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Abstract. Let d be a positive integer and µ a generalized Cantor measure satisfying
µ =

Pm
j=1 ajµ ◦ S

−1
j , where 0 < aj < 1,

Pm
j=1 aj = 1, Sj = ρR+ bj with 0 < ρ < 1 and R

an orthogonal transformation of Rd. Then8>>>><>>>>:
1 < p ≤ 2 ⇒ sup

r>0
rd(1/α

′−1/p′)
“ �

Jr
x

|bµ(y)|p
′
dy
”1/p′

≤ D1ρ
−d/α′

, x ∈ Rd,

p = 2 ⇒ inf
r≥1

rd(1/α
′−1/2)

“ �

Jr
0

|bµ(y)|2 dy
”1/2

≥ D2ρ
d/α′

,

where Jrx =
Qd
i=1(xi − r/2, xi + r/2), α′ is defined by ρd/α

′
= (

Pm
j=1 a

p
j )

1/p and the
constants D1 and D2 depend only on d and p.

1. Introduction. Let us start with some notations. We will denote by
χN the characteristic function of the subset N of Rd. Given 1 ≤ q ≤ ∞,
‖ · ‖q will denote the usual Lebesgue norm and q′ the conjugate exponent of
q: 1/q + 1/q′ = 1 with the convention 1/∞ = 0.

Let µ be a non-negative Radon measure on Rd. For 1 ≤ q <∞, 0 < β ≤ d
and r > 0, we define the average

H(q, β, r) =
1

rd−β

�

Jr0

|µ̂(y)|q dy,

where µ̂ is the Fourier transform of the measure µ and Jrx =
∏d
i=1(xi−r/2,

xi + r/2) for x = (x1, . . . , xd) ∈ Rd.
We are interested in lower and upper bounds of H(q, β, r) when r varies

in (0,∞). This topic has been studied by K. S. Lau and J. Wang [L-W],
and R. S. Strichartz ([St1]–[St3]) in the setting of self-similar measures. We
recall some results obtained by R. S. Strichartz.
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Suppose that µ is an equicontractive self-similar measure, that is,

µ =
m∑
j=1

ajµ ◦ S−1
j ,

where Sj = ρRj + bj with 0 < ρ < 1, Rj is an orthogonal transformation of
Rd, 0 < aj < 1 and

∑m
j=1 aj = 1.

In [St2], R. S. Strichartz proved that if:

(i) µ satisfies the open set condition: there exists a bounded, non-empty,
open subset U of Rd such that SjU ⊂ U for all j and the sets SjU
are pairwise disjoint,

(ii) the Rj ’s are either equal or generate a finite group,

then
sup
r>0

H(2, β, r) <∞

where β is defined by

(1) ρβ =
m∑
j=1

a2
j .

For any equicontractive self-similar measure satisfying conditions (i) and (ii)
above with the Rj ’s equal and under the following hypothesis:

(H1) the open set condition holds for the set of similarities ρRx + b
(n)
j

where b(n)
j are the frequencies that appear in (

∑m
j=1 aje

ibj .x)n,

R. S. Strichartz also obtained

(2) sup
r>0

H(2n, βn, r) <∞.

But he noticed that hypothesis (H1) will only hold for a finite number of n’s
(see Corollary 3.4 and the comment following it in [St2]).

An equicontractive self-similar measure where the similarities Sj satisfy
the following condition: 1/ρ is an integer, for all j, Rj = R is an orthogonal
transformation that preserves the integer lattice and (1/ρ)bj is an integer
between 0 and 1/ρ − 1, is called a generalized Cantor measure. For such
a measure, the open set condition is clearly satisfied by taking U = {x :
0 < xi < 1 for i = 1, . . . , d}.

R. S. Strichartz showed that for a generalized Cantor measure such that

(H2) (1/ρ)bi ≡ (1/ρ)bj mod n for all i, j,

inequality (2) holds (see Corollary 4.6 in [St2]).
He also established that if µ is a generalized Cantor measure satisfying

the following hypothesis:
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(H3) there exists a fundamental domain D containing a neighborhood
of the origin on which |µ̂(y)| is bounded away from zero,

then
0 < inf

r≥1
H(2, β, r),

where β is still defined by (1) (see Corollary 4.6 in [St2]).
In this paper, we show that if µ is a generalized Cantor measure as defined

above, then

(3) sup
r>0

H(p′, βp, r) ≤ D = D(p, d), 1 < p ≤ 2,

with βp defined by ρβp = (
∑m

j=1 a
p
j )
p′/p, and

(4) 0 < inf
r≥1

H(2, β, r)

with β = β2.
We emphasize that for the proof of (3), we do not assume the additional

hypotheses (H1) and (H2) used by R. S. Strichartz to get inequality (2).
Furthermore, (3) contains (2), of course, in the case of the generalized Cantor
measure. Moreover, in the proof of (4), we do not use the assumption (H3).
Our approach relies on some properties of generalized Cantor measures (see
Section 3 for a detailed exposition of those properties), a reverse Hausdorff–
Young inequality (see Theorem 2.2) and a Hausdorff–Young inequality which
will be stated below.

We recall that a Radon measure µ on Rd belongs to the Wiener amalgam
space Mp (1 ≤ p <∞) if 1‖µ‖p <∞ with

r‖µ‖p =
( ∑
k∈Zd
|µ|(Irk)p

)1/p
, r > 0,

where Irk =
∏d
i=1[kir, (ki+1)r) for k = (k1, . . . , kd) ∈ Zd and |µ| denotes the

total variation of µ.
The Fourier transform on amalgam spaces has been studied by various

authors including F. Holland ([Ho1], [Ho2]), J. Stewart [S], J. P. Bertran-
dias and C. Dupuis [B-D], J. J. F. Fournier ([Fou1], [Fou2], [Fou-S]) and
I. Fofana [F].

In [Ho1], the Fourier transform f 7→ f̂ defined on L1 by

f̂(x) = (2π)−d/2
�

Rd
f(y)e−ixy dy, x ∈ Rd,

has been extended to the spaces (Lq, lp) defined for 1 ≤ q, p ≤ ∞ as follows:

(Lq, lp) = {f ∈ L0 : 1‖f‖q,p <∞}
where L0 stands for the space of (equivalence classes modulo the equality
Lebesgue almost everywhere of) all complex-valued functions defined on Rd
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and for r > 0,

r‖f‖q,p =


[ ∑
k∈Zd

(‖fχIrk‖q)
p
]1/p

if 1 ≤ p <∞,

sup
x∈Rd

‖fχJrx‖q if p =∞.

In the same paper, Holland extended to the spaces Mp (1 < p ≤ 2) the
Fourier transform µ 7→ µ̂ defined on the space M1 of finite Radon measures
on Rd by

µ̂(x) = (2π)−d/2
�

Rd
e−ixy dµ(y), x ∈ Rd.

In fact, he proved that if µ belongs to Mp (1 < p ≤ 2), then there exists a
unique element µ̂ ∈ (Lp

′
, l∞) such that for any sequence (rn)n≥1 of positive

real numbers increasing to∞, the sequence (µ̂bJrn0 )n≥1 converges in (Lp
′
, l∞)

to µ̂, where µbJrn0 is the measure defined by (µbJrn0 )(N) = µ(Jrn0 ∩ N) for
any Borel subset N of Rd. In addition,

(5)
�

Rd
g(x)µ̂(x) dx =

�

Rd
ĝ(x) dµ(x), g ∈ (Lp, l1).

In [F], I. Fofana has proved the following Hausdorff–Young inequality:

(6) r−d/p
′
r‖µ̂‖p′,∞ ≤ C 1/r‖µ‖p, r > 0,

where the real constant C does not depend on µ and r.
The remainder of this paper is organized as follows: in Section 2, we

establish a reverse Hausdorff–Young inequality. Using this result and the
inequality (6), we examine, in Section 3, bounds for averages of the Fourier
transform of a generalized Cantor measure.

2. Reverse Hausdorff–Young inequality. In this section, for any
η > 0, we denote by Int(η) the greatest integer not exceeding η. Throughout
this note, we will use the following result:

Proposition 2.1. Let 1 ≤ p < ∞. If µ belongs to Mp and 0 < r <
s <∞, then

(a) s‖µ‖p ≤ (Int(s/r) + 2)d/p
′
2d/p r‖µ‖p,

(b) r‖µ‖p ≤ 3d/p
′
2d/p s‖µ‖p.

Proof. (a) For all k ∈ Zd, set C(k) = {l ∈ Zd : |µ|(Isk ∩ Irl ) > 0}. Then,
for all k ∈ Zd, C(k) has at most (Int(s/r) + 2)d elements. So for all k ∈ Zd,

|µ|(Isk) ≤ (Int(s/r) + 2)d/p
′
( ∑
l∈C(k)

|µ|(Irl )p
)1/p
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and

s‖µ‖p ≤ (Int(s/r) + 2)d/p
′
[ ∑
k∈Zd

( ∑
l∈C(k)

|µ|(Irl )p
)]1/p

.

Notice that each element l ∈ Zd belongs to at most 2d subsets C(k). It
follows that

s‖µ‖p ≤ (Int(s/r) + 2)d/p
′
2d/p r‖µ‖p.

(b) Let m > 1 be the positive integer such that (m− 1)r < s ≤ mr. We
have

r‖µ‖p =
[∑
l∈Zd

( ∑
{k∈Zd : Irk⊂I

mr
l }

|µ|(Irk)p
)]1/p

≤
(∑
l∈Zd
|µ|(Imrl )p

)1/p

= mr‖µ‖p.
So, according to (a),

r‖µ‖p ≤ (Int(mr/s) + 2)d/p
′
2d/p s‖µ‖p ≤ 3d/p

′
2d/p s‖µ‖p.

Theorem 2.2. There exists a positive constant D such that for all non-
negative elements µ of M2 and r > 0,

D 1/r‖µ‖2 ≤ r−d/2
( �

Jr0

|µ̂(x)|2 dx
)1/2

.

Proof. Let µ be a non-negative measure which belongs to M2. Let r > 0
and set

f = r−dχJr0 ∗ χJr0 .
Then f is non-negative, continuous and satisfies

‖f‖∞ = 1 = f(0), x ∈ Rd \ J2r
0 ⇒ f(x) = 0.

In addition,

f̂(x) = (2π)−drd
d∏
j=1

(
sin( r2xj)

r
2xj

)2

, x ∈ Rd \ {0}.

Let us consider a finite subset L of Zd, a sequence (ak)k∈L of positive real
numbers and a positive real number δ.

For all k ∈ L, set Ek =
∏d
j=1[(kj − 1)δ, (kj + 2)δ). Then for all k ∈ L we

have

∨
χEk(x)= χ̂Ek(−x) = (2π)−d/2(3δ)d

d∏
j=1

ei(kj−1)δxj
ei3δxj − 1
i3δxj

, x ∈ Rd \ {0},

∨̂
χEkf=χEk ∗ f̂ ,
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and �

Rd
µ(Ek + y)f̂(y) dy =

�

Rd

( �

Rd
χEk(x− y) dµ(x)

)
f̂(y) dy

=
�

Rd
χEk ∗ f̂(x) dµ(x),

that is, according to (5),�

Rd
µ(Ek + y)f̂(y) dy =

�

Rd

∨
χEk(x)f(x)µ̂(x) dx.

Therefore, we have∑
k∈L

ak
�

Rd
µ(Ek + y)f̂(y) dy

=
�

Rd

∑
k∈L

ak
∨
χEk(x)f(x)µ̂(x) dx

=
�

J2r
0

(∑
k∈L

ak
∨
χEk(x)

)
(f(x)µ̂(x)) dx

≤
( �

J2r
0

∣∣∣∑
k∈L

ak
∨
χEk(x)

∣∣∣2 dx)1/2( �

J2r
0

|µ̂(x)|2 dx
)1/2

.

Notice that
y ∈ Jδ0 ⇒ Iδk ⊂ Ek + y, k ∈ L,

and( �

J2r
0

∣∣∣∑
k∈L

ak
∨
χEk(x)

∣∣∣2 dx)1/2

≤ (2π)−d/2(3δ)dδ−d/2
( ∑
k,t∈L

akat
�

J2rδ
0

e−i(k−t)x dx
)1/2

.

Choosing δ = πr−1, we obtain∑
k∈L

akµ(Iπr
−1

k )
�

Jπr
−1

0

f̂(y) dy ≤ 3d(πr−1)d/2
(∑
k∈L

a2
k

)1/2( �

J2r
0

|µ̂(x)|2 dx
)1/2

.

Since

y ∈ Jπr−1

0 ⇒
(

sin
(
r
2yj
)

r
2yj

)2

≥ 8
π2
, j ∈ {1, . . . , d},

we have �

Jπr
−1

0

f̂(y) dy ≥
(

2
π

)2d

,
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and therefore(
2
π

)2d∑
k∈L

akµ(Iπr
−1

k ) ≤ (9πr−1)d/2
(∑
k∈L

a2
k

)1/2( �

J2r
0

|µ̂(x)|2 dx
)1/2

.

Hence, choosing ak = µ(Iπr
−1

k ) for all k ∈ L, it follows that(
2
π

)2d(∑
k∈L

µ(Iπr
−1

k )2
)1/2

≤ (9πr−1)d/2
( �

J2r
0

|µ̂(x)|2 dx
)1/2

.

Since the previous inequality holds for all finite subsets L of Zd, we obtain(
2
π

)2d

(18π)−d/2 2π/r‖µ‖2 ≤ r−d/2
( �

Jr0

|µ̂(x)|2 dx
)1/2

.

Applying Proposition 2.1, we obtain the desired result.

Let f and Ek (k ∈ Zd) be as defined in the proof of Theorem 2.2. We
notice that for any k ∈ Zd, ϕk =

∨
χEkf ∈ L1 and ϕ̂k = χEk ∗ f̂ ∈ L1. Assume

that h is an element of L1 such that ĥ ≥ 0 and put dµ(x) = ĥ(x) dx. Then µ
is a non-negative Radon measure on Rd. For any k ∈ Zd, we have by Fubini
theorem �

Rd
ϕ̂k(x)ĥ(x) dx =

�

Rd

̂̂ϕk(x)h(x) dx =
�

Rd
ϕk(−x)h(x) dx.

Equivalently, �

Rd
χEk ∗ f̂(x) dµ(x) =

�

Rd
χ̂Ek(x)f(x)h(x) dx.

Now, it is easy to see that, with h in place of µ̂, the proof of Theorem 2.2
remains valid and yields the following result:

Proposition 2.3. There exists a positive constant D such that for any
element h of L1 with ĥ ≥ 0, we have

(7) D 1/r‖ĥ‖1,2 ≤ r−d/2
( �

Jr0

|h(x)|2 dx
)1/2

, r > 0.

Inequality (7) is related to the following result obtained by Fournier (see
the proof of Theorem 1.1 in [Fou2]) for d = 1.

Proposition 2.4. Let h be an integrable function on Rd that is square-
integrable in some neighborhood of 0 and satisfies ĥ ≥ 0. Then for r > 0
small enough,

(8) 1‖ĥ‖1,2 ≤ Cr−d‖hφr‖2,
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where C is a positive constant not depending on h and r, and

φr(x) =


d∏
i=1

(1− |xi|/r) if x ∈ J2r
0 ,

0 otherwise.

Remark 2.5. From Proposition 2.1(b) and Proposition 2.3, it is clear
that for 0 < r < 1 we have

1‖ĥ‖1,2 ≤ 6d/2 1/r‖ĥ‖1,2 ≤
6d/2

D
r−d/2

( �

Jr0

|h(x)|2 dx
)1/2

≤ 6d/22d

D
r−d/2

( �

Rd
|h(x)φr(x)|2 dx

)1/2
,

that is,

1‖ĥ‖1,2 ≤
(

6d/22d

D
rd/2

)
r−d‖hφr‖2.

Therefore, for small values of r, inequality (7) is stronger than (8).

Let us record an immediate consequence of (6):

Corollary 2.6. Suppose that 1 ≤ α ≤ p ≤ 2. Let C be the constant
of (6). Then for all µ ∈Mp, we have the following inequalities:

(i) sup
r≥1

rd(1/α
′−1/p′)

r‖µ̂‖p′,∞ ≤ C sup
0<r≤1

rd(1/α−1)
r‖µ‖p,

(ii) lim sup
r→∞

rd(1/α
′−1/p′)

r‖µ̂‖p′,∞ ≤ C lim sup
r→0

rd(1/α−1)
r‖µ‖p,

(iii) inf
r≥1

rd(1/α
′−1/p′)

r‖µ̂‖p′,∞ ≤ C inf
0<r≤1

rd(1/α−1)
r‖µ‖p,

(iv) lim inf
r→∞

rd(1/α
′−1/p′)

r‖µ̂‖p′,∞ ≤ C lim inf
r→0

rd(1/α−1)
r‖µ‖p.

The inequalities (i) and (ii) of the previous corollary yield Theorem 3.4
established by K. S. Lau in [L].

A direct consequence of Corollary 2.6 and Theorem 2.2 is the following:

Corollary 2.7. Suppose that 1 ≤ α ≤ 2. Let C be the constant of (6)
and D the constant of Theorem 2.2. Then for any non-negative measure µ
of M2, we have the following inequalities:

(a) D sup
0<r≤1

rd(1/α−1)
r‖µ‖2 ≤ sup

r≥1
rd(1/α

′−1/2)
r‖µ̂‖2,∞

≤ C sup
0<r≤1

rd(1/α−1)
r‖µ‖2,
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(b) D lim sup
r→0

rd(1/α−1)
r‖µ‖2 ≤ lim sup

r→∞
rd(1/α

′−1/2)
r‖µ̂‖2,∞

≤ C lim sup
r→0

rd(1/α−1)
r‖µ‖2,

(c) D inf
0<r≤1

rd(1/α−1)
r‖µ‖2 ≤ inf

r≥1
rd(1/α

′−1/2)
r‖µ̂‖2,∞

≤ C inf
0<r≤1

rd(1/α−1)
r‖µ‖2,

(d) D lim inf
r→0

rd(1/α−1)
r‖µ‖2 ≤ lim sup

r→∞
rd(1/α

′−1/2)
r‖µ̂‖2,∞

≤ C lim inf
r→0

rd(1/α−1)
r‖µ‖2.

The relation (a) yields a converse of Theorem 3.4 of K. S. Lau mentioned
above in the case p = 2.

3. Estimate on the average of the Fourier transform of a gener-
alized Cantor measure. Let us consider:

(i) two integers m and 1/ρ such that m > 1 and 1/ρ > 1,
(ii) m distinct elements bj (1 ≤ j ≤ m) of Rd such that the coordinates

of each point (1/ρ)bj are integers denoted by (1/ρ)bji (1 ≤ i ≤ d)
satisfying 0 ≤ (1/ρ)bji ≤ (1/ρ)− 1,

(iii) a permutation σ of {1, . . . , d}, R the orthogonal transformation de-
fined by R(x) = (xσ(1), . . . , xσ(d)) for all x ∈ Rd, m contractive
similarities Sj = ρR+ bj ,

(iv) m elements aj such that 0 < aj < 1 for j = 1, . . . ,m and
∑m

j=1 aj
= 1.

J. E. Hutchinson proved in [Hu] that for the system (Sj , aj ,m), there exists
a unique non-negative Borel measure µ = µ(Sj , aj ,m) with compact support
such that µ(Rd) = 1 and µ =

∑m
j=1 ajµ◦S

−1
j . So µ is the self-similar measure

on Rd associated to the system (Sj , aj ,m).
Denote by Q the closure of I1

0 , O the set of interior points of I1
0 , and E

the support of µ = µ(Sj , aj ,m). For any positive integer n, we set

Λn = {J = (j1, . . . , jn) : ji ∈ {1, . . . ,m}, i = 1, . . . , n}
and SJ = Sjn ◦ · · · ◦ Sj1 for J ∈ Λn.

Notice that the sequence of contractive similarities (Sj)1≤j≤m satisfies the
following open set condition: O is an open bounded subset of Rd , Sj(O) ⊂ O
for j = 1, . . . ,m and Sj(O) ∩ Sk(O) = ∅ for j 6= k. Therefore, we have the
following remark:

Remark 3.1 (see [Hu], [St2] or [L-W]). Let n be a positive integer. Then:

(i) E ⊂
⋃
J∈Λn SJ(Q) ⊂ Q,

(ii) for J ∈ Λn, SJ(O) is an open subset of Rd and SJ(O) ⊂ O,
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(iii) SJ(O) ∩ SJ ′′(O) = ∅ for J, J ′′ ∈ Λn such that J 6= J ′′,
(iv) µ(SJ(O)) =

∏n
i=1 ajiµ(O) for J ∈ Λn.

Thus, µ is a generalized Cantor measure.

Proposition 3.2. Let µ = µ(Sj , aj ,m) be a generalized Cantor measure.
If

K = {k = (k1, . . . , kd) : ki ∈ {0, 1}, i = 1, . . . , d}
and K0 = {k ∈ K : µ(I1

k) > 0}, then K0 is a singleton.

Proof. Particular case: Suppose that R is the identity map of Rd. Each
element k of K0 has a length |k| =

∑d
i=1 ki ≤ d. Let k̃ be an element of

maximal length of K0.
(a) Suppose that all the coordinates of k̃ are equal to 1. Then I1ek∩Q = {k̃}

and there exists an element j of {1, . . . ,m} such that k̃ ∈ Sj(Q). Since for
j = 1, . . . ,m, Sj(Q) = {x ∈ Q : bji ≤ xi ≤ bji + ρ, i = 1, . . . , d}, we have

k̃ ∈ Sj(Q) ⇒ bji = 1− ρ, i = 1, . . . , d.

Therefore, there exists a unique element j̃ of {1, . . . ,m} such that k̃ ∈ Sej(Q).
In addition, k̃ = Sej(k̃). It follows that

0 6= µ({k̃}) =
m∑
j=1

ajµ(S−1
j ({k̃})) = aejµ({k̃}) < µ({k̃}).

We arrive at a contradiction. So k̃ has at least one coordinate different from 1.
(b) Set

A = {i ∈ {1, . . . , d} : k̃i = 1}, B = {1, . . . , d} \A,
T = {x ∈ Q : i ∈ A⇒ xi = 1, there exists i ∈ B with xi = 1},
P = {x ∈ Q : i ∈ A⇒ xi = 1, i ∈ B ⇒ 0 ≤ xi < 1},
M = {j ∈ {1, . . . ,m} : µ(P ∩ Sj(Q)) 6= 0}.

Let P denote the closure of P . Notice that P = I1ek ∩ Q, P = P ∪ T and
T ⊂

⋃
|k|>|ek| I1

k ∩Q. It follows that µ(P ) 6= 0, µ(T ) = 0 and M 6= ∅.
Fix j ∈ M . Notice that P ∩ Sj(Q) 6= ∅ because µ(P ∩ Sj(Q)) 6= 0.

Furthermore, for any x ∈ P ∩ Sj(Q) we have 1 ≤ xi ≤ bji + ρ for all i ∈ A
and therefore

bji + ρ = 1, i ∈ A, and x ∈ Sj(P ∪ T ).

So bji + ρ = 1 for all i ∈ A and

P ∩ Sj(Q) = P ∩ Sj(P ∪ T ) = (P ∩ Sj(P )) ∪ (P ∩ Sj(T )).

Fix y ∈ P . Let x = Sj(y). Then, for all i ∈ A, yi = 1 and so xi = bji + ρ. In
addition, for all i ∈ B, 0 ≤ yi < 1 and so bji ≤ xi = bji + ρyi < bji + ρ ≤ 1.
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It follows that Sj(y) ∈ P . Thus, Sj(P ) ⊂ P and we obtain

(9) P ∩ Sj(Q) = Sj(P ) ∪ (P ∩ Sj(T )).

We have

µ(P ) =
n∑
j=1

ajµ(S−1
j (P )) =

n∑
j=1

ajµ(S−1
j (P ∩ Sj(Q))).

Notice that

j /∈M ⇒ µ(P ∩ Sj(Q)) = 0 ⇒ µ(S−1
j (P ∩ Sj(Q))) = 0.

Since µ(P ) 6= 0, it follows from these implications and (9) that

µ(P ) =
∑
j∈M

ajµ(S−1
j (P ∩ Sj(Q))) =

∑
j∈M

aj(µ(P ) + µ(S−1
j (P ) ∩ T ))

=
∑
j∈M

ajµ(P ).

Therefore M = {1, . . . ,m} and

S(Q) =
m⋃
j=1

Sj(Q) ⊂ Pρ = {x ∈ Q : d(x, P ) ≤
√
d ρ},

where d(x, P ) denotes the distance between x and P . According to (9), we
have Sj(P ) ⊂ P ∩ Sj(Q) for j = 1, . . . ,m. It follows that

Sj2 ◦ Sj1(P ) ⊂ Sj2(P ) ∩ Sj2 ◦ Sj1(Q) ⊂ P ∩ Sj2 ◦ Sj1(Q)

for all (j1, j2) ∈ Λ2. By iterating this process, we have SJ(P ) ⊂ P ∩ SJ(Q)
for all positive integers n and all J ∈ Λn. So for all positive integers n,

Sn(Q) =
⋃
J∈Λn

SJ(Q) ⊂ Pρn = {x ∈ Q : d(x, P ) ≤
√
d ρn}.

Since (Sn(Q))n≥1 and (Pρn)n≥1 are two decreasing sequences of bounded
subsets of Rd which converge respectively to E and P , we have

1 = µ(E) = µ(P ) = µ(P ) = µ(I1ek).
So K0 = {k̃}.

General case: For a given permutation σ of {1, . . . , d}, there exists an
integer s > 1 such that σs = σ ◦ · · · ◦ σ = idRd . Notice that for all J ∈ Λs,
SJ = ρsidRd + bJ where

1
ρs
bJ =

1
ρs

s∑
i=1

ρs−iRs−ibji
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has all its coordinates in {0, 1, . . . , 1/ρs − 1}. In addition, if J and J ′′ are
two distinct elements of Λs then bJ and bJ ′′ are distinct. We have

µ =
∑
J∈Λs

aJµ ◦ S−1
J

with aJ =
∏s
i=1 aji ∈ (0, 1) for all J ∈ Λs and

∑
J∈Λs aJ = 1. So µ is the

self-similar measure associated to the system (SJ , aJ , ms) of ms contractive
similarities SJ and weights aJ (J ∈ Λs). We apply the particular case to
conclude that K0 is a singleton.

The construction of the generalized Cantor measure allows us to make
the following remarks.

Remark 3.3. Let µ = µ(Sj , aj ,m) be a generalized Cantor measure and
K0 = {k̃} defined as in Proposition 3.2.

(1) Let n be a positive integer and Kn = {k ∈ Nd : µ(Iρ
n

k ) 6= 0}. Then:
(a) Kn has mn elements,
(b) to each element k of Kn is associated an element J of Λn such

that

Iρ
n

k = SJ(I1ek) and µ(Iρ
n

k ) =
n∏
i=1

aji .

(2) For 1 ≤ p <∞ we have

(10) ρn‖µ‖p =
( m∑
j=1

apj

)n/p
, n ∈ N.

Now we state and prove the main result of this note.

Theorem 3.4. Let 1 < p ≤ 2 and µ be a generalized Cantor measure.
Suppose that α > 1 satisfies ρd/α′ = (

∑m
j=1 a

p
j )

1/p. Then:

(i) There exists a constant D1 = D1(p, d) such that

(11) sup
r>0

rd(1/α
′−1/p′)

( �

Jrx

|µ̂(y)|p′ dy
)1/p′

≤ D1ρ
−d/α′ , x ∈ Rd.

(ii) For p = 2, there exists a constant D2 = D2(d) such that

D2ρ
d/α′ ≤ inf

r≥1
rd(1/α

′−1/2)
( �

Jr0

|µ̂(y)|2 dy
)1/2

≤ sup
r≥1

sup
x∈Rd

rd(1/α
′−1/2)

( �

Jrx

|µ̂(y)|2 dy
)1/2

≤ D1ρ
−d/α′ .
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Proof. Since ‖µ̂‖∞ ≤ 1, we have

(12) rd(1/α
′−1/p′)

( �

Jrx

|µ̂(y)|p′ dy
)1/p′

≤ 1, x ∈ Rd, r ≤ 1.

Let r ≥ 1. Then there exists a non-negative integer n such that ρn+1 <
1/r ≤ ρn. By Proposition 2.1 and (10), we have

(13) rd/α
′
1/r‖µ‖p ≤ (ρn+1)−d/α

′
3d/p

′
2d/p ρn‖µ‖p = 3d/p

′
2d/pρ−d/α

′

and

(14) rd/α
′
1/r‖µ‖p ≥ (ρn)−d/α

′
3−d/p

′
2−d/p ρn+1‖µ‖p = 3−d/p

′
2−d/pρd/α

′
.

Therefore, combining (13) and (6), we obtain

(15) rd(1/α
′−1/p′)

r‖µ̂‖p′,∞ ≤ C 3d/p
′
2d/pρ−d/α

′
, r ≥ 1.

From (12) and (15), we deduce (11) by taking D1 = max{1, C 3d/p
′
2d/p}.

Suppose now that p = 2. Combining (14) and Theorem 2.2, we obtain
the first inequality of assertion (ii) of Theorem 3.4. The other inequalities
are simple consequences of (11).

Remark 3.5. Note that for p ≥ 1, if α ≥ 1 satisfies ρd/α′ = (
∑m

j=1 a
p
j )

1/p,
then 1 < α ≤ p since ρd(p−1) ≤ 1/mp−1 ≤

∑m
j=1 a

p
j < 1. Therefore, from

Theorem 3.4, we deduce the inequalities (3) and (4) displayed in the intro-
duction by taking βp = dp′/α′.
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