanzon [5℄), whi
hwe re
all below. In this work we show that the natural bound for n notsatisfying the divisibility 
onditions from [1℄ is attained for arbitrary even n.In 
ontrast, for odd n there is a sharper bound, whi
h is attained for arbitrary
n not dividing g − 1 for in�nitely many values of g.Theorem 3.1 (Bujalan
e, Costa, Singerman, Natanzon). Let a and bbe two symmetries of a Riemann surfa
e X of genus g, whose produ
t hasorder n. Then a and b have at most 2(g − 1)/n + 4 and 4g/n + 2 ovals intotal for n odd and even respe
tively.Corollary 3.2. Any (M − q)- and (M − q′)-symmetries of a Riemannsurfa
e of genus g 
ommute for g ≥ q + q′ + 1.Proof. Observe that for the total number t of ovals of both symmetries,
t = 2g + 2 − q − q′ ≥ g + 3. Let n denote the order of the produ
t ofour symmetries and assume to the 
ontrary that n 6= 2. By Theorem 3.1for n even we get g + 3 ≤ 4g/n + 2 ≤ g + 2, a 
ontradi
tion. For n odd,
g+3 ≤ 2(g−1)/n+4 ≤ 2(g−1)/3+4 and so g ≤ 1, whi
h is not the 
ase.The bounds given in the previous theorem were shown in [1℄ to be at-tained for arbitrary n and g for whi
h n divides g − 1 and 4g respe
tively.Theorem 3.1 gives in parti
ular the bounds [2(g − 1)/n] + 4 and [4g/n] + 2(where [·] denotes the integer part), whi
h we shall study now. In parti
ular,the �rst bound turns out to be attained only for n dividing g − 1.Theorem 3.3. Let a and b be two symmetries of a Riemann surfa
e Xof genus g, whose produ
t has order n. If n is odd and n does not divide



SYMMETRIES OF A RIEMANN SURFACE 65

g − 1, then a and b have at most [2(g − 1)/n] + 3 ovals in total , and thisbound is attained for arbitrary n for in�nitely many values of g.Proof. Let t denote the total number of ovals of a and b, and let G =
〈a, b〉 = Dn. Now G = Λ/Γ for some surfa
e Fu
hsian group Γ and an NECgroup Λ with signature

(h;±; [m1, . . . , mr]; {C1, . . . , Ck, (n1), . . . , (nl), (−), m. . ., (−)}),where Ci = (ni1, . . . , nisi
) with si ≥ 2. Now as µ(Λ) = 2π(g − 1)/n and ndoes not divide g − 1, we see that the signature of Λ has link periods orproper periods. If there is a proper period or at least two link periods, then

2π(g − 1)/n = µ(Λ) > 2π(k + l + m − 2 + 1/2)

≥ π(2(k + l + m) − 3) ≥ π(t − 3)and so t ≤ [2(g − 1)/n] + 3 as t is an integer. Obviously the number oflink periods 
annot be 1 if r = 0 as otherwise Λ+ = (h′; n0) by (2) for theunique link period n0 in the signature of Λ. As Λ+/Γ = Zn, the relation
x′

1[a
′

1, b
′

1] . . . [a
′

h′ , b′h′ ] = 1 in Λ+ would give θ(x′

1) = 1 for the 
anoni
alepimorphism θ : Λ → G, whi
h is impossible.We now show that for arbitrary m there exist two symmetries a and bon a Riemann surfa
e X of genus g = n(m + 1), whose produ
t has order nand whi
h have [2(g − 1)/n] + 3 ovals in 
ommon. Indeed, 
onsider an NECgroup with signature
(0; +; [−]; {(−), m+1. . . , (−), (n, n)})and let θ : Λ → Dn be an epimorphism de�ned by θ(ei) = 1 for i = 1, . . . ,

m + 2, θ(ci0) = a for i = 1, . . . , m + 1 and θ(cm+2,0) = θ(cm+2,2) = a,
θ(cm+2,1) = b. Then by the Hurwitz�Riemann formula for Γ = ker θ, X =
H/Γ is a Riemann surfa
e of genus g, and by Proposition 2.1 ea
h of thesymmetries a and b has m + 2 ovals.In 
ontrast to the previous theorem, the bound [4g/n] + 2 for n, g notsatisfying the divisibility 
onditions from [1℄ 
annot be improved for n even.Theorem 3.4. For arbitrary even n > 4 there are in�nitely many valuesof g for whi
h n does not divide 4g and there exists a Riemann surfa
e ofgenus g having two symmetries whose produ
t has order n, with [4g/n] + 2ovals in total.Proof. Let Λ be an NEC group with signature

(0; +; [−]; {(−), (2, 2m. . . , 2)})and 
onsider an epimorphism θ : Λ → Dn = 〈a, b | a2 , b2, (ab)n〉 de�ned by
θ(e1) = θ(e2) = 1, θ(c10) = a and whi
h sends the re�e
tions 
orrespondingto the unique non-empty period 
y
le alternately to b and (ab)n/2−1a. As
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before θ de�nes the 
on�guration of two symmetries of a Riemann surfa
e ofgenus g = mn/2+1, whi
h have, by Proposition 2.1, 2m+2 ovals in total.4. Commutativity of a pair of (M − q)- and (M − q′)-symmetries.By Corollary 3.2, a pair of (M − q)- and (M − q′)-symmetries of a Riemannsurfa
e X of genus g 
ommutes for g ≥ q + q′ + 1. Now, using the methodintrodu
ed in Proposition 2.1, we shall show that q + q′ + 1 is in fa
t theminimal lower bound for g whi
h guarantees 
ommutativity of a pair of
(M − q)- and (M − q′)-symmetries of a Riemann surfa
e X of genus g. Theonly ex
eption is the 
ase of (M − 1)- and (M − g)-symmetries for g > 2.Re
all that we only 
onsider symmetries with �xed points.Theorem 4.1. For 2 ≤ g ≤ q + q′ but g > 2 and {q, q′} = {1, g},there exists a Riemann surfa
e of genus g, having a pair of non-
ommuting
(M − q)- and (M − q′)-symmetries.Proof. Let q ≤ q′ and observe that g ≥ q′ as both symmetries have ovals.For q + q′ − g ≡ 0 mod 4 
onsider an NEC group Λ with signature

(h;−; [−]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q + q′ − g)/4, s = g − q, s′ = g − q′, and an epimorphism
θ : Λ → G = D4 for whi
h θ(e) = 1, θ(di) = a and the 
onse
utive 
anoni
alre�e
tions 
orresponding to the non-empty period 
y
le are mapped to

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

a.

Then by the Hurwitz�Riemann formula for Γ = ker θ, X = H/Γ has genus g,and by Proposition 2.1 the symmetries a and b have g + 1− q and g + 1− q′ovals respe
tively.For q′ + q − g ≡ 2 mod 4 
onsider an NEC group with signature
(h;−; [2]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′+q−2−g)/4, s, s′ are as above, and the epimorphism de�nedas in the previous 
ase with θ(x) = θ(e) = (ab)2. As before θ de�nes adesired 
on�guration of non-
ommuting (M − q)- and (M − q′)-symmetriesof a Riemann surfa
e of genus g.Now let q′ + q − g ≡ 3 mod 4. Consider an NEC group with signature
(h;−; [4]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′ + q − 3 − g)/4, s, s′ are as above, and an epimorphismde�ned as follows for the 
onse
utive 
anoni
al re�e
tions 
orresponding tothe non-empty period 
y
le:

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

bab
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and θ(x) = ab, θ(e) = ba. Also here θ gives rise to the 
on�guration ofsymmetries we looked for.Now if q + q′ − g ≡ 1 mod 4 and g < q + q′ − 1 
onsider an NEC groupwith signature
(h;−; [2, 4]; {(2, s. . . , 2, 4, 2, s′. . . , 2, 4)}),where h = (q′+q−5−g)/4, s, s′ are as above, and an epimorphism de�ned forthe 
onse
utive 
anoni
al re�e
tions 
orresponding to the non-empty period
y
le as follows:

a bab a bab . . . a(ab)2s

︸ ︷︷ ︸

s+1

b aba b aba . . . b(ab)2s′

︸ ︷︷ ︸

s′+1

bab

and θ(x1) = (ab)2, θ(x2) = θ(e) = ab. As before for Γ = ker θ, X = H/Γis a Riemann surfa
e of genus g having two non-
ommuting (M − q)- and
(M − q′)-symmetries.Finally, for g = q + q′ − 1 assume �rst that q ≥ 2 and let Λ be an NECgroup with signature

(0;±; [−]; {(2, q−2. . . , 2, 4, 2, q′−2. . . , 2, 4, 4, 4)})and an epimorphism θ : Λ → G = D4 for whi
h θ(e) = 1 and the re�e
tions
orresponding to the non-empty period 
y
le are mapped onto
a bab a bab . . . a(ab)2(q−1)

︸ ︷︷ ︸

q−1

b aba b aba . . . b(ab)2(q′−1)

︸ ︷︷ ︸

q′−1

a b a.

Here again we get a 
on�guration of two non-
ommuting symmetries a and b,whi
h have q and q′ ovals respe
tively. For g = 2, {q, q′} = {1, 2}, we 
antake n = 8; in this 
ase the bound 4g/n + 2 is attained by Theorem 4 in [1℄,and one of our symmetries has two ovals and the other has one oval byTheorem 6 from [1℄.Theorem 4.2. For g > 2 any (M − 1)- and (M − g)-symmetries of aRiemann surfa
e of genus g 
ommute.Proof. Assume to the 
ontrary that there exists pair a, b of non-
ommu-ting (M − 1)- and (M − g)-symmetries, and let n > 2 denote the order oftheir produ
t. Observe that the total number t of ovals of both symmetriesis g + 1.Obviously n 
annot be odd, as in this 
ase the symmetries would be
onjugate and so they would have the same number of ovals, whi
h is 
learlynot the 
ase. So let n be even. By Theorem 3.1 we see that in this 
ase thetwo symmetries have at most 4g/n+2 ovals in total. In parti
ular for n ≥ 8,
4g/n + 2 ≤ g/2 + 2 and so g + 1 ≤ g/2 + 2 would be ne
essary for su
hsymmetries to exist. But then we have g ≤ 2, whi
h is not the 
ase again.
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Assume now that su
h a pair of symmetries a, b exists for n = 4, and let

a and b have g ovals and 1 oval respe
tively. Let Λ be an NEC group withsignature
(h;±; [m1, . . . , mr]; {C1, . . . , Ck, (−), m. . . , (−)}),where Ci = (ni1, . . . , nisi

), and set s = s1 + · · · + sk. Observe now that if
k = 0, then either m ≥ 3, or m = 2 and h+r ≥ 1. In addition, 2m ≥ t+1 byLemma 2.2, as the symmetry b has exa
tly one oval. So we have π(g−1)/2 =
µ(Λ) ≥ 2π(m− 2 + h + r/2) ≥ 2π(m/2 + (h + m + r)/2− 2) ≥ π(−1 + t)/2and hen
e t ≤ g, a 
ontradi
tion.For k ≥ 2 we have π(g−1)/2 = µ(Λ) ≥ 2π(m+s/4) ≥ 2π(m/2+s/4) andas t ≤ s+2m, by Lemma 2.2, we get t ≤ g−1. So we 
an assume that k = 1.If m ≥ 2 then π(g − 1)/2 = µ(Λ) ≥ 2π(−2 + k + m + s/4) ≥ 2π(m/2 + s/4)and as before we have t ≤ g − 1, whi
h is not the 
ase.Let now k = m = 1. We 
an assume h = r = 0 as otherwise π(g − 1)/2
= µ(Λ) ≥ 2π(1/2 + s/4) = 2π(m/2 + s/4) and we would have t ≤ g − 1as above. Observe now that s ≥ 2, sin
e otherwise Λ+ = (h′; n0) by (2) forthe unique link period n0 in the signature of Λ. As Λ+/Γ = Z4, the relation
x′

1[a
′

1, b
′

1] · · · [a
′

h′ , b′h′ ] = 1 in Λ+ would give θ(x′

1) = 1 for the 
anoni
alepimorphism θ : Λ → G, whi
h is impossible. Now if all link periods areequal to 2 then, by Proposition 2.1, the non-empty period 
y
le 
ontributesovals only to the symmetry a as s ≥ 2 and the order of the produ
t of anelement 
onjugate to a and an element 
onjugate to b is 4. So by Lemma 2.2we have s+2 ≥ t+1, whi
h gives π(g−1)/2 = µ(Λ) ≥ πs/2 ≥ π(t−1)/2 andso t ≤ g, whi
h is not the 
ase. Observe now that if there is a link period 4,then there has to be another link period 4. Indeed, the 
onjugates of a haveprodu
t of order 2 and so θ(ci) is 
onjugate to b for the unique i in the range
0 ≤ i ≤ s− 1. But then for i 6= 0, θ(ci−1), θ(ci+1) are 
onjugates of a and so
ni = ni+1 = 4. For i = 0, θ(cs) is 
onjugate to b, while θ(c1) and θ(cs−1) are
onjugate to a, so n1 = ns = 4. In both 
ases all other link periods are equalto 2. Thus π(g−1)/2 = µ(Λ) ≥ 2π((s−2)/4+3/4) = π(s+1)/2 ≥ π(t−1)/2sin
e s + 2 ≥ t by Lemma 2.2 and so t ≤ g, whi
h is not the 
ase.So we 
an assume that Λ has signature of the form

(h;±; [m1, . . . , mr]; {(n1, . . . , ns)})and by Proposition 2.1 and Lemma 2.2 we see that t = s = g + 1. Sin
eboth a and b have ovals, it follows, as shown above, that nj = nj+1 = 4 fora unique integer j with 1 ≤ j ≤ s and all other ni are equal to 2.Observe �rst that h = 0 as otherwise π(g − 1)/2 = µ(Λ) ≥ 2π((g − 1)/4
+ 3/4) and so g + 2 ≤ g − 1, a 
ontradi
tion. Now if r > 0 then we have
π(g − 1)/2 = µ(Λ) ≥ 2π(−1 + (g − 1)/4 + 3/4 + 1/2) = πg/2 and we get
g ≤ g − 1, a 
ontradi
tion again. So �nally let r = 0. Then π(g − 1)/2 =
µ(Λ) = π(g − 2)/2, and also in this 
ase we get a 
ontradi
tion.
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Observe now that for n = 6, g + 1 ≤ 2g/3 + 2 by Theorem 3.1 and so
g ≤ 3. Now for g = 3, 4g/n = 2 is an integer, 4g/n + 2 = g + 1 and byTheorems 4 and 6 from [1℄ ea
h of our symmetries has two ovals, whi
h isnot the 
ase.
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