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HOCHSCHILD COHOMOLOGY OF SOCLE DEFORMATIONS OF
A CLASS OF KOSZUL SELF-INJECTIVE ALGEBRAS

BY

NICOLE SNASHALL (Leicester) and RACHEL TAILLEFER (Saint-Étienne)

Abstract. We consider the socle deformations arising from formal deformations of
a class of Koszul self-injective special biserial algebras which occur in the study of the
Drinfeld double of the generalized Taft algebras. We show, for these deformations, that
the Hochschild cohomology ring modulo nilpotence is a finitely generated commutative
algebra of Krull dimension 2.

Introduction. Let K be a field. For m ≥ 1, let Q be the quiver with
m vertices, labelled 0, 1, . . . ,m− 1, and 2m arrows as follows:
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Let ai denote the arrow that goes from vertex i to vertex i + 1, and
let āi denote the arrow that goes from vertex i + 1 to vertex i, for each
i = 0, . . . ,m − 1 (with the obvious conventions modulo m). We denote the
trivial path at vertex i by ei. Paths are written from left to right.

We define Λ to be the algebra KQ/I where I is the ideal of KQ gen-
erated by aiai+1, āi−1āi−2 and aiāi − āi−1ai−1, for i = 0, . . . ,m − 1, where
the subscripts are taken modulo m. These algebras are Koszul self-injective
special biserial algebras and as such play an important role in various as-
pects of representation theory of algebras. In particular, for m even, this
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algebra occurred in the presentation by quiver and relations of the Drinfeld
double of the generalized Taft algebras studied in [5], and in the study of the
representation theory of Uq(sl2), for which see [4, 8, 12, 13]. The Hochschild
cohomology ring of the algebra Λ was determined in [11] (where Λ = Λ1 in
that notation).

In this paper we study socle deformations Λq of the algebra Λ, where
q = (q0, q1, . . . , qm−1) ∈ (K∗)m. The first section shows that Λq arises from
a formal deformation with infinitesimal in HH2(Λ), and further, that it is
a socle deformation of Λ, that is, Λq is self-injective and Λq/soc(Λq) ∼=
Λ/soc(Λ). The algebras Λq for m = 1 were studied in [2], where they were
used to answer negatively a question of Happel, in that their Hochschild co-
homology ring is finite-dimensional but they are of infinite global dimension
when q ∈ K∗ is not a root of unity.

For a finite-dimensional K-algebra Γ with Jacobson radical r, the Hoch-
schild cohomology ring of Γ is given by

HH∗(Γ ) = Ext∗Γ e(Γ, Γ ) =
⊕
n≥0

ExtnΓ e(Γ, Γ )

with the Yoneda product, where Γ e = Γ op ⊗K Γ is the enveloping algebra
of Γ . Since all tensors are over the field K, we write ⊗ for ⊗K throughout.
We denote by N the ideal of HH∗(Γ ) which is generated by all homogeneous
nilpotent elements. Thus HH∗(Γ )/N is a commutative K-algebra. The Ext
algebra E(Γ ) is defined by

E(Γ ) = Ext∗Γ (Γ/r, Γ/r) =
⊕
n≥0

ExtnΓ (Γ/r, Γ/r).

The graded centre of E(Γ ) is denoted Zgr(E(Γ )) and is generated by all
homogeneous elements z ∈ ExtnΓ (Γ/r, Γ/r) for which zg = (−1)mngz for
all g ∈ ExtmΓ (Γ/r, Γ/r). The natural ring homomorphism HH∗(Γ ) → E(Γ )
has image contained in Zgr(E(Γ )); it was shown in [3] (and see [7] for a
generalization) that the image is precisely Zgr(E(Γ )) when Γ is a Koszul
algebra.

Section 2 describes explicitly the structure of Zgr(E(Λq)), the graded
centre of the Ext algebra of Λq, for allm ≥ 1, q ∈ (K∗)m and in all character-
istics (Theorem 2.6). In the final section, we determine the Hochschild coho-
mology ring modulo nilpotence of the algebras Λq for all q = (q0, . . . , qm−1)
∈ (K∗)m, and show, in Theorem 3.2, that HH∗(Λq)/N is a commutative
finitely generated K-algebra of Krull dimension 2 when q0 · · · qm−1 is a root
of unity. It was conjectured in [10] that the Hochschild cohomology ring
modulo nilpotence of any finite-dimensional algebra is always a finitely gen-
erated K-algebra. Although it was shown by Xu in [14] (and see [9]) that
this conjecture is not true in general, with a counterexample being provided
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of a Koszul algebra that is not self-injective, the current paper gives a class
of Koszul self-injective algebras where the Hochschild cohomology ring mod-
ulo nilpotence is a finitely generated K-algebra and the conjecture of [10]
holds. This provides a further contribution to the study of the structure of
the Hochschild cohomology ring for Koszul algebras.

1. Socle deformations of Λ. Let Λ = KQ/I where I is the ideal ofKQ
generated by aiai+1, āi−1āi−2 and aiāi− āi−1ai−1, for i = 0, 1, . . . ,m−1. We
write o(α) for the trivial path corresponding to the origin of the arrow α,
so that o(ai) = ei and o(āi) = ei+1. We write t(α) for the trivial path
corresponding to the terminus of the arrow α, so that t(ai) = ei+1 and
t(āi) = ei. Recall that a non-zero element r ∈ KQ is said to be uniform if
there are vertices v, w such that r = vr = rw. We then write v = o(r) and
w = t(r).

A minimal projective bimodule resolution (Pn, ∂n) for Λ was given in
[11, Theorem 1.2]. With the notation of [11], the projective P 2 is described
by

P 2 =
m−1⊕
i=0

2⊕
r=0

Λo(g2
r,i)⊗ t(g2

r,i)Λ

where

g2
0,i = aiai+1, g2

1,i = aiāi − āi−1ai−1, g2
2,i = −āi−1āi−2

for i = 0, . . . ,m − 1. We remark that the set {g2
r,i | i = 0, . . . ,m − 1, r =

0, 1, 2} is a minimal set of uniform relations which generate I. Then, from
[11, Propositions 4.1, 5.1, 5.6, 6.2 and Theorem 7.2], for all m ≥ 1, there is an
element π in HH2(Λ) which is represented by the bimodule map π : P 2 → Λ
in which the element e0⊗e0 ∈ Λo(g2

1,0)⊗t(g2
1,0)Λ has image a0ā0 ∈ Λ and all

other summands of P 2 have zero image. We label the idempotent generators
of the summands of P 2 as follows: for each i = 0, 1, . . . ,m−1 and r = 0, 1, 2,
write ei ⊗r,i ei+2−2r for the idempotent

o(g2
r,i)⊗ t(g2

r,i) = ei ⊗ ei+2−2r

in the summand Λo(g2
r,i) ⊗ t(g2

r,i)Λ. When describing a map P 2 → Λ, we
omit summands whose image is zero. Thus we may write π as the map

π : e0 ⊗1,0 e0 7→ a0ā0.

Now, g2
1,0 = a0ā0 − ām−1am−1. Since Λ is Koszul, by [1, Proposition 3.7],

the element π gives rise to a unique formal deformation Λ(T ) of Λ, which,
when we specialize the deformation parameter T to t ∈ K, gives the algebra
Λ(t) = KQ/I(t), where I(t) is the ideal ofKQ generated by aiai+1, āi−1āi−2,
aj āj − āj−1aj−1 and (1 − t)a0ā0 − ām−1am−1 for i = 0, . . . ,m − 1, j =
1, . . . ,m−1. We restrict ourselves to considering the case t 6= 1, since if t = 1,
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then the algebra Λ(t) is not self-injective. In the case where t = 0, we recover
the original algebra Λ. The algebra Λ(t) for t ∈ K \ {1} is a Koszul self-
injective algebra, and we can easily verify that Λ/soc(Λ) ∼= Λ(t)/soc(Λ(t)),
so that Λ(t) is a socle deformation of Λ.

This naturally leads us to introduce the algebra Λq which we will study
in this paper. Suppose m ≥ 1. For each q = (q0, q1, . . . , qm−1) ∈ (K∗)m, we
define Λq = KQ/Iq, where Iq is the ideal of KQ generated by

aiai+1, āi−1āi−2, qiaiāi − āi−1ai−1 for i = 0, . . . ,m− 1.

Then Λ(t) = Λq with q = (1 − t, 1, . . . , 1). We are assuming each qi is
non-zero since we wish to study self-injective algebras. The algebra Λq is a
Koszul self-injective socle deformation of Λ, and Λq = Λ when q = (1, . . . , 1).

Now, for m ≥ 2 and q = (1, q1, 1, . . . , 1), the algebra Λ(1,q1,1,...,1) comes
from a formal deformation of Λ via the element of HH2(Λ) which is repre-
sented by the map

η1 : P 2 → Λ, e1 ⊗1,1 e1 7→ a1ā1.

It can be easily verified using [11] that η1 and π represent the same element
in HH2(Λ). More generally, for j = 1, . . . ,m− 1 the map

ηj : P 2 → Λ, ej ⊗1,j ej 7→ aj āj ,

also represents the element π ∈ HH2(Λ). Thus the algebra Λ(q0,q1,...,qm−1)

comes from a formal deformation of Λ by a scalar multiple of the ele-
ment π. But Λ(q0,q1,...,qm−1) can also be obtained from a formal deforma-
tion of Λ where we only replace the relation g2

1,0 = a0ā0 − ām−1am−1 by
(q0 · · · qm−1)a0ā0− ām−1am−1 with q0 · · · qm−1 ∈ K∗. Indeed, we can give an
explicit isomorphism Λ(q0,q1,...,qm−1) → Λ(q0q1···qm−1,1,...,1) as the algebra iso-
morphism induced by ai 7→ q0q1 · · · qiai, āi 7→ āi. Set ζ = q0q1 · · · qm−1 ∈ K∗.
Then Λ(q0,q1,...,qm−1)

∼= Λ(ζ,1,...,1) = Λ(1− ζ).
However, there are other elements of HH2(Λ) which we need to consider

to see if they too give rise to a socle deformation of Λ. For m ≥ 4 and using
[11, Propositions 2.3, 2.4], we have

dim HH2(Λ) =
{

1 if m is odd and charK 6= 2,
2 if m is even, or if m is odd and charK = 2.

Then, for m ≥ 4 and from [11, Propositions 4.1, 5.1, 5.6], HH2(Λ) has basis{ {π} if m is odd and charK 6= 2,
{χ, π} if m is even, or if m is odd and charK = 2,

where
χ : ei ⊗1,i ei 7→ (−1)iei for i = 0, . . . ,m− 1.

Let m ≥ 4 and let η ∈ HH2(Λ). Then, by [1, Proposition 3.7], η is the
infinitesimal of the formal deformation of Λ which, when the deformation
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parameter is specialized to t ∈ K, gives the algebra KQ/Jη, where Jη is the
ideal in KQ generated by aiai+1, āi−1āi−2, aiāi − āi−1ai−1 − tη(ei ⊗1,i ei)
for i = 0, . . . ,m− 1.

Theorem 1.1. Let m ≥ 4, η ∈ HH2(Λ) and Jη be as above. Then KQ/Jη
is a socle deformation of Λ if and only if η ∈ sp{π}.

Proof. As we have seen above, we can set η = b1π + b2χ for some b1, b2
in K. Then the ideal Jη is generated by aiai+1, āi−1āi−2, aj āj − āj−1aj−1−
t(−1)jb2ej , a0ā0 − ām−1am−1 − tb2e0 − tb1a0ā0 for i = 0, . . . ,m − 1 and
j = 1, . . . ,m − 1. Therefore the algebra Λ̃ := KQ/Jη has a K-basis given
by {ei, ai, āi, aiāi | i = 0, . . . ,m− 1}.

We first assume that b2 6= 0. Note that, for all i = 0, . . . ,m− 2, we have

aiāiai = ai(ai+1āi+1 + (−1)i+1tb2ei+1) = (−1)i+1tb2ai

and similarly, for i = m − 1, am−1ām−1am−1 = (−1)mtb2am−1. Therefore,
for any i = 0, . . . ,m− 1, Λ̃ai has a K-basis given by {ai, āiai}. Hence Λ̃ai is
2-dimensional and it is easy to check that it is simple. We now show that the
modules Λ̃ai for i = 0, . . . ,m− 1 are pairwise non-isomorphic. Suppose that
there is a non-zero Λ̃-module morphism f : Λ̃ai → Λ̃aj . Then eif(ai) = f(ai)
and f(ai) ∈ sp{aj , ājaj} so that i = j or i = j + 1. If, moreover, f is an
isomorphism, we have a non-zero morphism Λ̃aj → Λ̃ai, and we deduce that
j = i or j = i+ 1. Therefore there is an isomorphism f : Λ̃ai → Λ̃aj if and
only if i = j. Thus we have m pairwise non-isomorphic 2-dimensional simple
Λ̃-modules, so that dimK soc(Λ̃) ≥ 2m > m = dimK soc(Λ). Hence Λ̃/soc(Λ̃)
is not isomorphic to Λ/soc(Λ) so that Λ̃ and Λ are not socle equivalent.

Now assume that b2 = 0 and b1 6= 0. Since a socle deformation of Λ must
be a self-injective algebra, necessarily tb1 6= 1. It is easy to check that the
socle of Λ̃ is the submodule generated by the aiāi for i = 0, . . . ,m − 1 so
that Λ̃/soc(Λ̃) ∼= Λ/soc(Λ), that is, Λ̃ is a socle deformation of Λ.

Thus, for m ≥ 4, the socle deformations of Λ which arise from formal de-
formations are precisely the algebras Λq, and the infinitesimal of the formal
deformation is (a scalar multiple of) π ∈ HH2(Λ).

For m = 1, 2, 3, there may be other socle deformations of Λq which come
from formal deformations. However, for m = 3, it can be shown that there
are no additional socle deformations arising in this way. But, for m = 2, the
elements π2,−1 and π2,1 in HH2(Λ), which are given in [11, Proposition 6.2]
by

π2,−1 : e0 ⊗2,0 e0 7→ a0ā0, π2,1 : e0 ⊗0,0 e0 7→ a0ā0,

both give rise to the same socle deformation Λ′ of Λ, and moreover Λ′ is not
isomorphic to Λq. We do not consider any additional socle deformations for
m = 1, 2 in this paper.
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Throughout this paper we suppose m ≥ 1, and consider the socle de-
formation Λq of Λ. We write Λq = KQ/Iq, where Iq is the ideal generated
by aiai+1, āi−1āi−2 and qiaiāi − āi−1ai−1 for i = 0, . . . ,m − 1, and where
q = (q0, q1, . . . , qm−1) ∈ (K∗)m and ζ = q0q1 · · · qm−1 ∈ K∗. In the case
m = 1, where the algebra Λ(q) was considered in [2], different phenom-
ena were exhibited depending on whether or not q was a root of unity.
Correspondingly, we will see in this paper that we obtain different results
depending on whether or not ζ is a root of unity.

2. The graded centre of the Ext algebra of Λq. We start by de-
scribing the Ext algebra E(Λq). In Proposition 2.2 we give some specific el-
ements which lie in Zgr(E(Λq)). The remaining results lead to Theorem 2.6,
in which we prove that these elements generate the graded centre of the Ext
algebra, thus enabling us to give a complete description of Zgr(E(Λq)). The
algebras Λq were studied in [2] in the case m = 1; this case is also included
here.

The algebra Λq is Koszul, so, from [6, Theorem 2.2], the Ext algebra
E(Λq) is the Koszul, dual of Λq and is given explicitly by quiver and relations
as E(Λq) ∼= KQop/I⊥q , where Q is the quiver of Λq and I⊥q is the ideal of
KQop generated by the orthogonal relations to those of Iq. Since left KQop-
modules are right KQ-modules, we may consider E(Λq) as the quotient of
KQ by the ideal generated by q−1

i aiāi+ āi−1ai−1 for i = 0, . . . ,m−1, where
we continue to write our paths from left to right. Let γni denote the path
aiai+1 · · · ai+n−1 of length n in KQ which starts at vertex i and in which
the subscripts are taken modulo m. Similarly, we let δni denote the path
āi+n−1 · · · āi+1āi of length n in KQ which ends at vertex i and in which the
subscripts are again taken modulo m. Thus a typical monomial in E(Λq)
has the form γsi δ

t
j for some integers s, t ≥ 0 and 0 ≤ i, j ≤ m− 1.

Let z ∈ Zgr(E(Λq)). Then z =
∑m−1

i=0 eizei. For each i = 0, . . . ,m − 1,
a typical monomial in eiE(Λq)ei has the form γsi δ

t
i for some integers s, t ≥ 0

where s ≡ t (mod m). So we may write z =
∑m−1

i=0 ciγ
si
i δ

ti
i where ci ∈ K,

si, ti ≥ 0 and si ≡ ti (mod m) for i = 0, . . . ,m − 1. Using the length
grading on paths in E(Λq), we see that Zgr(E(Λq)) is generated by length
homogeneous elements. Thus we may assume that our typical element z ∈
Zgr(E(Λq)) has the form

z =
m−1∑
i=0

ciγ
si
i δ

ti
i

in degree s0+t0, where ci ∈ K, si, ti ≥ 0, si ≡ ti (mod m) and si+ti = s0+t0
for i = 0, . . . ,m − 1. Keeping our convention on subscripts modulo m, we
have c0 = cm, s0 = sm and t0 = tm.
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Now, for 0 ≤ j ≤ m− 1, we have

ajz = cj+1ajγ
sj+1

j+1 δ
tj+1

j+1 = cj+1γ
sj+1+1
j δ

tj+1

j+1

and
zaj = cjγ

sj

j δ
tj
j aj = (−1)tjcj(qj+1 · · · qj+tj )−1γ

sj+1
j δ

tj
j+1.

Since ajz = (−1)s0+t0zaj , for all j = 0, . . . ,m − 1 we have either cj = 0
or cj+1 = (−1)sjcj(qj+1 · · · qj+tj )−1, sj = sj+1, tj = tj+1. If cj = 0 for all
j = 0, . . . ,m − 1, then z = 0. So we assume now that z 6= 0. Then, for j =
0, . . . ,m − 1, we have sj = s0, tj = t0 and cj+1 = (−1)s0cj(qj+1 · · · qj+t0)−1

6= 0. Thus z =
∑m−1

i=0 ciγ
s0
i δ

t0
i 6= 0.

For 0 ≤ j ≤ m− 1, we have

ājz = cj ājγ
s0
j δ

t0
j = (−1)s0cj(qj+1 · · · qj+s0)−1γs0j+1δ

t0+1
j

and
zāj = cj+1γ

s0
j+1δ

t0
j+1āj = cj+1γ

s0
j+1δ

t0+1
j .

Since ājz = (−1)s0+t0zāj , we also have cj+1 = (−1)t0cj(qj+1 · · · qj+s0)−1 for
all j = 0, . . . ,m− 1.

Thus

z =
m−1∑
i=0

ciγ
s0
i δ

t0
i

with cj+1 = (−1)s0cj(qj+1 · · · qj+t0)−1 = (−1)t0cj(qj+1 · · · qj+s0)−1 for j =
0, . . . ,m− 1, and s0 ≡ t0 (mod m).

From the equations cj+1 = (−1)s0cj(qj+1 · · · qj+t0)−1 we have

c0 = (−1)ms0(q0 · · · qt0−1)−1(q1 · · · qt0)−1(qm−1 · · · qm−2+t0)−1c0.

Since c0 6= 0 and ζ = q0 · · · qm−1 we get 1 = (−1)ms0ζ−t0 , so

ζt0 = (−1)ms0 .

In a similar way, the equations cj+1 = (−1)t0cj(qj+1 · · · qj+s0)−1 imply that

ζs0 = (−1)mt0 .

It now follows immediately that if ζ is not a root of unity then s0 =
t0 = 0, and so cj = c0 for all j. Hence z = c01 with c0 ∈ K. This gives the
following result.

Proposition 2.1. If ζ is not a root of unity then Zgr(E(Λq)) = K.

We now assume that ζ is a root of unity, and let d ≥ 1 be minimal
such that ζd = 1. We use the equations in cj and cj+1 to write each ci
in terms of c0 for i = 0, . . . ,m − 1. Thus we summarize the information
about z ∈ Zgr(E(Λq)) as follows. We have z =

∑m−1
i=0 ciγ

s0
i δ

t0
i with ci =

(−1)is0
∏i
k=1(qk · · · qk+t0−1)−1c0 = (−1)it0

∏i
k=1(qk · · · qk+s0−1)−1c0, ζs0 =

(−1)mt0 , ζt0 = (−1)ms0 and s0 ≡ t0 (mod m).
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The next step is to verify that specific elements do indeed lie in the
graded centre of the Ext algebra. The proof is straightforward and is omitted.

Proposition 2.2. Suppose that ζ is a primitive dth root of unity.

(1) Suppose that m is even or charK = 2. Let

x =
m−1∑
i=0

γdmi , y =
m−1∑
i=0

δdmi ,

w =
m−1∑
i=0

(−1)id
i∏

k=1

(qk · · · qk+d−1)−1γdi δ
d
i .

Then x, y, w ∈ Zgr(E(Λq)). Moreover,

wm = εxy where ε = (−1)md/2
m−1∏
l=1

ld∏
k=1

(qk · · · qk+d−1)−1.

(2) Suppose that m is odd and charK 6= 2. Let

x =

{∑m−1
i=0 γdmi if d is even,∑m−1
i=0 γ2dm

i if d is odd,

y =

{∑m−1
i=0 δdmi if d is even,∑m−1
i=0 δ2dm

i if d is odd,

w =
m−1∑
i=0

(−1)2σi
i∏

k=1

(qk · · · qk+σd−1)−1γσdi δσdi

where

σ =


1 if d ≡ 0 (mod 4),
1/2 if d ≡ 2 (mod 4),
2 if d is odd.

Then x, y, w ∈ Zgr(E(Λq)). Moreover,{
wm = εxy if d ≡ 0 (mod 4) or d is odd,
w2m = εxy if d ≡ 2 (mod 4),

where

ε =


∏m−1
l=1

∏ld
k=1(qk · · · qk+d−1)−1 if d ≡ 0 (mod 4),∏2m−1

l=1

∏ld/2
k=1(qk · · · qk+d−1)−1 if d ≡ 2 (mod 4),∏m−1

l=1

∏2ld
k=1(qk · · · qk+2d−1)−1 if d is odd.

The main result of this section is Theorem 2.6, which shows that Propo-
sition 2.2 contains precisely the information needed to fully describe the
graded centre Zgr(E(Λq)). Propositions 2.4 and 2.5 show that, whenever
ζ is a root of unity, Zgr(E(Λq)) is indeed generated by 1, x, y and w as
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a K-algebra. The next result, Lemma 2.3, is required to show that the only
relation between the generators of Zgr(E(Λq)) is the relation of the form
wp = εxy as given in Proposition 2.2.

Lemma 2.3. With the notation of Proposition 2.2, assume Zgr(E(Λq))
is generated as an algebra by the elements 1, x, y and w with homogeneous
relation wp = εxy, for appropriate ε ∈ K∗ and positive integer p. Then

Zgr(E(Λq)) = K[x, y, w]/〈wp − εxy〉.
Proof. Using the length grading on E(Λq), we know that Zgr(E(Λq)) is

a homogeneous quotient of K[x, y, w]/〈wp − εxy〉, where ε, p are as given
in Proposition 2.2. Now, the elements xiyn−i, for i = 0, . . . , n, are linearly
independent in E(Λq). So any additional relation in Zgr(E(Λq)) must be
homogeneous of the form

f0(x, y) + f1(x, y)w + · · ·+ fp−1(x, y)wp−1 = 0,

where fi(x, y) ∈ K[x, y] and deg f0(x, y) = deg(f1(x, y)w) = · · · =
deg(fp−1(x, y)wp−1). Thus deg f0(x, y) = deg f1(x, y) + |w|, and since |x|
= |y|, there are integers r, n with deg f0(x, y) = n|x| and deg f1(x, y) = r|x|.

In the case of m even or charK = 2 with m ≥ 2, we have |x| = |y| = md,
|w| = 2d, which gives nmd = rmd+ 2d, so that 2 = (n− r)m. Since m ≥ 2,
this implies m = 2 and r = n− 1. Then p = 2 and |x| = |y| = |w| = 2d. We
may choose n minimal so that f0(x, y) + f1(x, y)w = 0 with deg f0(x, y) =
2nd, deg f1(x, y) = 2(n− 1)d. Write f0(x, y) =

∑n
i=0 bix

iyn−i and f1(x, y) =∑n−1
i=0 b̃ix

iyn−i−1 with bi, b̃i ∈ K. Then f2
0 (x, y) = f2

1 (x, y)w2 = εf2
1 (x, y)xy.

Equating coefficients of x2n and y2n gives that b0 = 0 = bn. Thus f0(x, y) =
g(x, y)xy = ε−1g(x, y)w2 for some g(x, y) ∈ K[x, y]. Hence ε−1g(x, y)w2 +
f1(x, y)w = 0 so that ε−1g(x, y)w + f1(x, y) = 0, which contradicts the
minimality of n.

Now, suppose that m is odd with m ≥ 3, and charK 6= 2. If d is even,
we have |x| = |y| = md. If d ≡ 0 (mod 4), then |w| = 2d, which gives
nmd = rmd+ 2d so that 2 = (n− r)m. Since m ≥ 3 this has no solution. If
d ≡ 2 (mod 4) then |w| = d, which gives nmd = rmd+d so that 1 = (n−r)m,
and again, this has no solution. Finally, if d is odd, then |x| = |y| = 2md
and |w| = 4d. Hence 2nmd = 2rmd + 4d so that 2 = (n − r)m, which also
has no solution.

Finally, we consider the case where m = 1. If charK = 2, or if charK 6= 2
and d ≡ 0 (mod 4) or d is odd, then Proposition 2.2 implies that w = xy, so
that Zgr(E(Λq)) = K[x, y]. So suppose that charK 6= 2 and d ≡ 2 (mod 4).
Then |x| = |y| = d = |w| with w2 = εxy where ε =

∏d/2
k=1(qk · · · qk+d−1)−1.

Then we have nd = rd+d so that r = n−1. We may choose nminimal so that
f0(x, y)+f1(x, y)w = 0 with deg f0(x, y) = nd, deg f1(x, y) = (n−1)d. Write
f0(x, y) =

∑n
i=0 bix

iyn−i and f1(x, y) =
∑n−1

i=0 b̃ix
iyn−i−1 with bi, b̃i ∈ K.
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We now apply the same argument as that used above for the case m = 2,
to get a contradiction to the minimality of n.

Thus there are no additional relations among the generators x, y, w, so
it follows that Zgr(E(Λq)) = K[x, y, w]/〈wp − εxy〉.

The next stage is to determine Zgr(E(Λq)) in the case where m is even
or charK = 2.

Proposition 2.4. Suppose that ζ is a primitive dth root of unity and
that m is even or charK = 2. Then, keeping the notation of Proposition 2.2,

Zgr(E(Λq)) = K[x, y, w]/〈wm − εxy〉,

where ε = (−1)md/2
∏m−1
l=1

∏ld
k=1(qk · · · qk+d−1)−1.

Proof. If m is even or charK = 2, then ζs0 = (−1)mt0 = 1 and ζt0 =
(−1)ms0 = 1. Thus d | s0 and d | t0. We also have s0 ≡ t0 (mod m), so
t0 = s0 + rm for some integer r. We know c1 = (−1)s0(q1 · · · qt0)−1c0 =
(−1)t0(q1 · · · qs0)−1c0. If m is even then s0 and t0 have the same parity, so
we have (−1)s0 = (−1)t0 . Hence q1 · · · qt0 = q1 · · · qs0 . Thus, if t0 ≥ s0, we
have qs0+1 · · · qt0 = 1, and if s0 ≥ t0, then qt0+1 · · · qs0 = 1. Hence, in both
cases, ζr = 1 and d | r. Thus t0 = s0 + hdm for some integer h.

Write z ∈ Zgr(E(Λq)) as z =
∑m−1

i=0 ciγ
s0
i δ

t0
i . Suppose first that s0 =

t0 = 0. Then ci = c0 for i = 1, . . . ,m− 1, and hence z = c01. Now suppose
that s0 = 0 but t0 6= 0. Then z =

∑m−1
i=0 ciδ

t0
i with t0 = hdm for some h ≥ 1

and ci = (−1)it0c0 for i = 0, . . . ,m − 1. Since m is even or charK = 2, we
have ci = c0 for all i and so z = c0

∑m−1
i=0 δhdmi = c0(

∑m−1
i=0 δdmi )h = c0y

h.
Similarly, if t0 = 0 but s0 6= 0, then s0 = hdm for some h ≥ 1 and z = c0x

h.
So suppose now that s0 6= 0 and t0 6= 0. Without loss of generality,

assume that t0 ≥ s0 so t0 = s0 +hdm for some integer h ≥ 0. Recalling that
(−1)s0 = (−1)t0 ,

z =
m−1∑
i=0

(−1)it0
i∏

k=1

(qk · · · qk+s0−1)−1c0γ
s0
i δ

t0
i

=
m−1∑
i=0

(−1)is0
i∏

k=1

(qk · · · qk+s0−1)−1c0γ
s0
i δ

s0
i δ

hdm
i

= c0

(m−1∑
i=0

(−1)is0
i∏

k=1

(qk · · · qk+s0−1)−1γs0i δ
s0
i

)(m−1∑
i=0

δdmi

)h
= c0

(m−1∑
i=0

(−1)is0
i∏

k=1

(qk · · · qk+s0−1)−1γs0i δ
s0
i

)
yh.

Write s0 = αdm+ s with 0 ≤ s < dm. Then (using again that m is even or
charK = 2) we have (−1)s0 = (−1)s, and qk · · · qk+s0−1 = ζαdqk · · · qk+s−1 =
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qk · · · qk+s−1. Also, γs0i δ
s0
i = γsi (γ

s0−s
i+s δ

s0−s
i+s )δsi = γsi (

∑m−1
j=0 γαdmj δαdmj )δsi .

Now
∑m−1

j=0 γαdmj δαdmj = (
∑m−1

j=0 γαdmj )(
∑m−1

j=0 δαdmj ) = xαyα. So γs0i δ
s0
i =

γsi δ
s
i x
αyα by Proposition 2.2. Thus it is sufficient to consider

z =
m−1∑
i=0

(−1)is
i∏

k=1

(qk · · · qk+s−1)−1γsi δ
s
i

where 0 ≤ s ≤ dm− 1.
Now d | s0 so d | s, and thus s ∈ {0, d, 2d, . . . , (m− 1)d}. Let s = jd and

define

zj =
m−1∑
i=0

(−1)ijd
i∏

k=1

(qk · · · qk+jd−1)−1γjdi δ
jd
i

for j = 0, 1, . . . ,m. If j = 0 then z0 = 1; if j = 1 then z1 = w, and if j = m
then

zm =
m−1∑
i=0

(−1)imd
i∏

k=1

(qk · · · qk+md−1)−1γmdi δmdi =
m−1∑
i=0

γmdi δmdi = xy.

Moreover, it is easy to verify that

zjw = (−1)jd
jd∏
k=1

(qk · · · qk+d−1)−1zj+1 for j = 0, 1, . . . ,m− 1.

We also have

wj = (−1)
Pj−1

i=1 id
( j−1∏
l=1

ld∏
k=1

(qk · · · qk+d−1)−1
)
zj for j = 0, 1, . . . ,m− 1.

Hence Zgr(E(Λq)) is generated as an algebra by 1, x, y, w with

wm = (−1)md/2
(m−1∏
l=1

ld∏
k=1

(qk · · · qk+d−1)−1
)
xy = εxy.

The result now follows from Lemma 2.3.

We now consider the case where m is odd and charK 6= 2.

Proposition 2.5. Suppose that ζ is a primitive dth root of unity, m is
odd and charK 6= 2. Then, keeping the notation of Proposition 2.2,

Zgr(E(Λq)) =
{
K[x, y, w]/〈wm − εxy〉 if d ≡ 0 (mod 4) or d is odd,
K[x, y, w]/〈w2m − εxy〉 if d ≡ 2 (mod 4),

where

ε =


∏m−1
l=1

∏ld
k=1(qk · · · qk+d−1)−1 if d ≡ 0 (mod 4),∏2m−1

l=1

∏ld/2
k=1(qk · · · qk+d−1)−1 if d ≡ 2 (mod 4),∏m−1

l=1

∏2ld
k=1(qk · · · qk+2d−1)−1 if d is odd.
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Proof. From the conditions ζs0 = (−1)mt0 and ζt0 = (−1)ms0 , we get
ζ2s0 = 1 = ζ2t0 , which gives d | 2s0 and d | 2t0. We also have s0 ≡ t0 (mod m),
so t0 = s0 + rm for some integer r. We know that c1 = (−1)s0(q1 · · · qt0)−1c0

= (−1)t0(q1 · · · qs0)−1c0. If t0 ≥ s0, we have qs0+1 · · · qt0 = (−1)t0−s0 , and if
s0 ≥ t0, we have qt0+1 · · · qs0 = (−1)s0−t0 = (−1)t0−s0 . Hence, in both cases,
ζr = (−1)t0−s0 . Thus d | 2r and so dm | 2(t0 − s0). Now write s0 = αdm+ s
and t0 = βdm+ t with 0 ≤ s, t < dm. Then dm | 2(t− s). Moreover, we may
assume without loss of generality that t ≥ s, so that 2(t− s) ∈ {0, dm}.

We wish to show that 2(t−s) = 0. So, we assume first that 2(t−s) = dm
and aim for a contradiction. Since m is odd, 2(t − s) = dm implies that d
is even. In particular, t0 − s0 and t − s have the same parity. Moreover,
(−1)t0−s0 = ζr = ζ(t0−s0)/m = ζ(t−s)/m = ζd/2 = −1. Thus t − s is odd
and d/2 is odd. But m is odd, so we can also use our first conditions to get
(−1)s0+t0 = (−1)m(s0+t0) = (−1)ms0(−1)mt0 = ζs0+t0 = ζs+t = ζ2s+(t−s) =
ζ2s+(dm/2) = ζ2s(−1)m = −ζ2s. Thus, squaring this identity gives 1 = ζ4s

so that d | 4s and hence d/2 | 2s. But d/2 is odd so d/2 | s and we may set
s = dl/2 for some integer l. However, if s and therefore l are both even,
we get 1 = (−1)s = (−1)s0 = ζt0 = ζt = ζ(l+m)d/2 = (−1)l+m = −1,
a contradiction, and if s and therefore l are both odd, then t is even and we
get 1 = (−1)t = (−1)t0 = ζs0 = ζs = ζ ld/2 = (−1)l = −1, a contradiction.
Thus 2(t− s) 6= dm.

Therefore 2(t − s) = 0 and hence t = s. In this case, 1 = ζ(α−β)dm =
ζs0−t0 = (−1)m(t0−s0) = (−1)t0−s0 = (−1)(β−α)dm so αd and βd have the
same parity. Moreover, ζs = ζs0 = (−1)t0 so d | 2s with 0 ≤ 2s < 2dm.
Hence 2s = ld for some integer l with 0 ≤ l < 2m. If 2s = ld with l odd,
then d is even and −1 = (−1)l = (ζd/2)l = ζs = ζs0 = (−1)t0 = (−1)s =
(−1)ld/2 = (−1)d/2 so d/2 is odd. On the other hand, if 2s = ld with l even,
then 1 = ζ ld/2 = ζs = ζs0 = (−1)t0 = (−1)s+βd = (−1)(l/2+β)d so (β + l/2)d
is even, and consequently (α + l/2)d is even. In this case, we also see that
t0 is even.

We are now able to describe the elements of Zgr(E(Λq)). Recall that
a typical homogeneous non-zero element z ∈ Zgr(E(Λq)) has the form

z =
m−1∑
i=0

(−1)it0
i∏

k=1

(qk · · · qk+s0−1)−1c0γ
s0
i δ

t0
i

=
m−1∑
i=0

(−1)it0
i∏

k=1

(qk · · · qk+s−1)−1c0γ
s0
i δ

t0
i

for some c0 ∈ K∗. We keep the notation of Proposition 2.2 when referring
to x, y, w.
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If d is odd, then l and t0 are even, so

z =
m−1∑
i=0

i∏
k=1

(qk · · · qk+ld/2−1)−1c0γ
αdm+ld/2
i δ

βdm+ld/2
i

with α, β integers such that α + l/2 and β + l/2 are even and 0 ≤ l/2 ≤
m − 1. If α is even and we let l/2 = 2L, then z is a scalar multiple of
xα/2yβ/2wL. If α is odd and we let l/2 = L then z is a scalar multiple of
x(α−1)/2y(β−1)/2w(m+L)/2.

If d is even with d ≡ 0 (mod 4), then l and t0 are even. Then 0 ≤ l/2 ≤
m− 1 and

z =
m−1∑
i=0

i∏
k=1

(qk · · · qk+ld/2−1)−1c0γ
αdm+ld/2
i δ

βdm+ld/2
i

with α, β integers. Hence z is a scalar multiple of xαyβwl/2.
Finally, if d is even with d ≡ 2 (mod 4), then l and t0 have the same

parity, so that

z =
m−1∑
i=0

(−1)li
i∏

k=1

(qk · · · qk+ld/2−1)−1c0γ
αdm+ld/2
i δ

βdm+ld/2
i

with α, β and l integers such that 0 ≤ l ≤ 2m− 1. In this case, z is a scalar
multiple of xαyβwl.

Thus Zgr(E(Λq)) is generated as an algebra by 1, x, y and w, where
x, y, w are as in Proposition 2.2. It remains to verify the relations of the
form wp = εxy, for appropriate ε ∈ K∗ and positive integer p. The proofs
are straightforward and left to the reader. The final description now follows
from Lemma 2.3.

We summarize Propositions 2.1, 2.4 and 2.5 in the following result.

Theorem 2.6. Let q = (q0, q1, . . . , qm−1)∈(K∗)m and ζ = q0q1 · · · qm−1.
If ζ is not a root of unity then Zgr(E(Λq)) = K. Now suppose that ζ is a
primitive dth root of unity.

(1) If m is even or if charK = 2, then

Zgr(E(Λq)) = K[x, y, w]/〈wm − εxy〉,

where ε = (−1)md/2
∏m−1
l=1

∏ld
k=1(qk · · · qk+d−1)−1.

(2) If m is odd and charK 6= 2, then

Zgr(E(Λq))

=
{
K[x, y, w]/〈wm − εxy〉 if d ≡ 0 (mod 4) or d is odd,
K[x, y, w]/〈w2m − εxy〉 if d ≡ 2 (mod 4),
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where

ε =


∏m−1
l=1

∏ld
k=1(qk · · · qk+d−1)−1 if d ≡ 0 (mod 4),∏2m−1

l=1

∏ld/2
k=1(qk · · · qk+d−1)−1 if d ≡ 2 (mod 4),∏m−1

l=1

∏2ld
k=1(qk · · · qk+2d−1)−1 if d is odd.

3. The Hochschild cohomology ring modulo nilpotence of Λq.
We begin with the following corollary of Theorem 2.6.

Corollary 3.1. Let q = (q0, q1, . . . , qm−1) ∈ (K∗)m and let ζ =
q0q1 · · · qm−1. Then E(Λq) is finitely generated over Zgr(E(Λq)) if and only
if ζ is a root of unity.

Proof. Since Λq is a Koszul algebra, E(Λq) is generated as a K-algebra
in degrees 0 and 1. If ζ is not a root of unity, then E(Λq) is not a finitely
generated module over Zgr(E(Λq)) since E(Λq) is an infinite-dimensional
vector space. If ζ is a root of unity, then it is straightforward to verify
that the set {γsi δtj | 0 ≤ i, j ≤ m − 1, 0 ≤ s, t ≤ |x|} is a sufficient (but
not necessarily minimal) generating set for E(Λq) as a Zgr(E(Λq))-module,
where the degree of x is as given in Proposition 2.2.

Using [3, 10], we derive HH∗(Λq)/N ∼= Zgr(E(Λq))/NZ , where NZ de-
notes the ideal of Zgr(E(Λq)) which is generated by all nilpotent elements. It
is clear from Theorem 2.6 that NZ = 0 so that HH∗(Λq)/N ∼= Zgr(E(Λq)).
Thus we have the following result.

Theorem 3.2. Let q = (q0, q1, . . . , qm−1)∈(K∗)m and ζ = q0q1 · · · qm−1.
If ζ is not a root of unity then HH∗(Λq)/N ∼= K. If ζ is a root of unity,
then HH∗(Λq)/N is a finitely generated commutative K-algebra of Krull
dimension 2.

In particular, the conjecture of [10] holds for the class of algebras Λq for
all q ∈ (K∗)m .
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F-42023 Saint-Étienne Cedex 2, France

E-mail: rachel.taillefer@univ-st-etienne.fr

Received 11 June 2009 (5237)

http://dx.doi.org/10.1142/S0219498809003357
http://dx.doi.org/10.1016/j.jpaa.2005.05.003
http://dx.doi.org/10.1088/0305-4470/32/1/017
http://dx.doi.org/10.1112/S002461150301459X
http://dx.doi.org/10.1007/BF02102012

	Socle deformations of 
	The graded centre of the Ext algebra of q
	The Hochschild cohomology ring modulo nilpotence of q

