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Abstract. We define a class of discrete Abelian group extensions of rank-one trans-
formations and establish necessary and sufficient conditions for these extensions to be
power weakly mixing. We show that all members of this class are multiply recurrent. We
then study conditions sufficient for showing that Cartesian products of transformations
are conservative for a class of invertible infinite measure-preserving transformations and
provide examples of these transformations.

1. Introduction. Group extensions of measure-preserving dynamical
systems have received much attention in the literature. In most of the works
the group has been assumed to be compact, and if the base transformation
is finite measure-preserving then the extension is finite measure-preserving.
A question that has been studied in this context is under which conditions
dynamical properties of the base transformation (such as weak mixing or
mixing) lift to the group extension; the reader may refer to e.g. [12], [11]
and the references in these works.

In this article we consider extensions of a class of rank-one transforma-
tions by countable discrete Abelian groups. While the base transformation is
restricted to be a rank-one transformation we allow the group to possibly be
infinite. We establish a simple condition that is equivalent to the ergodicity
of the extensions, and another condition that is equivalent to power weak
mixing of the extensions. Power weak mixing is equivalent to weak mixing
for finite measure-preserving transformations, but it is a stronger property
in the case of infinite measure-preserving transformations. We show that
the extension is power weakly mixing if it is totally ergodic. We also show
that our group extensions are multiply recurrent, and give several applica-
tions showing ergodicity or (power) weak mixing for certain extensions in
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both the finite and infinite measure-preserving cases. In the later sections
we consider the question of the conservativity of products of powers of infi-
nite measure-preserving transformations, and apply our results to staircase
transformations.

Let (X,B, µ) be a measure space isomorphic to a finite or infinite inter-
val in R with Lebesgue measure µ (when the interval is finite, we assume
µ has been normalized to be a probability measure). Let T : X → X be
an invertible measure-preserving transformation. The transformation T is
conservative if for any set A of positive measure, there exists an integer
i > 0 such that µ(T−iA ∩ A) > 0, and ergodic if for any pair of sets
set A and B of positive measure, there exists an integer i ≥ 0 such that
µ(T−iA ∩ B) > 0. (As our transformations are invertible and defined on
nonatomic spaces, ergodicity implies conservativity.) Let T⊗d denote the
Cartesian product of d > 0 copies of T . We define the ergodic (resp. conser-
vative) index of a transformation T to be the largest integer d such that T⊗d

is ergodic (resp. conservative) (see [1]), and say that T has infinite ergodic
(resp. conservative) index if this holds for all integers d. A transformation
T is power product conservative if for all sequences of integers k1, . . . , kd,
T k1 × · · · × T kd : X⊗d → X⊗d is conservative; T is said to be power weakly
mixing if for all nonzero k1, . . . , kd, T k1 × · · · × T kd is ergodic.

Power weak mixing is clearly equivalent to weak mixing for finite meas-
ure-preserving transformations, but it is a stronger property in the case
of infinite measure-preserving transformations [3]. In fact, there exists a
transformation T1 such that T1 has infinite ergodic index but T1×T 2

1 is not
conservative, hence not ergodic [3]. These examples were extended in [4].

In Section 2 we define, for each countable discrete Abelian group G, a
class of measure-preserving transformations. When G is an infinite group the
transformation is infinite measure-preserving. As the last example in Sec-
tion 6 shows, these contain group extensions of rank-one transformations. In
Theorem 2.2 we give necessary and sufficient conditions for our construction
to be power weakly mixing.

We also show that our group extensions are multiply recurrent. A trans-
formation T is said to be d-recurrent if for all sets A of positive measure
there exists an integer n > 0 such that µ(A∩Tn(A)∩· · ·∩Tnd(A)) > 0; and
T is said to be multiply recurrent if it is d-recurrent for all integers d > 0.
As is well-known, Furstenberg showed that every finite measure-preserving
transformation is multiply recurrent [7], but it is now known that infinite
measure-preserving transformations need not be multiply recurrent [6], [1],
even when they are power weakly mixing [8]. However, it was shown recently
that compact group [9] and σ-finite [10] extensions of multiply recurrent in-
finite measure-preserving transformation are multiply recurrent. This need
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not be the case for extensions by noncompact groups as already observed
in [9], but we obtain multiple recurrence for our class of (non-σ-finite) ex-
tensions. In particular, it follows that for each countable discrete Abelian
group there is a multiply recurrent ergodic extension.

In Section 9 we introduce a condition for rank-one transformations that
implies power conservativity, and use it show show that some infinite meas-
ure-preserving staircases are power product conservative.

2. Construction of the transformations. Fix a countable discrete
Abelian group G. We will construct transformations that are G-extensions
of rank-one transformations produced by a standard cutting and stacking
procedure. Let Γ be the set of all elements that are of the form

(γe, se,0, . . . , se,γe−1, ge,0, . . . , ge,γe−1)

where γe > 1 is a natural number and the remaining entries are elements of
Nγe

0 ×Gγe . For clarity, we sometimes write the subscript se,0 as s(e, 0), etc.
We think of Γ as the set of possible operations to go from one generation to
the next. γ is the number of pieces that we cut each level into, se,i describes
the numbers of spacers added (i.e., new levels), and gei describes how the
G-component of the column changes. Let

F : N0 → Γ

be a function. We think of F as the map from generation numbers to what
operation is performed in that generation. We require that F have the prop-
erty that for any natural numbers n and d, there are infinitely many natural
numbers m so that F (n + i) = F (m + i) for all 0 ≤ i < d. In other words,
any sequence that appears in F does so infinitely often. Let

F (n) = (γn, s(n, 0), . . . , s(n, γn − 1), g(n, 0), . . . , g(n, γn − 1)).

Given F , we define an (at most rank-|G|) transformation T as follows:
A column consists of a finite (ordered) sequence of intervals of the same

length, called the levels of the column; the number of levels is the height
of the column. We begin with generation-0 columns C0,g for g ∈ G, each
consisting of an interval of mass 1. To obtain the generation-(N+1) columns
from the generation-N columns, first write each generation-N column CN,g
(g ∈ G) as

CN,g = (I(0)
N,g, I

(1)
N,g, . . . , I

(hN−1)
N,g ),

where we think of hN as the height of the column. Next, cut each level or
interval I(i)

N,g into γN equal mass subintervals

I
(i)
N,g,0, . . . , I

(i)
N,g,γN−1,
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and set

CN+1,g = (I(0)
N,g+g(N,0),0, . . . , I

(hN−1)
N,g+g(N,0),0, S

(0)
N,g,0, . . . , S

(s(N,0)−1)
N,g,0 ,

I
(0)
N,g+g(N,1),1, . . . , I

(hN−1)
N,g+g(N,1),1, S

(0)
N,g,1, . . . , S

(s(N,1)−1)
N,g,1 , . . . ,

I
(0)
N,g+g(N,γN−1),γN−1, . . . , I

(hN−1)
N,g+g(N,γN−1),γN−1,

S
(0)
N,g,γN−1, . . . , S

(s(N,γN−1)−1)
N,g,γN−1 ),

where each S(j)
N,g,i is a spacer level, i.e., a new subinterval of the same length

as any of the subintervals in its column. The resulting transformation is
defined on the intervals of each column by sending that interval by transla-
tion to the interval above it if there is one. In the limit, the lengths of the
intervals in each column converge to zero, so the transformation is defined
in the union of all the levels. We thus obtain a transformation T that is
measure-preserving. Furthermore, one can arrange the subintervals in each
column so that T is defined on a finite or infinite subinterval of R.

We will assume without loss of generality that g(N, 0)=0 for all N ∈N0.
We may do this as addition of a constant to all of gN,i for fixed N is equiva-
lent to relabeling the generation-(N + 1) columns, and does not change the
transformation T .

We prove the following theorems:

Theorem 2.1. For all such F , T is multiply recurrent.

Theorem 2.2. T is power weakly mixing if and only if the following
conditions are both satisfied:

(1) {g(N, i)− g(N, 0) : N ∈ N0, 0 ≤ i ≤ γN − 1} generate G.
(2) For all N , (1, 0) is in the integer span of

{(s(N, i) + hN , g(N, i+ 1)− g(N, i)) : 0 ≤ i ≤ γN − 2}
∪ {(s(M + 1, i) + s(M,γM − 1)− s(M, 0),

g(M+ 1, i+1)−g(M+1, i)+2g(M, 0)−g(M,γM−1)−g(M, 1)):
M ∈ N0, 0 ≤ i ≤ γM+1 − 2}

in Z×G.

The first condition essentially states that it is possible to get from any
column to any other column. The Z×G that appears in the second condition
should be thought of as a group acting on our space with G acting by
changing column index, and 1 ∈ Z acting as T . Let us call the terms in the
second condition

tN,i = (s(N, i) + hN , g(N, i+ 1)− g(N, i))
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and

cM,i = (s(M + 1, i) + s(M,γM − 1)− s(M, 0),
g(M+1, i+1)−g(M+1, i)+2g(M, 0)−g(M,γM − 1)−g(M, 1)).

They each represent distances in this action between copies of columns, as
will be discussed later. The condition that (1, 0) be in their span essentially
says that we have the control to shift things by T .

Note that if we assume that G = {1}, we get the following result:

Corollary 2.3. If G = {1}, then T is power weakly mixing if and only
if

gcd({s(N, i) + hN} ∪ {(s(M + 1, i) + s(M,γM − 1)− s(M, 0))}) = 1.

3. Some machinery involving copies of columns. If I is a level of
a generation-n column, n > 1, we say that a level K in a generation-(n+m)
column is a copy of I if K corresponds to a subset of level I. We define
a copy of a column C, in some column of later generation, to be a union
of consecutive levels that are, in order, copies of the levels of C. We would
like to be able to index the copies of generation-N columns in a particular
generation-(N +M) column. If C is a copy of CN+1,g, then we let Pi(C) be
the copy of CN,g+g(N,i) contained in C produced by the (i+ 1)st part of C
from the cutting and stacking procedure. In particular, for 0 ≤ i ≤ γN − 1,
Pi(C) is the (i+ 1)st copy of a generation-N column contained in CN,g. Let

PN,g[a0, a1, . . . , an] = Pa0(Pa1(. . . Pan(CN,g) . . .)),

where CN,g is thought of as a copy of itself.
Notice that the PN,g[a0, . . . , an−1] index all of the copies of generation-

(N + n) columns in CN,g. Their relative positions are given by the radix
ordering on the ai with a0 being the most significant.

Lemma 3.1. PN+n,g[a0, a1, . . . , an−1] is a copy of CN,g+Pn−1
i=0 g(N+i,ai)

.

Proof. We proceed by induction on n. The n = 0 case is trivial. Assuming
that our statement holds for n − 1, we find, letting C ′M,h denote a copy of
CM,h for any M ∈ N0 and h ∈ G, that

PN+n,g[a0, a1, . . . , an−1]=Pa0(C ′
N+1,g+

Pn−1
i=1 g(N+i,ai)

)=C ′
N,g+

Pn−1
i=0 g(N+i,ai)

.

This completes our inductive step and proves our lemma.

Lemma 3.2. T k(PN+n,g[a0, . . . , an−1]) = PN+n,g[b0, . . . , bn−1] where

k =
n−1∑
i=0

(
hN+i(bi − ai) +

bi−1∑
j=0

s(N + i, j)−
ai−1∑
j=0

s(N + i, j)
)
.
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Proof. We proceed by induction on
∑n−1

i=0 |ai − bi|. The statement is
clearly true when this is 0. Otherwise, assume our hypothesis for smaller
values of

∑n−1
i=0 |ai − bi|. Without loss of generality we may assume that

bi > ai. Then

PN+n,g[b0, . . . , bn−1]=T hN+i+sbi−1(PN+n,g[b0, . . . , bi−1, bi − 1, bi+1, . . . , bn−1])

=T k(PN+n,g[a0, . . . , an−1]).

This completes our inductive step and proves the lemma.

Lemma 3.3.

T k(PN+n,g[γN − 1, γN+1 − 1, . . . , γN+m − 1, am+1, . . . , an−1])
= PN+n,g[0, . . . , 0, am+1 + 1, am+2, . . . , an−1],

where am+1 ≤ γN+m+1 − 2 and

k = hN +
m∑
i=0

s(N + i, γN+i − 1) + s(N +m+ 1, am+1).

Proof. By Lemma 3.2 we have

k =
m∑
i=0

(
−(γN+1−1)hN+i−

γN+i−2∑
j=0

s(N+i, j)
)

+hN+m+1+s(N+m+1, am+1).

Using the fact that hn+1 = γnhn +
∑γn−1

j=0 s(n, j), we obtain

k = hN+m+1 + s
(
N +m+ 1, am+1 +

m∑
i=0

hN+1

)
+ s(N + i, γN+i − 1)− hN+i+1

= hN +
m∑
i=0

s(N + i, γN+i − 1) + s(N +m+ 1, am+1),

thus proving our lemma.

Here tN,i represents the change in location of the copy when the index
corresponding to generation N is changed from i to i+ 1, while cM,i repre-
sents the change in location of the copy corresponding to the pair of indices
corresponding to generations M and M + 1 changing from (γM − 1, i) to
(0, i+ 1).

4. Necessity of the conditions

Lemma 4.1. T is ergodic only if condition (1) is satisfied.

Proof. Suppose that {g(N, i) : N ∈ N0, 0 ≤ i ≤ γN−1} generateH ( G.
Let g1, g2 ∈ G be in different cosets of H. Consider A = C0,g1 , B = C0,g2 .
Assume for the sake of contradiction that for some n, µ(Tn(A) ∩ B) > 0.
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This would imply that there is some column that contains both a copy of
C0,g1 and a copy of C0,g2 . Suppose these copies are PN,g3 [a0, . . . , an−1] and
PN,g3 [b0, . . . , bn−1]. Then by Lemma 3.1 we have g1 = g3 +

∑n−1
i=0 g(i, ai) and

g2 = g3 +
∑n−1

i=0 g(i, bi). Hence

g2 − g1 =
n−1∑
i=0

(g(i, bi)− g(i, ai)) ∈ H,

but this is not the case. So T is not ergodic.

Remark 4.2. Condition (1) is actually sufficient for T being ergodic.
This fact will follow from Lemma 5.2.

Lemma 4.3. T is totally ergodic only if condition (2) is satisfied.

Proof. Pick an N for which the condition does not hold. Let tN,i = ti.
Let

H = span({ti : 0 ≤ i ≤ γN − 2} ∪ {cM,i : M ∈ N0, 0 ≤ i ≤ γM+1 − 2})
Let

H ∩ (Z× {0}) ⊂ Z(D, 0) for D > 1.

We will prove that there is no integer n so that µ(TnD(I(0)
N,0) ∩ I(1)

N,0) > 0.
Suppose for the sake of contradiction that this is not the case. Then there
must exist copies C1, C2 of CN,0 that are in the same column, and with
TnD−1(C1) = C2. Suppose that these copies are PN+l,g[a0, . . . , al−1] and
PN+l,g[b0, . . . , bl−1]. For two copies α, β of generation-N columns in CN+l,g,
define ∆(β, α) = (k, h) where T k(α) = β, and α and β are copies of CN,g′
and CN,g′+h respectively. Notice that ∆(γ, β) + ∆(β, α) = ∆(γ, α). Notice
also that ∆(C2, C1) = (nD − 1, 0). Lastly, notice that C1 and C2 are con-
nected by some chain of copies where each pair of consecutive copies are of
the form given in Lemma 3.3. We deduce by Lemmas 3.1 and 3.3 that

∆(PN+l,g[0, . . . , 0, am+1 + 1, am+2, . . . , al−1],
PN+l,g[γN − 1, γN+1 − 1, . . . , γN+m − 1, am+1, . . . , al−1])

=
(
hN + s(N +m+ 1, am+1) +

m∑
i=0

s(N + i, γN+i − 1),

g(N +m+ 1, am+1 + 1)−g(N +m+ 1, am+1)−
m∑
i=0

g(N + i, γN+i − 1)
)

= t0 +
m−1∑
i=0

cN+i,0 + cN+m,am+1 ∈ H.

Combining these facts with the fact that H is additively closed, we find that
∆(C2, C1) ∈ H. But by assumption, (nD−1, 0) /∈ H. This is a contradiction.
Hence TD is not ergodic, proving our lemma.
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5. Sufficiency of conditions

Lemma 5.1. If condition (2) is satisfied, then for any N ∈ N0 there
exists some D 6= 0 so that (D, 0, 0) is in the integer span of

{(s(N, i), g(N, i+ 1)− g(N, i), 1) : 0 ≤ i ≤ γN − 2}
∪ {(cM,i, 0) : M ∈ N0, 0 ≤ i ≤ γM+1 − 2}

in Z×G× Z.

Proof. Let H the intersection of the integer span of this with Z×{0}×Z.
Consider the homomorphism φM : Z×G×Z→ Z×G defined by φM (a, b, c) =
(a+ hMc, b). Notice that φ sends Z× {0} × Z to Z× {0}. Hence for all M
with F (M) = F (N), we have (1, 0) ∈ φM (H). Suppose for the sake of
contradiction that H ∩ (Z × {0} × {0}) = {(0, 0, 0)}. Then H must have
infinite index in Z× {0} × Z. So H = Z(a, 0, b) for some a and b. But then
φM (H) = Z(a + bhM , 0). This implies that a + bhM = ±1 for infinitely
many values of hM , which in turn implies that b = 0 and a = ±1. But then
(1, 0, 0) ∈ H ∩ (Z× {0} × {0}). This is a contradiction.

The remainder of this section is devoted to proving that T k1 ×· · ·×T km

is ergodic. We will let A and B be arbitrary sets of positive measure in the
m-fold product of the space on which T is defined.

Given a measurable set of positive measure A and ε > 0, we say that an
interval I is more than (1− ε)-full of A if µ(A ∩ I) > (1− ε)µ(I); a similar
notion is defined for product sets.

We use a standard technique from measure theory, sometimes called
double approximation. We describe it first in the case of subsets of R. Sup-
pose we are given a refining family of measurable sets that approximate the
measurable sets, for example the family of dyadic intervals [k, 2n, k + 1/2n)
(k ∈ Z, n ∈ N), or the intervals obtained in a rank-one cutting and stack-
ing construction (or more generally a sufficient semiring, see e.g. [13]). It is
useful to specify an order or stage for sets in the family; for example, the
intervals [k, 2n, k + 1/2n), or all levels in a column Cn, are considered of
order n. Then given any set of positive measure A and any interval I in
the family that is more than (1/2)-full of A, for any ε > 0, there exists an
integer N so that for each n ≥ N , more than half of the subintervals of I of
order n are more than (1− ε)-full of A. We will use this in the case when I
and J are products of levels, more than (1/2)-full of measurable sets A and
B, respectively. Then if we have generations of partitions of I and J into
equal numbers of subsets of equal measure, each generation a refinement of
the previous one, with bijections between the Nth generation subsets of I
and the Nth generation subsets of J , then for any ε > 0, there exist corre-
sponding subsets of I and J of some generation that are (1 − ε)-full of A
and B, respectively (see e.g. [13, 6.5.4]).
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Lemma 5.2. If condition (1) holds, then there exist an integer N and
levels I1, . . . , Im, J1, . . . , Jm from generation-N columns so that Ii and Ji
are in the same column and so that I1×· · ·× Im and J1×· · ·×Jm are more
than (1/2)-full of A and B respectively.

Proof. We may find an integer N1 and generation-N1 columns

I ′1, . . . , I
′
m, J

′
1, . . . , J

′
m

so that I ′1× · · · × I ′m and J ′1× · · · × J ′m are more than (1/2)-full of A and B
respectively. Let I ′i be in CN1,h1,i

and let J ′i be in CN1,h2,i
. By condition (1),

we may write

h1,i +
r1,i∑
j=1

g(e1,i,j , l1,i,j) = h2,i +
r2,i∑
j=1

g(e2,i,j , l2,i,j)

for some values of r ∈ N0, e ∈ S and l ∈ N0 (since along with the assumption
that g(N, 0) = 0, condition (1) states that the g(N, i) generate G). Since
F attains all values in Γ infinitely often, we may find some sequence of
consecutive integers, a, a+1, . . . , a+b, so that for each t ∈ {1, 2}, 1 ≤ i ≤ m,
and 1 ≤ j ≤ rt,i, there is a distinct 0 ≤ αt,i,j ≤ b so that F (a+αt,i,j) = et,i,j .
Using double approximation, we may find an integer N2 so that F (N2 + i) =
F (a+ i) for all 0 ≤ i ≤ b and generation-N2 levels I ′′1 , . . . , I

′′
m, J

′′
1 , . . . , J

′′
m so

that I ′′1 × · · ·× I ′′m and J ′′1 × · · ·×J ′′m are more than (1− 1/(2
∏a+b
j=a γ

m
j ))-full

of A and B respectively. Furthermore, we can ensure that for I ′′i and J ′′i in
columns CN2,h′1,i

and CN2,h′2,i
respectively, h′1,i − h′2,i = h1,i − h2,i. Then we

let N = N2 + b+ 1 and let Ii be the copy of I ′′i in

P
N,h′1,i−

Pr2,i
j=1 g(e2,i,j ,l2,i,j)

[d0, . . . , db]

where

dp =
{
l2,i,j if p = α2,i,j ,
0 if p 6= α2,i,j ∀j;

and Ji the copy of J ′′i in

P
N,h′2,i−

Pr1,i
j=1 g(e1,i,j ,l1,i,j)

[d′0, . . . , d
′
b]

where

d′p =
{
l1,i,j if p = α1,i,j ,
0 if p 6= α1,i,j ∀j.

These are copies of the correct columns by Lemma 3.1. They are clearly in
the same column. Further, I1 × · · · × Im and J1 × · · · × Jm are more than
(1/2)-full of A and B respectively, proving our lemma.

Lemma 5.3. If conditions (1) and (2) hold, then there exist levels I1, . . . ,
Im, J1, . . . , Jm that satisfy the conditions from Lemma 5.2 with the additional
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property that some power of TD (dependent on i) sends Ii to Ji, where D is
as in the statement of Lemma 5.1 for some N0.

Proof. The proof follows the same lines as that of Lemma 5.2. We start
with the levels given to us by Lemma 5.2 and then use double approximation
to get the levels that we need. Suppose that Ii and Ji are separated by T ri .
Using double approximation we know that for any ε > 0 and all sufficiently
large generation numbers N , we can find generation-N copies I ′i and J ′i of
Ii and Ji respectively so that T ri(I ′i) = J ′i and so that I ′1 × · · · × I ′m and
J ′1 × . . . × J ′m are at least (1 − εm/2)-full of A and B respectively. What
we wish to show is that for some ε > 0, and for arbitrarily large generation
numbers N , given any such intervals I ′i and J ′i , we can find copies I ′′i and J ′′i
of these in generation N +n that are of size at least ε of that of the original,
and so that I ′′i and J ′′i are in the same column, separated by a power of TD.
The result would then follow since I ′′1 × · · · × I ′′m and J ′′1 × · · · × J ′′m would
be at least (1/2)-full of A and B respectively.

For the above to work, we need only show, for any separation r = ri, for
some sufficiently small ε > 0 and sufficiently large generation M , that we can
find two copies of CM,g that are of size at least ε times that of the original,
are in the same column, and are separated by a power of T congruent to r
modulo D. This allows us to produce the necessary copies of I ′i and J ′i for
each i.

For each congruence class c modulo D such that for infinitely many N ,
hN is in c and F (N) = F (N0), we can, by condition (2), find some integer
combination of tN,i and cM,i that add up to (r, 0) in (Z/DZ)×G. Suppose
that the sum of the absolute values of the multiples of terms of the form tN,i
needed is at mostX. For a, b ∈ Γ suppose that the sum of the absolute values
of multiples of terms of the form cM,i where F (M) = a and F (M + 1) = b
needed is at most Ya,b. Find a string I of consecutive integers such that on
this string the following hold:

• There are at least XD values n ∈ I such that F (n) = e.
• There are a number of nonoverlapping pairs of consecutive integers in
I which do not intersect any of the n used in the previous condition,
so that for at least 2DYa,b of these pairs, F evaluated at these values
yields a and b in that order.

Then for any interval I ′ of sufficiently large numbers on which F agrees with
the values it takes on I, we can find one of these congruence classes c for
which there are at least X values n ∈ I ′ for which F (n) = e and hn ≡ c
(mod D).

For each a and b we can find at least 2Ya,b pairs of consecutive integers
n, n + 1 ∈ I ′ so that F (n) = a, F (n + 1) = b and hn has the same value
modulo D for all of these pairs.
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Now if M ′ is the smallest value in I ′, we can construct two copies of
CM ′,g whose size is at least

∏
j∈I(1/γj) of the original. Suppose that

n−2∑
i=0

αi(s(N, i) + c, g(N, i+ 1)− g(N, i)) +
∑
M,i

βM,icM,i = (r, 0)

in (Z/DZ)×G. Then we consider copies of the form

PM ′+k+1,g[d0, . . . , dk], PM ′+k+1,g[d′0, . . . , d
′
k]

where M ′ + k is the largest value in I ′. We define the di and d′i as follows:

• There are αi values n ∈ I ′ for which F (n) = e and hn ≡ c (mod D)
where d′n−M ′ = i + 1 and dn−M ′ = i (if αi is negative, we reverse the
values and do it |αi| times).

• There are βM,i values n ∈ I ′ where F (n)=F (M), F (n+1)=F (M+1),
d′n−M ′ = 0, dn−M ′ = γM − 1, dn−M ′+1 = i, d′n−M ′+1 = i + 1, and the
same number of such values of n so that hn has the same congruence
class modulo D where dn−M ′ = 1 and d′n−M ′ = 0 (again, if βM,i is
negative, we reverse the values of d and d′ and use the absolute value).

By Lemmas 3.1 and 3.2 these copies have the properties that we want.

Lemma 5.4. Given a, b ∈ Γ , with some n where F (n) = a, F (n+1) = b,
and given k ∈ N, there exists an interval I of natural numbers, and functions
f0, f1, . . . , fk : I → N0, such that:

(1) 0 ≤ fi(l) < γF (l). This allows us to think of the fi as indexing copies
of a generation-min(I) column.

(2) When such copies are considered, they are in the same column with
consecutive copies separated by the same power of T .

(3) For any 1 ≤ i ≤ k, 0 ≤ x ≤ γa − 1 and 0 ≤ y ≤ γb − 2, there
exists n′ ∈ I such that F (n′) = a, F (n′ + 1) = b and the values on
(n′, n′ + 1) of f0 and fi are (x, y) and (x + 1, y) (or (0, y + 1) if
x = γa − 1) respectively.

The significance of Lemma 5.4 is that it allows us to produce several
equally spaced copies of a given interval. In particular, the ability to do this
is absolutely necessary to prove Theorem 2.1. Additionally, the last of the
desired properties will be necessary to make slight modifications to these
copies in order to prove Theorem 2.2.

Proof of Lemma 5.4. Our basic construction will involve several coun-
ters that are incremented for each fi. If all we want is the spacing between
the corresponding columns to form an arithmetic progression (ignoring the
group action for the moment) we can do so as follows. Suppose for concrete-
ness that we have five ni such that the s(ni, j) are the same, and γni = 5. We
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construct our sequence of columns as copies corresponding to the following
sequences (which are in turn represented as fi : I → N0):

00 . . . 01 . . . 02 . . . 03 . . . 04
01 . . . 02 . . . 03 . . . 04 . . . 10
02 . . . 03 . . . 04 . . . 10 . . . 11
03 . . . 04 . . . 10 . . . 11 . . . 12
04 . . . 10 . . . 11 . . . 12 . . . 13
10 . . . 11 . . . 12 . . . 13 . . . 14

where the pairs of listed entries correspond to f(ni) and f(ni+1), and where
the implied entries are all 0 (or at least the same for each sequence).

Note that incrementing f(ni) increases the spacing by hni + s(ni, f(N +
ni)). Also, since hni+1 = 5hni +s(ni, 0)+s(ni, 1)+s(ni, 2)+s(ni, 3)+s(ni, 4),
changing f(ni+1), f(ni) from 04 to 10 increases the spacing by hni +s(ni, 4).
Since the s(ni, j) are the same, call them s(j). Then the distance between
adjacent pairs of the copies specified above is hn1 + hn2 + hn3 + hn4 + hn5 +
s(0) + s(1) + s(2) + s(3) + s(4).

Unfortunately, this does not account for the group action. If, on the
other hand, we were lucky enough to have pairs of F (ni) = F (Ni+1) = e
with γe = 5, we could then let our fi be the functions

13 . . . 22 . . . 31 . . . 40
23 . . . 32 . . . 41 . . . 01
33 . . . 42 . . . 02 . . . 11
43 . . . 03 . . . 12 . . . 21
04 . . . 13 . . . 22 . . . 31

where again the pairs shown correspond to f(ni), f(ni+1), and f is 0 else-
where. Notice that in each transition exactly one 0 is changed to a 1, one 1
to a 2, . . . , and one 4 changed to a 0. This implies that all of these copies
are in the same column. Furthermore, the spacing between adjacent copies
is easily seen to be hn1 + hn2 + hn3 + hn4 + s(0) + s(1) + s(2) + s(3) + s(4).

Our final construction will be a generalization of the one above.
Find a sequence of consecutive values of F of the form e1, . . . , ew, a, b

with
∏w
i=1 γei > k. Extend this to a sequence of the form

e1, . . . , ew, a, b, d1, . . . , dz, e1, . . . , ew.

Find an interval I such that F applied to I yields (
∏n
i=1 γei)γaγb(

∏l
i=1 γdi

)
−1 nonintersecting copies of the above sequence. We will make our fi all be
0 off these subsequences.

We define f0 on these subintervals so that it takes every possible set of
values on the first w + z + 2 entries (as limited by property (1)) except for
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all 0’s. On each such block we let f0 take values on the two instances of ei
that add up to γei − 1.

We think of the values of an fi on such a block as an appropriate radix
representation (leftmost digit least significant) of a natural number. We
inductively define fi+1 to represent the number one larger. In particular, if
on some such block fi takes the values γ1 − 1, . . . , γs − 1, vs+1, . . . , v2w+z+2

where γj is the appropriate γ for the jth term and vs+1 < γs+1− 1, then on
this block fi+1 takes values 0, . . . , 0, vs+1 + 1, vs+2, . . . , v2w+z+2.

We note that condition (1) is clearly satisfied. Condition (3) is satisfied
because if we consider the blocks on which f0 has values γe1−1, . . . , γew −1,
x, y, then f0 and fi have the appropriate values on the a, b terms. (We use
the fact that

∏n
i=1 γei > i.)

We further note that by Lemma 3.3 the difference in heights of the
consecutive copies indexed by the fi is a fixed sum of hN corresponding
to the beginnings of blocks, plus a correction term based on changes in
the number of N for which fi(N) and F (N) have particular given values.
Combining this with Lemma 3.1 we need only show that the number of such
N remains constant.

With each fi and each block we associate the three numbers corre-
sponding to the natural numbers given by the appropriate radix represen-
tations fi(n0 + 1), . . . , fi(n0 +w) and fi(n0 +w+ 1), . . . , f0(w+ z + 2) and
fi(n0 +w + z + 3), . . . , f0(2w + z + 3), where n0 + 1 is the beginning of the
subinterval. It suffices to show that the multiplicities with which numbers
show up in either of the first and third places remain constant, and that
the multiplicities with which numbers show up in the second place remain
constant.

In fi the first and second places take all possible values except for i, 0.
Now if M1,M2 are one more than the maximum possible values in the first
and second places, then fi and f0 agree in the third place except when the
values of f0 in the first two are M1 − 1 − l,M2 − 1 with 0 ≤ l < i. In that
case we have to carry over to the third place and there fi has the value of
l + 1 instead of l. So in the third place, fi has an extra i and one fewer 0.
This completes our proof.

We can now prove our main results.

Proof of Theorem 2.1. Let A be a set of positive measure. Let k be an
integer. From Lemma 5.4 we can see that there is an ε > 0 and columns of
arbitrarily high generation so that these columns have k + 1 copies whose
size is more than ε of that of the original, so that these copies are in the
same column and consecutive copies are separated by the same amount.
Take a level of such a generation that is more than (1− ε/(k + 1))-full of A.
Then the copies of this level in those copies of its column are each more
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than (k/(k + 1))-full of A and have the property that for some n, T in of the
bottom level is another one of the levels for 1 ≤ i ≤ k. Hence, for this n,
µ(A ∩ Tn(A) ∩ · · · ∩ T kn(A)) > 0.

Proof of Theorem 2.2. We begin with the levels given to us by Lemma
5.3. We wish to show that there is an ε > 0 so that for m pairs of levels of
arbitrarily high generation with the same separation between corresponding
levels as we have between Ii and Ji, we can find copies of these levels of size
more than ε times that of the original so that corresponding copies are in
the same column, and so that the difference in heights between the ith pair
of copies is proportional to ki. This would prove our theorem with a simple
application of double approximation.

Notice that the intersection of the span of the set in Lemma 5.1 with
Z × G × {0} is the span of (cM,i, 0), since tN,i − tN,j = cN−1,i − cN−1,j .
Therefore, (D, 0) is in the span of the cM,i. Hence if TDdi(Ii) = Ji then we
can write

(Ddi, 0) =
∑
M,j

αM,j,icM,j .

Using the f0, fki
from Lemma 5.4 to index copies of columns, we can find

an ε > 0 so that for arbitrarily large generations of columns, we can find m
pairs of copies satisfying:

• Each pair of copies is in the same column.
• Each pair of copies are separated by a power of T proportional to ki.
• Each copy is at least ε times the size of the original.
• For anyM, j there are at least |αM,j,i| integers n so that F (n) = F (M),
F (n+1) = F (M+1) and so that in the indexing of the first and second
copy in the ith pair, the indices of the copy at the digits corresponding
to n and n+1 are either 0, j and 1, j or γn−1, j and 0,j+1 respectively.

If we change |αM,j,i| of one of these types described in the last point to the
other, then we keep these pairs of copies in the same column, but alter their
relative height difference by Ddi. This provides what we need for the double
approximation.

Remark 5.5. Note that the proof of Theorem 2.2 implies that T is
power weakly mixing if and only if it is totally ergodic. Note also that to
check condition (2), it is sufficient to first check if a D from Lemma 5.1
exists, and if it does, to check condition (2) modulo D for a particular N so
that infinitely often F (M) = F (N) and hN ≡ hM (mod D). This reduces
checking condition (2) to a finite computation.

Notice also that if Im(F ) = {(n, s0, . . . , sn−1, 0, g1, . . . , gn−1)}, then con-
dition (2) can be written in the simple form that (1, 0) is in the span of
{(si + hN , gi+1 − gi), (sn−1,−gn−1)} for all N .
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6. Examples. The first few will be where Γ has a single element as in
the last remark.

Consider for example the Chacón-m transformation for m ≥ 2. Fol-
lowing N. Friedman, a Chacón-m transformation is a rank-one transfor-
mation where column Cn+1 is obtained from column Cn by cutting each
level of Cn into m sublevels, stacking from left to right and placing a
spacer on top of the last level; see Section 9 for more details on rank-
one constructions. We can define a Chacón-m transformation by letting
G = {0}, n = m and si = 0 for 0 ≤ i ≤ n − 2, sn−1 = 1, and gi = 0
for 0 ≤ i ≤ n − 1. Clearly, {gi} generates G, so condition (1) of The-
orem 2.2 is satisfied. Since (1, 0) = (sn−1,−gn−1), it is in the span of
{(si + hN , gi+1 − gi), (sn−1,−gn−1)}. Therefore, it is power weakly mixing.

Consider the transformation defined by G = {0}, n = 3 and the sequence
(1, 1, 0, 0, 0, 0). Condition (2) of Theorem 2.2 states that (1, 0) is in the span
of {(1 + hN , 0), (1 + hN , 0), (0, 0)} = (1 + hN )Z× {0}, which does not hold
for any hN . Therefore this transformation is not power weakly mixing (in
fact, it is not T 2 ergodic).

Consider the transformation T defined by the group G = Z, n = 5 and
the set (0, 0, 0, 1, 0, 0, 1, 0, 0, 0). It satisfies condition (1) since g1 = 1 gen-
erates G. Condition (2) states that (1, 0) ∈ span{(hN , 1), (hN ,−1), (hN , 0),
(1 + hN , 0), (0, 0)}. This clearly holds since (1, 0) = (1 + hN , 0) − (hN , 0).
Therefore, T is a power weakly mixing, infinite measure-preserving trans-
formation.

Lastly, consider the group G to be any countably generated Abelian
group with generators ei for i ∈ N0. If n ∈ N, let e(n) = k where k is
the largest power of 2 such that 2k divides n. Let F (n) = (4, 0, 0, 0, 1, 0, 0,
ee(n+1), 0). Then F clearly satisfies the necessary condition. Notice that T
is a G-extension of a Chacón-4 transformation. Condition (1) is clearly sat-
isfied. Condition (2) is satisfied since

(1, 0) = (s(1, 0) + s(0, 3)− s(0, 0), g(1, 1)− g(1, 0)− g(0, 3)− g(0, 1)).

Therefore, T is power weakly mixing.

7. Non-totally ergodic 2-point extension. As an example of the
above we analyze what happens in the particular case where G = Z/2Z and
F (n) = (2, 0, 1, 0, 1).

Consider the two-point extension T of the Chacón-2 transformation
formed as follows. Begin with two intervals of equal size—call them columns
C0,0 and C0,1. These will be known as the generation-zero columns. To de-
fine the generation-(n+1) columns, cut each of the generation-n columns in
half, stacking the right half of Cn,1 over the left half of Cn,0 and vice versa.
Then add a spacer to the top of the two columns thus formed to yield the
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generation-(n + 1) columns. The transformation T is defined to map each
point to the point directly above it. To see that T is indeed a two-point
extension of Chacón-2, associate each point in Cn,0 with the corresponding
point in Cn,1 for all n. The resulting space and transformation are exactly
Chacón-2. It is well-known that Chacón-2 is a weakly mixing transforma-
tion, therefore totally ergodic, but we will show that the two-point extension
T is not even T 2 ergodic.

Let I and J be the top and middle levels, respectively, in C1,0. Suppose
for some m we have µ(Tm(I)∩J) > 0. Then there must be some generation
in which there is a copy J ′ of J above a copy I ′ of I at a distance of m
levels. That is, Tm(I ′) = J ′, and we will write d(I ′, J ′) = m. We will show
that this cannot be the case if m is even.

We prove by induction on n that for all n, any two copies of I in one of
the generation-n columns must be an even distance apart. This is vacuously
true for n = 1, 2. Assume it is true for generation n. Label the left halves
of the top copies of I in Cn,0 and Cn,1 as I0 and I1, respectively. Label the
right halves of the bottom copies of I as I2 and I3, respectively. To prove the
claim we must show that the distances from I0 to I3 and from I1 to I2 are
both even. For convenience label the right halves of the bottom levels of Cn,0
and Cn,1 by K0 and K1-respectively. Then d(K0, I2) = 2 and d(K1, I3) = 5
since this is true for n = 2 and since the bottoms of columns are preserved
through later generations. The distance from I0 to K1 is given by

d(I0,K1) =
{
n+ 3 if n is even,
n if n is odd.

Similarly, we have

d(I1,K0) =
{
n if n is even,
n+ 3 if n is odd.

These are true because they hold for n = 2 and by induction on n. The
fundamental idea is that the top of Cn,1 looks like the top of Cn−1,0 with an
extra spacer added on top. From this the above statements are easily shown
by induction.

Both d(I0, I3) = d(I0,K1)+d(K1, I3) and d(I1, I2) = d(I1,K0)+d(K0, I2)
must then be even, independent of n. By induction, µ(Tm(I)∩I) > 0 implies
m is even. Since each copy of J lies directly below a copy of I, this means
that µ(Tm(I) ∩ J) > 0 implies m is odd. Therefore µ(T 2m(I) ∩ J) = 0 for
all m, so T 2 is not ergodic.

8. Conservativity and recurrence on a sufficient class. In this
section all transformations are assumed to be infinite measure-preserving,
and not necessarily invertible. If for any measurable set A we have µ(A \⋃∞
i=1 T

−iA) = 0 then T is said to be recurrent. For sets of finite measure this
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condition is equivalent to µ(A∩
⋃∞
i=1 T

−iA) = µ(A). A class C of subsets of
X is called a sufficient class if it has the following approximation property
for all measurable A ⊂ X:

µ(A) = inf
{ ∞∑
j=1

µ(Ij) : {Ij} cover A and Ij ∈ C
}
.

A transformation is said to be conservative on C or recurrent on C if the
condition for conservativity or recurrence holds for all I ∈ C of positive
measure, but not necessarily for all measurable sets. While conservativity
and recurrence are known to be equivalent, we show in this section that
conservativity and recurrence on a sufficient class C are not equivalent. In
particular, recurrence on a sufficient class implies recurrence, but the same
is not true for conservativity.

Consider the following infinite measure-preserving transformation T :
R→ R which is conservative on the sufficient class C = {I : I is a finite open
interval}. It is well-known that there exist sets K ⊂ [0, 1) and Kc = [0, 1)\K
of positive measure such that µ(I ∩K) > 0 if and only if µ(I ∩Kc) > 0 for
all I ∈ C. Define T by

T (x) =
{
x if x mod 1 ∈ K,
x+ 1 if x mod 1 ∈ Kc.

Then T is conservative on C, but µ(T−n(Kc)∩Kc) = 0 for all nonzero n so
T is not conservative. Note however that T is not recurrent on C.

Proposition 8.1. Let (X,B, µ) be a σ-finite measure space, and let T
be an infinite measure-preserving transformation. If T is recurrent on a
sufficient class, then T is recurrent.

Proof. Let C be a sufficient class, and suppose that T is not recurrent.
Then T is not conservative, so there exists a set A of positive measure such
that µ(A ∩ T−n(A)) = 0 for all n > 0. Perhaps taking a subset, we may
assume that A has finite measure. We can then find a set I ∈ C such that
µ(A ∩ I) > 1

2µ(I). Note that if a subset of I \ A with positive measure is
mapped into A by T−i for some i, it will never be mapped into A for any
j > i (by hypothesis, any subset of A of positive measure is never mapped
into A under iteration by T−1), so we have

µ
(
I ∩

∞⋃
i=1

T−i(I)
)

= µ
(

(I \A) ∩
∞⋃
i=1

T−i(I)
)

+ µ
(

(I ∩A) ∩
∞⋃
i=1

T−i(I \A)
)

≤ µ(I \A) + µ(I \A) < 1
2µ(I) + 1

2µ(I) = µ(I)

Thus T is not recurrent on C.
To see that a regularity condition on the space (X,B, µ) is necessary,

let X = R and B = 2R. Define µ(A) to be zero if A is finite or countable,
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and infinity otherwise. The collection C of all singletons in R along with
the set R itself is a sufficient class for this space. Any bijective map on
X is measure-preserving and recurrent on C, but in general it need not be
recurrent.

9. Power product conservativeness. In this section we obtain a con-
dition for rank-one transformations that implies power product conservativ-
ity. A notion that has been used to study conservativity of products is that of
positive type. A transformation T is of positive type if lim supn→∞ µ(Tn(A)
∩A) > 0 for all sets A of positive measure. Clearly, if T is of positive type,
then it is conservative. It was shown in [1] that if T is of positive type,
then for each positive integer d, the Cartesian product of d copies of T is
of positive type, so positive type implies infinite conservative index. On the
other hand, it is easily verified that the transformation T1 of [3] is of pos-
itive type but as already mentioned T1 × T 2

1 is not conservative, so T1 is
not power product conservative, showing that positive type does not imply
power product conservativeness. Our condition can be used to show that
some infinite measure-preserving staircases are power product conservative.

First, we introduce some notation for constructing measure-preserving
rank-one transformations. We start with a column C0, which is a unit inter-
val. Let rn be a sequence of integers with rn ≥ 2. At each stage n, we have a
column Cn that consists of hn intervals (hn denotes the height of column Cn,
which is defined to be the number of intervals in the column). We denote the
intervals in Cn by In,0, In,1, . . . , In,hn−1, where In,0 is the interval at the low-
est level. A column determines a map on all of its levels but the top, where
each interval is mapped to the interval above it by the canonical translation.
Column Cn+1 is obtained from column Cn by cutting and stacking according
to the following procedure. Cut all intervals of column Cn into rn subinter-
vals of the same measure to form subcolumns, C [0]

n , C
[1]
n , . . . , C

[rn−1]
n . Then

we may put spacers on top of the subcolumns. Let {sn,i}rn−1
i=0 be a doubly in-

dexed sequence of nonnegative integers. The sequence sn,0, sn,1, . . . , sn,rn−1

specifies the number of spacers on each respective subcolumn. Then stack
subcolumns on top of one another, with each subcolumn going underneath
its adjacent subcolumn to the right, so that the rightmost subcolumn goes
on the very top. This cutting and stacking procedure leads to column Cn+1.
This defines a sequence of columns Cn and as the width of the column ap-
proaches 0, it defines a measure-preserving transformation on a finite or an
infinite interval.

We prove the following theorem:

Theorem 9.1. Let T be a rank-one transformation with sequence of
cuts {rn}. If for all d > 0,
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lim inf
n→∞

hd−1
n∏n−1
i=0 r

d
i

= 0,

then T is power product conservative.

We do this by proving the following more precise theorem.

Theorem 9.2. Let T be a rank-one transformation with sequence of
cuts {rn}. Let {ki}di=1 be integers. If

lim inf
n→∞

hd−1
n∏n−1
i=0 r

d
i

= 0,

then T k1 × · · · × T kd is conservative.

Fix the ki. Let S = T k1×· · ·×T kd . For a column Cn define an equivalence
relation ∼n on d-fold products of levels so that I ∼n J if and only if for
some integer N , SN (I) = J .

Lemma 9.3. Suppose that A ⊂ Xd is a set where µ(Sn(A) ∩ A) = 0 for
all n 6= 0. Let L be the ∼n equivalence class of products of levels equivalent
to I. Then

µ
(
A ∩

⋃
J∈L

J
)
≤ µ(I).

Proof. First modify A by a set of measure 0 so that Sn(A) ∩ A = ∅ for
all n 6= 0. Note that

⋃
J∈L J is a subset of

⋃
N∈Z S

N (I). In fact, for some
subset P ⊂ Z, we can write ⋃

J∈L
J =

∐
N∈P

SN (I).

We therefore think of this set as P ×I. Let χA be the characteristic function
of A on P × I. Since Sn(A) ∩ A = ∅ for n 6= 0, we note that χA(a, x) and
χA(b, x) cannot both be 1 for a 6= b. Hence�

P

χA(n, x) dn =
∑
n∈P

χA(n, x) ≤ 1.

So by changing the order of integration we get

µ
(
A ∩

⋃
J∈L

J
)

=
�

P×I
χA(n, x) dµ =

�

I

�

P

χA(n, x) dn dx ≤
�

I

dx = µ(I).

Lemma 9.4. The number of equivalence classes of ∼n is at most( d∑
i=1

ki

)
hd−1
n .

Proof. To each product of levels, we can associate a d-tuple of integers
in the range [1, hn] representing the heights of the levels. It is clear that
the product associated with {ai} and the product associated with {ai + ki}
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are equivalent. Each equivalence class has at least one element with
∑d

i=1 ai
minimal. We will bound the number of such sequences.

Clearly, for
∑d

i=1 ai to be a minimal representative of an equivalence
class, {ai − ki} cannot be a valid sequence. Therefore ai ≤ ki for some i.
The number of such sequences with ai ≤ ki for a given i is at most kihd−1

n .
Summing over i gives our result.

Proof of Theorem 9.2. Suppose that

lim inf
n→∞

hd−1
n∏n−1
i=0 r

d
i

= 0,

and that A ⊂ Xd satisfies µ(Sn(A)∩A) = 0 for all n 6= 0. We wish to bound
µ(A ∩Cdn). Lemma 9.3 says that the intersection of A with any equivalence
class of levels is at most the size of a level, or(n−1∏

i=0

rdi

)−1
.

Lemma 9.4 says that there are at most Khd−1
n equivalence classes where

K =
∑d

i=1 ki. Therefore,

µ(A ∩ Cdn) ≤ Khd−1
n∏n−1

i=0 r
d
i

.

Hence
lim inf
n→∞

µ(A ∩ Cdn) = 0.

Since Cdn exhausts Xd, this implies that µ(A) = 0.

A rank-one transformation such that sn,i = i for 0 ≤ i ≤ rn − 1 is
called a staircase transformation (i.e., the spacers are added in a staircase
fashion). It may be finite or infinite measure-preserving depending on the
growth of rn. In the case that it is finite measure-preserving, Adams showed
in [2] that T is mixing provided that r2n/hn → 0 as n→∞.

Corollary 9.5. There exists an infinite measure-preserving staircase
transformation T such that T is power product conservative.

Proof. Let T be the classical staircase transformation with rm = 22m
.

Direct computation shows that hm ≤ (m+ 1)rm/2 holds for m = 0, and we
will prove that it holds for all m by induction. If this holds for m we can
apply the definition of hm+1 for a staircase transformation to yield

hm+1 = hmrm+
1
2
rm(rm−1) ≤ m+ 1

2
r2m+

1
2
r2m =

m+ 2
2

r2m =
m+ 2

2
rm+1.
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Then we can bound

hd−1
m(∏m−1

i=0 ri
)d =

hd−1
m

(rm/2)d
=

1
hm

(
2hm
rm

)d
≤ (m+ 1)d

hm
≤ (m+ 1)d

rm
,

which approaches 0 as m → ∞ for all d ≥ 1. Hence, this transformation T
satisfies the condition of Theorem 9.1.

Corollary 9.6. Let T be a rank-one transformation with rn = 22n
and

such that

sn,i =
{

2i if 2 | i,
0 otherwise.

Then T is an infinite measure-preserving transformation that is power prod-
uct conservative but T 2 is not ergodic.

Proof. An argument similar to that in Corollary 9.5 shows that T is
power product conservative. Let I1 and I2 be two levels in some column Cm
such that α(I1)−α(I2) is a positive odd number. Now consider sublevels of
I1 and I2, denoted by I ′1 and I ′2 respectively, in some column Cn for n > m.
From the construction, α(I ′1)−α(I ′2) will always be an odd number. It follows
that there does not exist an integer t such that T 2t(I ′1) = I ′2. Hence, T 2 is
not ergodic.
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