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Abstract. We prove a decomposition theorem for a class of continua for which
F. B. Jones’s set function T is continuous. This gives a partial answer to a question
of D. Bellamy.

1. Introduction. F. Burton Jones defined the set function T in [6].
Since then many properties related to this function have been studied.

In 1970, David Bellamy [1] gave properties of continua for which the
set function T is continuous. In [12] a class of decomposable nonlocally
connected one-dimensional continua for which T is continuous was given,
and in [13] the class of homogeneous continua for which T is continuous was
characterized.

In 1980, Bellamy asked: If T is continuous for the (Hausdorff ) con-

tinuum S, is it true that the collection {T ({p}) | p ∈ S} is a continuous

decomposition of S such that the quotient space is locally connected? (see
Problem 162 in the Houston Problem Book [5, p. 390]). We present a posi-
tive answer to this question assuming that the continuum S is also point T -
symmetric (Theorem 3.8). Theorems 3.4 and 3.7 are of independent interest.

2. Definitions. If Z is a topological space, then given A ⊂ Z the interior
of A is denoted by Int(A). We write IntZ(A) if there is a possibility of
confusion.

A map is a continuous function. A surjective map f : X →→ Y between
topological spaces is monotone provided that f−1(y) is connected for every
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y ∈ Y . The surjective map f is open (closed , respectively) if f(U) is open
(closed, respectively) in Y for each open (closed, respectively) subset U
of X. If f : X →→ Y and Z is a nonempty subset of X, then f |Z : Z → Y
denotes the restriction of f to Z. Given a space X, 1X denotes the identity
map on X.

Given a topological space Z, a decomposition of Z is a family G of
nonempty and mutually disjoint subsets of Z such that

⋃
G = Z. A decom-

position G of a topological space Z is said to be continuous if the quotient
map q : Z →→ Z/G is both closed and open.

A continuum is a compact connected Hausdorff space. A subcontinuum

of a space Z is a continuum contained in Z. A continuum is decomposable

if it is the union of two proper subcontinua. A continuum is indecomposable

if it is not decomposable.
Given a continuum X, we define the set function T as follows: if A ⊂ X

then

T (A) = X \ {x ∈ X | there exists a subcontinuum W of X

such that x ∈ Int(W ) ⊂ W ⊂ X \ A}.

We write TX if there is a possibility of confusion. Let us observe that for any
subset A of X, T (A) is a closed subset of X and A ⊂ T (A). A continuum
X is aposyndetic provided that T ({p}) = {p} for every p ∈ X.

A continuum X is T -additive provided that T (A ∪ B) = T (A) ∪ T (B)
for each pair of nonempty closed subsets A and B of X. We say that X is
point T -symmetric if for any two points p and q of X, p ∈ T ({q}) if and
only if q ∈ T ({p}). The set function T is idempotent on X provided that
T 2(A) = T (A) for each subset A of X, where T 2 = T ◦ T .

We say that T is continuous for a continuum X provided that T :
2X → 2X is continuous, where 2X is the hyperspace of nonempty closed
subsets of X, topologized with the Vietoris topology (or the Hausdorff met-
ric if X is metric) [14]. If f : X → Y is continuous, then so is 2f : 2X → 2Y

given by 2f (A) = f(A) [14, (1.168)].
Let X and Z be continua, and let f : X →→ Z be continuous. We say that

f is TXZ-continuous provided that TXf−1(B) ⊂ f−1TZ(B) for every subset
B of Z.

3. A decomposition theorem. We prove a decomposition theorem
for point T -symmetric continua for which T is continuous (Theorem 3.8).
We restrict ourselves to decomposable nonlocally connected continua for
it is well known that T is a constant map on indecomposable continua
[2, (f), p. 5], and the identity map on locally connected continua [2, (b), p. 5].

Before proving Theorem 3.8, we assume we have a continuous decom-
position of a decomposable nonlocally connected continuum for which T
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is continuous and prove that the quotient space is locally connected and
many of the elements of the decomposition are indecomposable continua
(Theorem 3.4).

Let us note the following:

3.1. Remark. David Bellamy asked: If the set function T is continu-

ous for the Hausdorff continuum S, then is it true that S is T -additive?

(see [5, Problem 161, p. 389]). Let us observe that, since for continua X
for which T is continuous, being T -additive is equivalent to being point
T -symmetric [1, Lemma 9], by Theorem 3.8, both questions of Bellamy are
equivalent, i.e., Problems 161 and 162 in the Houston Problem Book [5, pp.
389–390] are equivalent.

We begin with the following simple lemma.

3.2. Lemma. Let X be a continuum and let z ∈ X. If

G = {T ({x}) | x ∈ X}

is a decomposition of X, and W is a subcontinuum of X such that T ({z})∩
Int(W ) 6= ∅, then T ({z}) ⊂ W .

Proof. Note that if X is an indecomposable continuum, then G = {X},
and the result follows. Hence, assume X is a decomposable continuum, and
let W be a subcontinuum of X such that T ({z}) ∩ Int(W ) 6= ∅. Let x ∈
T ({z}) ∩ Int(W ) and suppose that there exists y ∈ T ({z}) \ W . Thus,
x ∈ Int(W ) ⊂ W ⊂ X \ {y}, i.e., x 6∈ T ({y}). Since G is a decomposition,
T ({x}) = T ({z}) = T ({y}), a contradiction. Therefore, T ({z}) ⊂ W .

The proof of the following result (used in the proof of Theorem 3.4) may
be found in [8, 2.1]. The theorem was originally proved by E. Dyer.

3.3. Theorem. Let X and Y be nondegenerate metric continua. If

f : X →→ Y is a surjective, monotone and open map, then there exists a

dense Gδ subset W of Y having the following property : for each y ∈ W ,
for each subcontinuum B of f−1(y), for each x ∈ Intf−1(y)(B) and for each

neighborhood U of B in X, there exist a subcontinuum Z of X containing

B and a neighborhood V of y in Y such that x ∈ IntX(Z), (f |Z)−1(V ) ⊂ U
and f |Z : Z → Y is a monotone surjective map.

3.4. Theorem. Let X be a continuum for which TX is continuous. If

G = {TX({x}) | x ∈ X}

is a continuous decomposition of X, then X/G is a locally connected contin-

uum and TX(2X) is homeomorphic to 2X/G. (In particular , if X is metric,
then TX(2X) is homeomorphic to the Hilbert cube.) Moreover , all the ele-

ments of G are nowhere dense in X; and if X is metric, then there exists
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a dense Gδ subset W of X/G such that if q(z) ∈ W , then TX({z}) is an

indecomposable continuum, where q : X →→ X/G is the quotient map.

Proof. Note that if X is either indecomposable or locally connected, then
G = {X} or TX = 12X , respectively, and the theorem follows. Thus, assume
X is decomposable and not locally connected.

Since G is a continuous decomposition of X, X/G is a continuum [10,
Theorem 1, p. 64]. Let q : X →→ X/G be the quotient map. Note that for
every x ∈ X, TX({x}) is a continuum [2, Theorem 4]. Hence, q is a monotone
map. Since G is a continuous decomposition, q is an open map. Let χ ∈ X/G.
Then, by [2, Theorem 1(e)], q−1TX/G({χ}) = TX(q−1(χ)). Let x ∈ X be

such that TX({x}) = q−1(χ). Recall that since TX is continuous, TX is
idempotent [1, Lemma 3]. Thus, TX(q−1(χ)) = T 2

X({x}) = TX({x}). Hence,
TX/G({χ}) = qq−1TX/G({χ}) = qTX({x}) = {χ}. Therefore, X/G is an
aposyndetic continuum.

Note that q−1TX/G(Γ ) = TX(q−1(Γ )) for each subset Γ of X/G [2, Theo-
rem 1 (e)]. Hence, q is a TXX/G-continuous surjective open map. Since TX is
continuous, TX/G is continuous [1, Theorem 4]. It is known that aposyndetic
continua Y for which TY is continuous are locally connected [11, 3.2.16].
Therefore, X/G is a locally connected continuum.

To see that TX(2X) is homeomorphic to 2X/G , let g : 2X/G → 2X be given
by g(Γ ) = q−1(Γ ). By [9, Theorem 2, p. 165], g is continuous. Note that
2q ◦g = 12X/G . In particular, g : 2X/G →→ g(2X/G) is a homeomorphism (2X/G

is compact by [10, Theorem 1, p. 45] and 2X is Hausdorff by [9, Theorem 3,
p. 168]). We show that TX(2X) = g(2X/G).

Let Γ ∈ 2X/G . Then TX(g(Γ )) = TX(q−1(Γ )) = q−1TX/G(Γ ) = q−1(Γ )
= g(Γ ); the second equality is true by [2, Theorem 1(e)], and the
second last equality is valid by [2, (b), p. 5]. Thus, g(Γ ) ∈ TX(2X) and
g(2X/G) ⊂ TX(2X).

Let K ∈ TX(2X). Then there exists A ∈ 2X such that TX(A) = K. We
prove that K = g(q(A)). Note that g(q(A))=q−1(q(A)) =

⋃
{q−1(q(a)) | a∈A}

=
⋃
{TX({a}) | a ∈ A}. Since G is a decomposition, X is point TX-sym-

metric. Hence, X is TX -additive [1, Lemma 9]. Since X is TX -additive,⋃
{TX({a}) | a ∈ A} = TX(A) [3, Theorem B]. Thus, g(q(A)) = TX(A) = K,

K ∈ g(2X/G) and TX(2X) ⊂ g(2X/G).

Therefore, TX(2X) = g(2X/G). Since g(2X/G) is homeomorphic to 2X/G ,

we see that TX(2X) is homeomorphic to 2X/G . If X is metric, then X/G
is a metric continuum [15, 3.10]. Since, in this case, 2X/G is homeomorphic
to the Hilbert cube [14, (1.97)], TX(2X) is homeomorphic to the Hilbert
cube.

Since q is an open map, all the elements of G are clearly nowhere dense
in X.
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Suppose X is metric. Since the quotient map q is surjective, monotone
and open, let W be the dense Gδ subset of X/G given by Theorem 3.3.
Let χ ∈ W and let z ∈ X be such that q(z) = χ. Suppose TX({z}) is
decomposable. Then there exist two subcontinua H and K of TX({z}) such
that TX({z}) = H∪K. Let x ∈ H \K and let U be an open subset of X such
that H ⊂ U and K \ U 6= ∅. By Theorem 3.3, there exist a subcontinuum
Z of X containing H and a neighborhood V of χ in X/G such that x ∈
IntX(Z) and (f |Z)−1(V) ⊂ U . Since x ∈ TX({z})∩ IntX(Z), by Lemma 3.2,
TX({z}) ⊂ Z. Observe that this implies that TX({z}) ⊂ (f |Z)−1(V) ⊂ U ,
a contradiction. Therefore, TX({z}) is indecomposable.

In order to prove the decomposition theorem, we present some needed
results and the following definition:

Let X be a continuum, and let z ∈ X. We say that T ({z}) has property

BL provided that T ({z}) ⊂ T ({x}) for each x ∈ T ({z}).

3.5. Lemma. Let X be a decomposable continuum for which T is idem-

potent , and let z ∈ X. If T ({z}) has property BL, then T ({x}) = T ({z})
for every x ∈ T ({z}). In particular , T ({x}) has property BL.

Proof. Let z ∈ X be such that T ({z}) has property BL, and let x ∈
T ({z}). Since T is idempotent and x ∈ T ({z}), we have T ({x}) ⊂ T 2({z})
= T ({z}). Hence, as T ({z}) has property BL, we see that T ({z}) ⊂ T ({x}).
Therefore, T ({x}) = T ({z}).

3.6. Corollary. Let X be a decomposable continuum for which T is

idempotent. If z1 and z2 are two points of X such that T ({z1}) and T ({z2})
have property BL, then either T ({z1}) = T ({z2}) or T ({z1})∩T ({z2}) = ∅.

Proof. Let z1 and z2 be two points of X such that T ({z1}) and T ({z2})
have property BL, and suppose that T ({z1}) ∩ T ({z2}) 6= ∅. Let z3 ∈
T ({z1}) ∩ T ({z2}). Then, by Lemma 3.5, T ({z1}) = T ({z3}) = T ({z2}).

The proof of the following theorem is based on a technique of Bellamy
and Lum [4, Lemma 5].

3.7. Theorem. Let X be a continuum for which T is idempotent. Then

for each x ∈ X, there exists z ∈ T ({x}) such that T ({z}) has property BL.

Proof. First, observe that if X is either indecomposable or locally con-
nected, then G = {X} or G = {{x} | x ∈ X}, respectively, and the theorem
follows. Thus, assume X is decomposable and not locally connected.

Let x ∈ X. Note that, by [11, 3.1.53],

T ({x}) =
⋃

{T ({w}) | w ∈ T ({x})}.

Let Gx = {T ({w}) | w ∈ T ({x})}. Partially order Gx by inclusion. Let
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{T ({wλ})}λ∈Λ be a chain of elements of Gx. We show that this chain has a
lower bound in Gx.

As {T ({wλ})}λ∈Λ is a chain of continua ([2, Theorem 4]),
⋂

λ∈Λ T ({wλ})
is a nonempty subcontinuum of T ({x}). Let w0 ∈

⋂
λ∈Λ T ({wλ}). Since T

is idempotent,

T ({w0}) ⊂
⋂

λ∈Λ

T ({wλ}) ⊂ T ({x}).

Hence, by Zorn’s lemma, there exists z ∈ T ({x}) such that T ({z}) is a min-
imal element, i.e., each w ∈ T ({z}) satisfies T ({z}) ⊂ T ({w}). Therefore,
T ({z}) has property BL.

The following theorem gives a partial answer to a question of David
Bellamy; see Problem 162 of the Houston Problem Book [5, p. 390].

3.8. Theorem. Let X be a point TX-symmetric continuum for which

TX is continuous. Then

G = {TX({x}) | x ∈ X}

is a continuous decomposition of X such that the quotient space X/G is

a locally connected continuum and TX(2X) is homeomorphic to 2X/G. (In

particular , if X is metric, then TX(2X) is homeomorphic to the Hilbert

cube.) Moreover , all the elements of G are nowhere dense in X; and if X is

metric, then there exists a dense Gδ subset W of X/G such that if q(z) ∈ W ,
then TX({z}) is an indecomposable continuun, where q : X →→ X/G is the

quotient map.

Proof. Note that if X is either indecomposable or locally connected, then
G = {X} or TX = 12X , respectively, and the theorem follows. Thus, assume
X is decomposable and not locally connected.

Let x be a point in X. By Theorem 3.7, there exists z ∈ TX({x}) such
that TX({z}) has property BL (recall that since TX is continuous, TX is
idempotent [1, Lemma 3]). Since X is point TX-symmetric and z ∈ TX({x}),
we have x ∈ TX({z}). Thus, since TX({z}) has property BL, we see that
TX({x}) = TX({z}), by Lemma 3.5. Thus, TX({x}) has property BL. There-
fore, by Corollary 3.6,

G = {TX({x}) | x ∈ X}

is a decomposition of X. Since TX is continuous, G is a continuous decom-
position. Now, the theorem follows from Theorem 3.4.

Regarding nonaposyndetic homogeneous metric continua, we have the
following:

3.9. Theorem. If X is a metric homogeneous continuum, then TX(2X)
⊂ g(2X/G). Moreover , TX(2X) = g(2X/G) if and only if TX is continuous.
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Proof. Note that if X is indecomposable, then G = {X}. Hence, X/G
is a one-point set and the assertion follows. Also, if X is aposyndetic, then
G = {{x} | x ∈ X} and X/G is homeomorphic to X. Thus, the assertion
follows as well.

Let X be a nonaposyndetic metric homogeneous continuum. By Jones’s
aposyndetic decomposition theorem (see [7]), G = {TX({x}) | x ∈ X} is
a continuous decomposition of X. Hence, the quotient map is monotone
and open. Thus, g : 2X/G → 2X given by g(Γ ) = q−1(Γ ) is continuous
[9, Theorem 2, p. 165]. To show TX(2X) ⊂ g(2X/G), let K ∈ TX(2X).
Then there exists Z ∈ 2X such that TX(Z) = K. By [13, 3.5], TX(Z) =
q−1TX/Gq(Z) = g(TX/Gq(Z)), i.e., K = g(TX/Gq(Z)). Therefore, TX(2X) ⊂

g(2X/G).

Now we prove that TX(2X) = g(2X/G) if and only if TX is continuous
for X. If TX is continuous for X, then TX(2X) = g(2X/G) by Theorem 3.4.

Next, suppose TX(2X) = g(2X/G). Let Γ ∈ 2X/G . Then, by [2, Theorem 1(c)],
TX/G(Γ ) = qTXq−1(Γ ) = qTXg(Γ ). Since g(Γ ) ∈ TX(2X) and TX is idem-
potent [13, 3.3], we have TXg(Γ ) = g(Γ ). Hence, TX/G(Γ ) = Γ . Thus, X/G
is locally connected [2, (b), p. 5] and, by [13, 3.6], TX is continuous.

The author thanks the referee for the valuable suggestions which im-
proved the paper.
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