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HOCHSCHILD COHOMOLOGY OF SOCLE DEFORMATIONS OF
A CLASS OF KOSZUL SELF-INJECTIVE ALGEBRAS

BY

NICOLE SNASHALL (Leicester) and RACHEL TAILLEFER (Saint-Etienne)

Abstract. We consider the socle deformations arising from formal deformations of
a class of Koszul self-injective special biserial algebras which occur in the study of the
Drinfeld double of the generalized Taft algebras. We show, for these deformations, that
the Hochschild cohomology ring modulo nilpotence is a finitely generated commutative
algebra of Krull dimension 2.

Introduction. Let K be a field. For m > 1, let Q be the quiver with

m vertices, labelled 0,1,...,m — 1, and 2m arrows as follows:
a a
a a
7 N

Let a; denote the arrow that goes from vertex i to vertex ¢ + 1, and
let a; denote the arrow that goes from vertex ¢ + 1 to vertex ¢, for each
i=20,...,m— 1 (with the obvious conventions modulo m). We denote the
trivial path at vertex i by e;. Paths are written from left to right.

We define A to be the algebra K Q/I where I is the ideal of KQ gen-
erated by a;a;+1, G;—10;—2 and a;a; — a;—1a;—1, for i = 0,...,m — 1, where
the subscripts are taken modulo m. These algebras are Koszul self-injective
special biserial algebras and as such play an important role in various as-
pects of representation theory of algebras. In particular, for m even, this
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algebra occurred in the presentation by quiver and relations of the Drinfeld
double of the generalized Taft algebras studied in [5], and in the study of the
representation theory of Uy (sly), for which see [4) 8, 12} I3]. The Hochschild
cohomology ring of the algebra A was determined in [11] (where A = A; in
that notation).

In this paper we study socle deformations Aq of the algebra A, where
q=1(90,41,---,9m—1) € (K*)™. The first section shows that Aq arises from
a formal deformation with infinitesimal in HH?(A), and further, that it is
a socle deformation of A, that is, Aq is self-injective and Aq/soc(Aq) =
A/soc(A). The algebras Aq for m = 1 were studied in [2], where they were
used to answer negatively a question of Happel, in that their Hochschild co-
homology ring is finite-dimensional but they are of infinite global dimension
when ¢ € K* is not a root of unity.

For a finite-dimensional K-algebra I" with Jacobson radical ¢, the Hoch-
schild cohomology ring of I is given by

HH*(I') = Ext}. (I, I') = @ Extf (I, 1)

n>0

with the Yoneda product, where I'®* = I'P @ I is the enveloping algebra
of I'. Since all tensors are over the field K, we write ® for ® x throughout.
We denote by N the ideal of HH*(I") which is generated by all homogeneous
nilpotent elements. Thus HH*(I") /N is a commutative K-algebra. The Ext
algebra E(I") is defined by

E(I) = Bxt}-(I/x, T'/r) = @ Extp(I/x, T/x).
n>0

The graded centre of E(I") is denoted Z, (E(I")) and is generated by all
homogeneous elements z € Ext?(I'/t,I'/t) for which zg = (—1)""gz for
all g € Ext'?(I'/t,I'/t). The natural ring homomorphism HH*(I") — E(I")
has image contained in Zg(E(I")); it was shown in [3] (and see [7] for a
generalization) that the image is precisely Zg (E(I")) when I' is a Koszul
algebra.

Section 2 describes explicitly the structure of Zy.(E(Aq)), the graded
centre of the Ext algebra of Aq, for allm > 1, q € (K*)™ and in all character-
istics (Theorem [2.6)). In the final section, we determine the Hochschild coho-
mology ring modulo nilpotence of the algebras Aq for all q = (qo, ..., ¢m—1)
€ (K*)™, and show, in Theorem that HH*(Aq)/N is a commutative
finitely generated K-algebra of Krull dimension 2 when qq - - - ¢pn—1 is a root
of unity. It was conjectured in [10] that the Hochschild cohomology ring
modulo nilpotence of any finite-dimensional algebra is always a finitely gen-
erated K-algebra. Although it was shown by Xu in [14] (and see [9]) that
this conjecture is not true in general, with a counterexample being provided
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of a Koszul algebra that is not self-injective, the current paper gives a class
of Koszul self-injective algebras where the Hochschild cohomology ring mod-
ulo nilpotence is a finitely generated K-algebra and the conjecture of [10]
holds. This provides a further contribution to the study of the structure of
the Hochschild cohomology ring for Koszul algebras.

1. Socle deformations of A. Let A = K Q/I where [ is the ideal of K Q
generated by a;a;11, a;—1a;—2 and a;a; —a@;—1a;—1, fori =0,1,...,m—1. We
write o(«) for the trivial path corresponding to the origin of the arrow «,
so that o(a;) = e; and o(a;) = ej+1. We write t(a) for the trivial path
corresponding to the terminus of the arrow «, so that t(a;) = e;41 and
t(a;) = e;. Recall that a non-zero element r € KQ is said to be uniform if
there are vertices v, w such that r = vr = rw. We then write v = o(r) and
w = t(r).

A minimal projective bimodule resolution (P",9") for A was given in
[TT, Theorem 1.2]. With the notation of [11], the projective P? is described
by

m—1 2
2 2 2
P* = @ @ Ao(g'r,i) ® t(gr,i)/l
i=0 r=0
where
2 2 — — 2 = _
90, = QiQi+1, 91,5 = @G5 — Qj—10G4—1, 924 = —Gi—10;—2

for i = 0,...,m — 1. We remark that the set {g?, |i =0,...,m—1, r =
0,1,2} is a minimal set of uniform relations which generate I. Then, from
[11] Propositions 4.1, 5.1, 5.6, 6.2 and Theorem 7.2], for all m > 1, there is an
element 7 in HH?(A) which is represented by the bimodule map 7 : P2 — A
in which the element eg®eq € Ao(g7 o) ®(g o)A has image agag € A and all
other summands of P2 have zero image. We label the idempotent generators
of the summands of P? as follows: for each i = 0,1,...,m—1andr =0,1,2,
write e; ®y; ej42—2, for the idempotent

o(gr;) @ t(gh;) = € ®eiyaor

in the summand Ao(g?;) ® t(g%i)/l. When describing a map P? — A, we
omit summands whose image is zero. Thus we may write 7 as the map
T :eg ®1,0 €0 — apdo-

Now, 9%,0 = apGp — Gm—1am—1. Since A is Koszul, by [1, Proposition 3.7],
the element 7 gives rise to a unique formal deformation A(T') of A, which,
when we specialize the deformation parameter T to t € K, gives the algebra
A(t) = KQ/I(t), where I(t) is the ideal of K Q generated by a;a;+1, Gi—1a;—2,
a;jG; — Qj—1G5—1 and (1 — t)a()@o — Ap—1Gyp—1 for ¢ = 0,....m —1, 7 =
1,...,m—1. We restrict ourselves to considering the case t # 1, since if t = 1,
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then the algebra A(t) is not self-injective. In the case where t = 0, we recover
the original algebra A. The algebra A(t) for t € K \ {1} is a Koszul self-
injective algebra, and we can easily verify that A/soc(A) = A(t)/soc(A(t)),
so that A(t) is a socle deformation of A.

This naturally leads us to introduce the algebra Aq which we will study
in this paper. Suppose m > 1. For each q = (qo,q1,---,qm-1) € (K*)™, we
define Aq = K Q/ Iy, where Iq is the ideal of K'Q generated by

a;Qit1, Gi—10;—2, ¢;0;0; — G;—1a;—1 fori=20,...,m — 1.
Then A(t) = Aq with q = (1 —¢,1,...,1). We are assuming each g¢; is
non-zero since we wish to study self-injective algebras. The algebra Aq is a
Koszul self-injective socle deformation of A, and Aq = Awhenq = (1,...,1).
Now, for m > 2 and q = (1,41, 1,...,1), the algebra A 4 1 . 1) comes
from a formal deformation of A via the element of HH?(A) which is repre-
sented by the map

2 _
m: P — A, e1 ®1,1 €1 — a1aq.

It can be easily verified using [11] that n; and 7 represent the same element
in HH?(A). More generally, for j = 1,...,m — 1 the map
nj P? - A, e @15 €5 ajay,

also represents the element 7 € HH?(A). Thus the algebra Ngosq1seemsgm—1)
comes from a formal deformation of A by a scalar multiple of the ele-
ment 7. But A, . qm_1) can also be obtained from a formal deforma-
tion of A where we only replace the relation 9%,0 = aply — Gm—10m—1 DY
(o -+ @m—1)apao — Gm—1am—1 With qo - - - ¢m—1 € K*. Indeed, we can give an
explicit isomorphism Ag, g/ . g0y @oq1--qm_1,1,..,1) as the algebra iso-
morphism induced by a; — qoq1 - - - gia;, G; — a;. Set { = qoq1 - - gm—1 € K*.
Then A(QO7Q17~--,qm—1) = A((,l,...,l) = A(1 =),

However, there are other elements of HH?(A) which we need to consider
to see if they too give rise to a socle deformation of A. For m > 4 and using
[11l Propositions 2.3, 2.4], we have

1 if m is odd and char K # 2,

2 if m is even, or if m is odd and char K = 2.

) = A

dim HH?(A) = {

Then, for m > 4 and from [T}, Propositions 4.1, 5.1, 5.6], HH?(A) has basis
{m} if m is odd and char K # 2,
{ {x,7} if m is even, or if m is odd and char K = 2,
where '
X:e®ie+— (—1)e fori=0,...,m—1.

Let m > 4 and let n € HH?(A). Then, by [I, Proposition 3.7], n is the
infinitesimal of the formal deformation of A which, when the deformation
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parameter is specialized to t € K, gives the algebra K Q/J,, where J, is the
ideal in K Q generated by a;ai+1, Gi—1Gi—2, a;G; — Gi—1a;—1 — tn(e; @1, €;)
fori=0,...,m—1.

THEOREM 1.1. Letm >4, n € HH?*(A) and J,, be as above. Then KQ/J,
is a socle deformation of A if and only if n € sp{r}.

Proof. As we have seen above, we can set n = by + by for some by, by
in K. Then the ideal J,, is generated by a;a;11, G;—1G;—2, aja; — Gj_1a;-1 —
t(—l)jbgej, apay — Gm—_10m—1 — thoeg — tbragag for ¢ = 0,...,m — 1 and
j =1,...,m — 1. Therefore the algebra A := KQ/J, has a K-basis given
by {e;,as,a5,a:a; | i =0,...,m —1}.

We first assume that by # 0. Note that, for all i = 0,...,m — 2, we have

a;Q;a; = ai(ai+1ai+1 + (—1)i+1tb2€i+1) = (—1)i+1tb2ai

and similarly, for i = m — 1, apm—1G@m—1am—1 = (—1)"tbaa;,—1. Therefore,
for any i = 0,...,m — 1, Aa; has a K-basis given by {a;,a;a;}. Hence Aa; is
2-dimensional and it is easy to check that it is simple. We now show that the
modules Aa; for i = 0,...,m — 1 are pairwise non-isomorphic. Suppose that
there is a non-zero A-module morphism f : Aa; — Aa;. Then e;f(a;) = f(a;)
and f(a;) € sp{a;,aja;} so that i = j or i = j + 1. If, moreover, f is an
isomorphism, we have a non-zero morphism /Iaj — Aa;, and we deduce that
j =iorj =i+ 1. Therefore there is an isomorphism f : Aa; — /Iaj if and
only if 2 = j. Thus we have m pairwise non-isomorphic 2-dimensional simple
A-modules, so that dimg soc(A) > 2m > m = dimg soc(A). Hence A/soc(A)
is not isomorphic to A/soc(A) so that A and A are not socle equivalent.

Now assume that bo = 0 and b; # 0. Since a socle deformation of A must
be a self-injective algebra, necessarily tb; # 1. It is easy to check that the

socle of A is the submodule generated by the a;a; for i = 0,...,m — 1 so
that A/soc(A) = A/soc(A), that is, A is a socle deformation of A. m

Thus, for m > 4, the socle deformations of A which arise from formal de-
formations are precisely the algebras Aq, and the infinitesimal of the formal
deformation is (a scalar multiple of) = € HH?(A).

For m = 1,2, 3, there may be other socle deformations of A4 which come
from formal deformations. However, for m = 3, it can be shown that there
are no additional socle deformations arising in this way. But, for m = 2, the
elements 7 1 and 721 in HH?(A), which are given in [T, Proposition 6.2]
by

T2,—1 1 €0 ®2,0 €0 = ApGo, 72,1 : € ®0,0 €0 — Apdo,

both give rise to the same socle deformation A’ of A, and moreover A’ is not
isomorphic to Aq. We do not consider any additional socle deformations for
m = 1,2 in this paper.
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Throughout this paper we suppose m > 1, and consider the socle de-
formation Aq of A. We write Aq = KQ/Iq, where I is the ideal generated
by a;ait+1, aj—1a;—2 and g;a;a; — a;—1a;—1 for i = 0,...,m — 1, and where
a = (q0,q1,-->qm-1) € (K*)™ and ¢ = qoq1---gm-1 € K*. In the case
m = 1, where the algebra A, was considered in [2], different phenom-
ena were exhibited depending on whether or not ¢ was a root of unity.
Correspondingly, we will see in this paper that we obtain different results
depending on whether or not ( is a root of unity.

2. The graded centre of the Ext algebra of A,. We start by de-
scribing the Ext algebra E(Aq). In Proposition we give some specific el-
ements which lie in Zg(E(Aq)). The remaining results lead to Theorem
in which we prove that these elements generate the graded centre of the Ext
algebra, thus enabling us to give a complete description of Zg(E(Aq)). The
algebras Aq were studied in [2] in the case m = 1; this case is also included
here.

The algebra Aq is Koszul, so, from [6l, Theorem 2.2], the Ext algebra
E(Aq) is the Koszul, dual of Aq and is given explicitly by quiver and relations
as E(Aq) = KQOP/Ié, where Q is the quiver of Aq and Ié‘ is the ideal of
K Q°P generated by the orthogonal relations to those of Iq. Since left K Q°P-
modules are right K Q-modules, we may consider E(/Aq) as the quotient of
K Q by the ideal generated by q[laidi +a;_1a;—1 fori =0,...,m—1, where
we continue to write our paths from left to right. Let 7" denote the path
@;Qit1 - Gi+n—1 Of length n in K'Q which starts at vertex ¢ and in which
the subscripts are taken modulo m. Similarly, we let 7' denote the path
Gitn—1 - - Gi+10; of length n in K @ which ends at vertex ¢ and in which the
subscripts are again taken modulo m. Thus a typical monomial in E(Aq)

has the form 7255;’- for some integers s,t > 0 and 0 <i,57 <m — 1.

Let z € Zg(E(Aq)). Then z = Z?;Bl e;ze;. For each i = 0,...,m — 1,
a typical monomial in e; E(Aq)e; has the form 7?6} for some integers s, ¢ > 0
where s = ¢ (mod m). So we may write z = Y7 ! ¢;9516% where ¢; € K,
si,t; > 0 and s; = t; (mod m) for i« = 0,...,m — 1. Using the length
grading on paths in E(Aq), we see that Zg, (E(Aq)) is generated by length
homogeneous elements. Thus we may assume that our typical element z €
Zgr(E(Aq)) has the form

m—1
z = E il
i=0

in degree sg+tg, where ¢; € K, s;,t; > 0, s; = t; (mod m) and s;+t; = so+to
for i = 0,...,m — 1. Keeping our convention on subscripts modulo m, we
have ¢y = ¢y, So = Sm and ty = t,,.
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Now, for 0 < j < m — 1, we have

ajz = CJHQJ%sfll 52]4:11 CJH“Y;JHH&;]J:T
and
zaj = ¢y 0 aj = (— 1)t"6j(qa‘+1-~qg‘+t]) Ly tles .
Since ajz = (—1)%*ttzq,, for all j = 0,. — 1 we have either ¢; = 0

or ¢jy1 = (—1)%¢i(qjqr- - qjae,) tr sy = sj+1,tj = tjt1. If ¢; = 0 for all
j=0,...,m—1, then z = 0. So we assume now that z # 0. Then, for j =
0,...,m —1, we have s; = so,t; = to and cj41 = (=1)%¢;(gj+1- - qj+t0)_1
# 0. Thus z = Z:nol sl # 0.

For 0 < j <m — 1, we have

_ _ t to+1
a4z = ¢jagy"8 = (=1)*0¢i (g1~ yrse) 700"

and
S — . S0 to to—l—l
205 = ¢j117;910;%145 = CJ+17;+15
e 7 t0 4 -1
Since a;jz = (—1)%T02a;, we also have ¢j11 = (—=1)"¢j(gj41 - ¢jts,) " for
all j=0,...,m—1.
Thus

z = Z cl'ysoéto

with ¢ji1 = (_1)Socj(Qj+1"‘Qj+to)_1 = (=1)"cj(gje1 - qjrsy) " for j =
0,...,m—1, and sg = tp (mod m).
From the equations c¢j+1 = (—1)*0¢;(gj41 - qjt1,)+ we have
co=(=1)"(qo- - qro—1)" (g1 Gro) " (Gm—1" - Gm—2+1,) " o-
Since cg # 0 and ¢ = qo -+ @m—1 We get 1 = (—1)"™s0¢ 10 g0

o = (-1
In a similar way, the equations c¢j+1 = (—1)%¢;j(gj4+1 - gj+s,) * imply that
¢ = (-~

It now follows immediately that if ¢ is not a root of unity then sg =
to = 0, and so ¢j = ¢ for all j. Hence z = cgl with ¢y € K. This gives the
following result.

PROPOSITION 2.1. If ¢ is not a root of unity then Zg(E(Aq)) = K.

We now assume that ¢ is a root of unity, and let d > 1 be minimal
such that ¢¢ = 1. We use the equations in cj and cjy1 to write each ¢;
in terms of ¢y for i = 0,...,m — 1. Thus we summarize the information
about z € Zg(E(Aq)) as follows. We have z = Z:”OI ¢ ot Wlth ¢ =
(1) TThzr (ak -+ dsto—1)""eo = (1) [Tjy (@ -~ Qhrso-1) "o, € =
(—1)mto ¢to = (—1)™0 and s¢ = to (mod m).
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The next step is to verify that specific elements do indeed lie in the
graded centre of the Ext algebra. The proof is straightforward and is omitted.

PROPOSITION 2.2. Suppose that  is a primitive dth root of unity.
(1) Suppose that m is even or char K = 2. Let

m—1 m—1
d d
CU:Z%'ma yzzfsim,
i=0 i=0
m—1
w = H “Qera—1) o]
z:O k=1
Then x,y,w € Zg(E(Aq)). Moreover,
m—1 Id
w™ =exy where &= (—1)"? H H “Qrtd—1)
=1 k=1

(2) Suppose that m is odd and char K # 2. Let

. Z:”OI Admif d s even,
Zznol y2dm - if d is odd,

{ Z:”OI sdm if d is even,

YT omcls2m ifd s odd,
m—1 ) i

w = (1) H(Qk C e Qhpod—1) 007
i=0 k=1

where
1 if d=0 (mod 4),

oc=41/2 ifd=2 (mod 4),
2 if d is odd.
Then x,y,w € Zg(E(Aq)). Moreover,
w™ =exy  if d=0 (mod 4) or d is odd,
{ w?™ =cxy ifd=2 (mod 4),

where
P TE (ak rera—1) ™t if d =0 (mod 4),
—1 pld/2 1
€= | Pt /1(% “Qrtd—1)"" if d =2 (mod 4),
m—112ld

=1 ke 1(Qk"'Qk+2d 1)_1 if d is odd.

The main result of this section is Theorem [2.6 which shows that Propo-
sition [2.2] contains precisely the information needed to fully describe the
graded centre Zy (E(Aq)). Propositions and show that, whenever
¢ is a root of unity, Zy(E(Aq)) is indeed generated by 1,z,y and w as
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a K-algebra. The next result, Lemma is required to show that the only
relation between the generators of Zg (F(Aq)) is the relation of the form
wP = exy as given in Proposition [2.2]

LEMMA 2.3. With the notation of Proposition assume Zg(E(Aq))
1s generated as an algebra by the elements 1,z,y and w with homogeneous
relation wP = exy, for appropriate ¢ € K* and positive integer p. Then

Zg(E(Aq)) = Kz, y, w]/(w’ — exy).

Proof. Using the length grading on E(/Aq), we know that Z,, (E(Aq)) is
a homogeneous quotient of K[z,y,w]/(wP — exy), where ¢, p are as given
in Proposition Now, the elements z'y" %, for i = 0,...,n, are linearly
independent in E(A ). So any additional relatlon in Zgr(E (Aq)) must be
homogeneous of the form

fo(x7y) + fl(xa y)w +-+ fp—l(way)wpil =0,
where fi(z,y) € Klz,y] and deg fo(z,y) = deg(fi(z,y)w) = --- =
deg(fy_1(z, yyuwP~). Thus deg fo(z,y) = deg fi(z,y) + [w], and since o
= |y|, there are integers r, n with deg fo(x,y) = n|z| and deg f1(z,y) = r|x|.

In the case of m even or char K = 2 with m > 2, we have |z| = |y| = md
|w| = 2d, which gives nmd = rmd + 2d, so that 2 = (n — r)m. Since m > 2,
this implies m = 2 and r = n — 1. Then p = 2 and |z| = |y| = |w| = 2d. We
may choose n minimal so that fy(z,y) + fi(z,y)w = 0 with deg fo(z,y) =
2nd, deg fi(z,y) = 2(n—1)d. Write fo(z,y) = > i obiz'y" " and fi(z,y) =
Yo ! by with by, by € K. Then f3(x,y) = f2(x,y)w? = ef2(x,y)zy.
Equating coefficients of 22" and y?" gives that by = 0 = b,,. Thus fo(z,y) =
g(z,y)ry = e tg(z,y)w? for some g(z,y) € K[z,y]. Hence e~ 1g(z, y)w? +
fi(z,y)w = 0 so that e lg(x,y)w + fi(x,y) = 0, which contradicts the
minimality of n.

Now, suppose that m is odd with m > 3, and char K # 2. If d is even,
we have |z| = |y| = md. If d = 0 (mod 4), then |w| = 2d, which gives
nmd = rmd + 2d so that 2 = (n — r)m. Since m > 3 this has no solution. If
d = 2 (mod 4) then |w| = d, which gives nmd = rmd+d so that 1 = (n—r)m,
and again, this has no solution. Finally, if d is odd, then || = |y| = 2md
and |w| = 4d. Hence 2nmd = 2rmd + 4d so that 2 = (n — r)m, which also
has no solution.

Finally, we consider the case where m = 1. If char K = 2, or if char K # 2
and d = 0 (mod 4) or d is odd, then Proposition implies that w = xy, so
that Zg(E(Aq)) = K[z, y]. So suppose that char K # 2 and d = 2 (mod 4).
Then |z| = |y| = d = |w| with w? = exy where ¢ = Hi/jl(qk e Qhad1) !
Then we have nd = rd+d so that r = n—1. We may choose n minimal so that
folz,y)+ fi(z,y)w = 0 with deg fo(x,y) = nd, deg fi(z,y) = (n—1)d. Write
fo(z,y) = Y0 obiz'y™ " and fi(z,y) = >y ! bxly" i1 with by, by € K.
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We now apply the same argument as that used above for the case m = 2,
to get a contradiction to the minimality of n.

Thus there are no additional relations among the generators z,y, w, so
it follows that Zg(E(Aq)) = K[z, y, w]/(wP — czy). =

The next stage is to determine Zg(E(Aq)) in the case where m is even
or char K = 2.

PROPOSITION 2.4. Suppose that  is a primitive dth root of unity and
that m is even or char K = 2. Then, keeping the notation of Proposition[2.2),

Zg(E(Aq)) = Kz, y, w]/{w™ — exy),
where & = (=1)™ /2 [T T (g -+ Qira—1) ™!

Proof. If m is even or char K = 2, then (%0 = (—1)™° = 1 and (% =
(—=1)™%0 = 1. Thus d|sp and d|tg. We also have sy = t9 (mod m), so
to = so + rm for some integer . We know c¢; = (—1)%0(q1 -+ q,) teo =
(—=1)% (g1 - qsy) teo. If m is even then sg and tg have the same parity, so
we have (—1)% = (—1)%. Hence q1 -+ q, = q1 - qs,- Thus, if tqg > s, we
have qsy+1---q,, = 1, and if s9 > to, then g¢+1---gs, = 1. Hence, in both

cases, (" =1 and d|r. Thus ty = sp + hdm for some integer h.
Write z € Zg(E(Aq)) as z = Zmol 726k, Suppose first that sp =

to =0. Then ¢; =cg fort =1,... — 1, and hence z = ¢gl. Now suppose
that so = 0 but tg =% 0. Then z = Z 0 cl5t° with tg = hdm for some h > 1
and ¢; = (—1)%¢y for i = 0,. — 1. Since m is even or char K = 2, we

have ¢; = ¢o for all ¢ and so z = ¢o Y ;" ! Shdm — 00(2?;_01 §dmyh = coyh.
Similarly, if g = 0 but sg # 0, then so = hdm for some h > 1 and z = coa™.

So suppose now that sqg # 0 and ¢ty # 0. Without loss of generality,
assume that tg > sg so tg = sg + hdm for some integer h > 0. Recalling that

(1 = (-1t

3
.

2= (1" J[ @k thsso—1) " c0r}57°
1=0 k=1
m—1 ’ i
= ( 1)150 H(qk . qursofl) Co%o(ssoé‘hdm
1=0 k=1
m—1 ) { m—1 h
= 00< > (=1 [ (ax - QkJrsofl)_l’YfO(SiSO) ( > 55”")
=0 k=1 =0
m—1 ' 7
= CO( Z (=1)*% H(qk e qursofl)il'YiSO(SfO)yh.
=0 k=1

Write sop = adm + s with 0 < s < dm. Then (using again that m is even or
char K = 2) we have (—1)% = (—1)*, and qx - - - Qryso-1 = Cqr - Qrrs_1 =
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qk " " Qk+s— 1 AISO 80550 = (’)/ZJrSS(SZsiSS)(SS = 'yf(zj Zo ;5 dméadm)és

Now Y7y 7tmoptn = (23" o m) (ST 69 dm) = oy So 47050 =
vioix*y™ by Proposition [2.2| Thus it is sufficient to consider
m—1 A
2= P [ drrs—1) 71305
i=0 k=1

where 0 < s < dm — 1.
Now d|sg so d|s, and thus s € {0,d,2d,...,(m — 1)d}. Let s = jd and
define

m—1

_1_jdgjd
=) (- ”dH o Qgja—1) 06!

=0
forij,l,...,m.If]:()thenz(]:l,iszlthenzlzw, and if j =m
then

m—1 %
— Z (_1)imd H(Qk . Qk+md—1) d(smd Z ,Ylmd(smd
1=0 k=1

Moreover, it is easy to verify that

zZjw = (—1)jd l_I(q;c . ~qk+d_1)_lzj+1 for j=0,1,...,m—1.

We also have
i—1 1d

L
—1)Zi= ld(H H(Qk“'kaer—l)_l)zj for j=0,1,...,m—1.

1=1 k=1
Hence Zg (E(Aq)) is generated as an algebra by 1, z,y, w with
m—1 ld

w™ = (*1)md/2( 1T I a - Qk+d_1)_1)xy = exy.

=1 k=1
The result now follows from Lemma [2.3] =

We now consider the case where m is odd and char K # 2.

PROPOSITION 2.5. Suppose that ¢ is a primitive dth root of unity, m is
odd and char K # 2. Then, keeping the notation of Proposition 2.2}

[ Klz,y,w]/(w™ —exy) if d=0 (mod 4) ord is odd,
ZalB(0) = | K.y, wl/(w? — zzy) if d =2 (mod 4),
where

iy chd (@ Qhya—1)™t if d=0 (mod 4),

— ld/2 _ .
€= i k /1(% “Qkd—1)"" ifd =2 (mod 4),
m—1

=1 k:l(Qk"‘Qk—f—Qd—l)_l if d is odd.
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Proof. From the conditions (%0 = (—1)™% and ¢l = (—1)™% we get
(%% =1 = (2% which gives d | 259 and d | 2tg. We also have sg = to (mod m),
so tg = 8o +rm for some integer r. We know that c¢; = (—1)*°(g1 - -~ q1,) "co
= (=1)lo (g - qso)_lco. If tg > so, we have qso41-- G, = (—1)%07% and if
so > to, we have qyy41 -+ qs, = (—1)%0 7t = (—1)%~%0_ Hence, in both cases,
¢" = (=1)t=%0 Thus d|2r and so dm|2(tgp — so). Now write s = adm + s
and tg = fdm +t with 0 < s,t < dm. Then dm | 2(t — s). Moreover, we may
assume without loss of generality that ¢ > s, so that 2(t — s) € {0,dm}.

We wish to show that 2(t—s) = 0. So, we assume first that 2(t—s) = dm
and aim for a contradiction. Since m is odd, 2(t — s) = dm implies that d
is even. In particular, tg — sp and ¢t — s have the same parity. Moreover,
(—=1)to—s0 = ¢ = ¢llo=so)/m — ((t=s)/m — ¢d/2 — _1 Thus t — s is odd
and d/2 is odd. But m is odd, so we can also use our first conditions to get

_1)so+to — (_1)m(80+t0) — (_1)m50(_1)mt0 — C80+t0 Cs+t C2S+ (t—s) —
¢2sH(dm/2) — ¢25(_1)m = (25, Thus, squaring this identity gives 1 = ¢*°
so that d|4s and hence d/2|2s. But d/2 is odd so d/2|s and we may set
s = dl/2 for some integer [. However, if s and therefore [ are both even,
we get 1 = (=1)° = (=1)%* = ¢ = ¢* = (A2 = (—pHtm = -,
a contradiction, and if s and therefore [ are both odd, then ¢ is even and we
get 1 = (=1)t = (=1)fo = ¢% = ¢5 = ¢l4/2 = (—1)! = —1, a contradiction.
Thus 2(t — s) # dm.

Therefore 2(t — s) = 0 and hence t = s. In this case, 1 = ¢(@=Adm —
¢so—to = (—1)mto=s0) = (_1)fo—s0 = (—1)B=dm 55 od and Gd have the
same parity. Moreover, (* = (%0 = (—1)t0 so d|2s with 0 < 2s < 2dm.
Hence 2s = Id for some integer [ with 0 <[ < 2m. If 2s = Id with [ odd,
then d is even and —1 = (=1)! = (V) = ¢85 = ¢ = (—1)lo = (=1)° =
(—1)"/2 = (=1)%2 50 d/2 is odd. On the other hand, if 25 = Id with [ even,
then 1 = CH4/2 2 ¢ = (%0 = (—1)f0 = (—1)7+9d — (—1)W/2+0)d 50 (3 1 1/2)d
is even, and consequently («a + [/2)d is even. In this case, we also see that
to is even.

We are now able to describe the elements of Zg(E(Aq)). Recall that
a typical homogeneous non-zero element z € Zg (E(Aq)) has the form

—_

%
(—1)o H(Qk e Qtso-1) 008
k=1
' A
— (_1)7’t0 H(qk_ e qk“rS*l) cofylo(sto
k=1

3

N
|
i
ing
o

3

Il
o

7

for some ¢y € K*. We keep the notation of Proposition when referring
to x,y,w
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If d is odd, then [ and ty are even, so
m—1 ¢
_ dm+1d/2 ¢Bdm-+1d/2
z= Z H(Qk"'Qk+ld/2—1) Loy e 5,-5 et
i=0 k=1
with «, 3 integers such that o + /2 and § + /2 are even and 0 < [/2 <
m — 1. If « is even and we let [/2 = 2L, then z is a scalar multiple of
/2yl If o is odd and we let 1/2 = L then z is a scalar multiple of
gle=1)/2(B=1)/2y,(m+L)/2
If d is even with d = 0 (mod 4), then [ and ¢y are even. Then 0 < [/2 <
m — 1 and
=T 1d/2 (fdm-+1d
_ d 2 2
z = Z H(Qk “ Qkld/2-1) 1007? e 5? et
i=0 k=1

with «, 3 integers. Hence z is a scalar multiple of xayﬁfwl/ 2,

Finally, if d is even with d = 2 (mod 4), then [ and ¢y have the same
parity, so that

m—1 7

2 - dm~+1d/2 oBdm+1d/2

2= Z(—l)hH(Qk“'Qkﬂd/z—ﬂ Loy 2dm /5iﬁm /
i=0 k=1

with «, 8 and [ integers such that 0 <[ < 2m — 1. In this case, z is a scalar
multiple of 2%y w!.

Thus Zg (E(Aq)) is generated as an algebra by 1,z,y and w, where
z,y,w are as in Proposition It remains to verify the relations of the
form wP = exy, for appropriate ¢ € K* and positive integer p. The proofs
are straightforward and left to the reader. The final description now follows
from Lemma 2.3

We summarize Propositions and [2.5] in the following result.

THEOREM 2.6. Letq = (q0,q1,---,qm—1) € (K*)™ and { = qoq1 - Gm—1-
If ¢ is not a root of unity then Zy(E(Aq)) = K. Now suppose that ¢ is a
primitive dth root of unity.

(1) If m is even or if char K = 2, then
Zg(E(Aq)) = Kz, y, w]/(w™ — ezy),

where & = (=12 T[T (k- ghra1) ™"
(2) If m is odd and char K # 2, then
Zar(E(Aq))
[ K[z,y,w]/(w™ —exy) if d=0 (mod 4) ord is odd,
B { Kz, y, w]/{w®™ — cxy) if d =2 (mod 4),
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where
?iil Zd (k- “Qrid—1)"'  ifd=0 (mod 4),
— ld _ X
€= e I /?(Qk “Qktd—1)"" ifd =2 (mod 4),
m—1

=1 k:l(Qk"'Qk+2d—1)_1 if d is odd.

3. The Hochschild cohomology ring modulo nilpotence of Aq.
We begin with the following corollary of Theorem

COROLLARY 3.1. Let q = (q0,q1s---,qm-1) € (K*)™ and let { =
q0q1 - - gm—1. Then E(Aq) is finitely generated over Zg(E(Aq)) if and only
if C is a root of unity.

Proof. Since Aq is a Koszul algebra, E(Aq) is generated as a K-algebra
in degrees 0 and 1. If { is not a root of unity, then E(Aq) is not a finitely
generated module over Zg (E(Aq)) since E(Aq) is an infinite-dimensional
vector space. If ( is a root of unity, then it is straightforward to verify
that the set {’ys(st |0 <i,j <m-—1,0<s,t<|z|}is a sufficient (but
not necessarily mlmmal) generating set for E(Aq) as a Zg (F(Aq))-module,
where the degree of z is as given in Proposition 2.2 =

Using [3, [10], we derive HH*(A,) /N = Zg (E(Aq))/Nz, where Nz de-
notes the ideal of Zg(E(Aq)) which is generated by all nilpotent elements. It
is clear from Theorem [2.6| that Nz = 0 so that HH*(A,) /N = Zg(E(Aq)).
Thus we have the following result.

THEOREM 3.2. Letq = (q0,q1,---,qm—1) € (K*)™ and { = qoq1 - - Gm—1-
If ¢ is not a root of unity then HH*(Aq)/N = K. If ¢ is a root of unity,
then HH*(Aq)/N is a finitely generated commutative K-algebra of Krull
dimension 2.

In particular, the conjecture of [I0] holds for the class of algebras Aq for
all g € (K*)™
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