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Abstract. Let d be a positive integer and p a generalized Cantor measure satisfying
p=>" aj,uon_l, where 0 < a; < 1,3 a; =1,5; = pR+b; with0 <p<1and R
an orthogonal transformation of R%. Then

a1 /e’ =18 (1o’ )P —d/a’ d
1<p<2 = supr (S|u(y)| dy) < Dip , x € RY
>0
Iz

. d o — ~
p=2 = infr a/ 1/2)( S a(y)|? dy)
> !

1/2 ’
2 Dde/a ,

where JI = I, (zi — 7/2,2; + 7/2), @ is defined by pie = (>, ag-’)l/p and the
constants D1 and D2 depend only on d and p.

1. Introduction. Let us start with some notations. We will denote by
x~ the characteristic function of the subset N of R%. Given 1 < ¢ < oo,
| - l¢ will denote the usual Lebesgue norm and ¢’ the conjugate exponent of
q: 1/qg+1/¢" =1 with the convention 1/00 = 0.

Let 1 be a non-negative Radon measure on R%. For 1 < ¢ < 00,0 < < d
and r > 0, we define the average

1 ~
H(Q?ﬁar) = W S |:u(y)|qdy7
Jo

where [1 is the Fourier transform of the measure p and J), = Hle(xi—r /2,
x; +1/2) for x = (x1,...,14) € R

We are interested in lower and upper bounds of H (g, 3,r) when r varies
in (0,00). This topic has been studied by K. S. Lau and J. Wang |L-W],
and R. S. Strichartz ([StI]-[St3]) in the setting of self-similar measures. We
recall some results obtained by R. S. Strichartz.
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Suppose that p is an equicontractive self-similar measure, that is,

m
p=> auos;,
j=1

where S; = pR; 4+ b; with 0 < p < 1, R; is an orthogonal transformation of
R4 0 < a; <1 and dotiaj =1
In [St2], R. S. Strichartz proved that if:

(1) p satisfies the open set condition: there exists a bounded, non-empty,
open subset U of R? such that S;U C U for all j and the sets S;U
are pairwise disjoint,

(ii) the R;’s are either equal or generate a finite group,

then

sup H(2,8,r) < oo
r>0

where 3 is defined by

m

(1) pP=>"d.
j=1

For any equicontractive self-similar measure satisfying conditions (i) and (ii)
above with the R;’s equal and under the following hypothesis:

(H1) the open set condition holds for the set of similarities pRx + bg-n)

where bg.") are the frequencies that appear in (Z;"Zl a;jetiz)n
R. S. Strichartz also obtained
(2) sup H(2n, Bp,r) < 00.
r>0

But he noticed that hypothesis (H;) will only hold for a finite number of n’s
(see Corollary 3.4 and the comment following it in [St2]).

An equicontractive self-similar measure where the similarities S; satisfy
the following condition: 1/p is an integer, for all j, R; = R is an orthogonal
transformation that preserves the integer lattice and (1/p)b; is an integer
between 0 and 1/p — 1, is called a generalized Cantor measure. For such
a measure, the open set condition is clearly satisfied by taking U = {z :
O<z;<lfori=1,...,d}.

R. S. Strichartz showed that for a generalized Cantor measure such that

(H2) (1/p)bi = (1/p)b; mod n for all i, 7,

inequality ([2)) holds (see Corollary 4.6 in [St2]).
He also established that if p is a generalized Cantor measure satisfying
the following hypothesis:
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(H3) there exists a fundamental domain D containing a neighborhood
of the origin on which |fi(y)| is bounded away from zero,

then
0 < inf H(2,48,1),
r>1

where ( is still defined by (see Corollary 4.6 in [St2]).
In this paper, we show that if 1 is a generalized Cantor measure as defined
above, then

(3) SugH(p’,ﬁp, r)<D=D(p,d), 1<p<2,
r>

with (3, defined by PP = (Z;nzl a?)p//p7 and
(4) 0< 1r>1£ H(2,8,7)

with 8 = [s.

We emphasize that for the proof of , we do not assume the additional
hypotheses (H;) and (Hz) used by R. S. Strichartz to get inequality .
Furthermore, contains , of course, in the case of the generalized Cantor
measure. Moreover, in the proof of , we do not use the assumption (Hs).
Our approach relies on some properties of generalized Cantor measures (see
Section 3 for a detailed exposition of those properties), a reverse Hausdorff-
Young inequality (see Theorem and a Hausdorff—Young inequality which
will be stated below.

We recall that a Radon measure p on R? belongs to the Wiener amalgam
space MP (1 < p < 00) if 1||p||p < oo with

) /P
Aty = (2 el@y) >0,
kezd
where I}, = H?Zl[kir, (ki+1)r) for k = (kq,...,kq) € Z% and |p| denotes the
total variation of pu.

The Fourier transform on amalgam spaces has been studied by various
authors including F. Holland ([Holl, [Ho2|), J. Stewart [S|, J. P. Bertran-
dias and C. Dupuis [B-DI, J. J. F. Fournier (|[Foul], [Fou2], [Fou-S]) and
I. Fofana [F].

In [Holl, the Fourier transform f +— f defined on L' by

Fa) = @n) 2 | f)evdy, zeRY,
R4
has been extended to the spaces (L4, 1P) defined for 1 < ¢, p < oo as follows:
(L) = {f el f

where LY stands for the space of (equivalence classes modulo the equality
Lebesgue almost everywhere of) all complex-valued functions defined on R?

ap < oo}
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and for r > 0,
» 1/p
S U] 1< p <o,
el fllgp = “wezd _
sup || fxurllq if p = oo.
zERI

In the same paper, Holland extended to the spaces MP (1 < p < 2) the
Fourier transform s +— i defined on the space M" of finite Radon measures
on R? by
fi(z) = (2m)~2 | e7 ™ dpu(y), wzeR”
Rd

In fact, he proved that if u belongs to MP (1 < p < 2), then there exists a
unique element i € (L?',1%°) such that for any sequence (7,,)n>1 of positive
real numbers increasing to oo, the sequence (11| J§™)n>1 converges in (L', 1)
to i, where p|Jj™ is the measure defined by (| J)")(N) = p(Jy™ N N) for
any Borel subset N of R?. In addition,

(5) V 9(@)ii(z)de = | g(x)du(z), g€ (LP.1Y).
R4 R4

In [F], I. Fofana has proved the following Hausdorff-Young inequality:
(6) r U il o < C 1yl >0,

where the real constant C' does not depend on p and r.

The remainder of this paper is organized as follows: in Section 2, we
establish a reverse Hausdorff-Young inequality. Using this result and the
inequality @, we examine, in Section 3, bounds for averages of the Fourier
transform of a generalized Cantor measure.

2. Reverse Hausdorff-Young inequality. In this section, for any
n > 0, we denote by Int(n) the greatest integer not exceeding 7. Throughout
this note, we will use the following result:

ProproSITION 2.1. Let 1 < p < oo. If p belongs to MP and 0 < r <
s < oo, then

(a) sllully < (nt(s/r) +2)7 242 ullp,

() rllellp < 37727 |-

Proof. (a) For all k € Z4, set C(k) = {l € Z¢ : |u|/(I{ N I}) > 0}. Then,
for all k € Z4, C(k) has at most (Int(s/r) + 2)? elements. So for all k € Z<,

(1) < ut(s/r) +277 (3 ity

1eC(k)



A GENERALIZED CANTOR MEASURE 113

and

Ay < (/) + 207 [ 3 (3 1maye)]

kezd leC(k)

Notice that each element I € Z¢ belongs to at most 2¢ subsets C(k). It
follows that

sllully < (Int(s/r) +2)77 297 |
(b) Let m > 1 be the positive integer such that (m — 1)r < s < mr. We

Al =[S (2 )] < (3 i)

lezd  {kezd:I;CI"} lezd
= mr”ﬁ‘”p'
So, according to (a),
dllellp < (Int(mr/s) +2)47 24P || u)l, < 397297 |||,

THEOREM 2.2. There exists a positive constant D such that for all non-
negative elements pu of M? and r > 0,

3 N 1/2
Dyplalle <72 ( | @) dz)
Jo
Proof. Let p be a non-negative measure which belongs to M?2. Let r > 0
and set
=15 *xus-
Then f is non-negative, continuous and satisfies
Ifllo =1=f(0), xeRI\J" = f(z)=0.

In addition,

4 rsin(Zai)) 2
fl@) = 2n) %] <(;”)> .z eR\ {0}

Let us consider a finite subset L of Z¢, a sequence (ay)res, of positive real
numbers and a positive real number J.
For all k € L, set Ej, = [[%_,[(kj — 1)8, (kj +2)8). Then for all k € L we

=1
have ’
v — —d/2/qmd 2 (ks —1)6m; €0 — d
X () =XE, (—z) = 2m) "2 30)! [[ e ™m0 — =, 2w e RT\ {0},
j=1 J

V o~
XE.f=XxE, * [,



114 B. A. KPATA ET AL.

and

~ o~

| B+ o) fy)dy = | ( | Xz, (x — ) du(:r)) (y) dy

R4 R? Rd
= S Xy * f(z) dp(z),
R4
that is, according to ,

~ v -
| B +9)fw) dy = | xp, (2) f (@)fi(x) da.
R¢ Rd

Therefore, we have

S an | wlEr+ ) Fly) dy

kel Rd
= | 3" anxp, (@) f(2)7(z) de

Rd kEL
= S <ZakXEk ) z)i(r)) dz
JQ?" kel
< (V[ o a) " (] a@yar)”
J3r kel Jar

Notice that
yeldd = I CE.+vy, kel,

and

(1 [Zowxsiof ar)”

J2’“ kel
1/2

< (27T)—d/2(35)d5—d/2< Z _ S o—i(k—t)z dx)

k,teL ]gré

1

Choosing § = wr™", we obtain

S an(p) | fdy <2 () (] Ewra)
kel Jng kel J27
Since

. sin(Zy;)\ 2 8
cgr = <(2y’)> > 5, G el dh

we have
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and therefore

<i>2d2akw§“> < (97”“_1)d/2(2“%>1/2( S m(x)'de)

kel keL JgT

1/2

Hence, choosing ay = ,u(I,’;FI) for all k& € L, it follows that
9\ 2d LooN1/2 R 1/2
(2) (Zuar 7)< om 2 § P ).
T kel JST
Since the previous inequality holds for all finite subsets L of Z¢, we obtain

<2>2d<18ﬂ>—d/2 arpellalls < v~ § i) d)

T T
JO

1/2

Applying Proposition 2.1} we obtain the desired result. m

Let f and Ej, (k € Z%) be as defined in the proof of Theorem We
notice that for any k € Z¢, ¢, = X\ékf € L' and o = xp, * fE L'. Assume
that h is an element of L! such that A > 0 and put du(x) = h(z) dz. Then

is a non-negative Radon measure on R?. For any k € Z¢, we have by Fubini
theorem

S Pr(@)h(z) dz = S or(z)h(x) dx = S ok(—z)h(z) dx.
R Rd Rd
Equivalently,
} xB, * f(2) du(x) = | Xp, (2) f(2)h(x) dz.
Rd Rd
Now, it is easy to see that, with h in place of f, the proof of Theorem
remains valid and yields the following result:
PROPOSITION 2.3. There exists a positive constant D such that for any
element h of L' with h > 0, we have

~ 1/2
(7) Dijllblhz <=2 | |n@)2dz) ", v >0,

Jo
Inequality is related to the following result obtained by Fournier (see
the proof of Theorem 1.1 in [Fou2]) for d = 1.

PROPOSITION 2.4. Let h be an integrable function on R? that is square-
integrable in some neighborhood of 0 and satisfies h > 0. Then for r > 0
small enough,

(8) 1IBll12 < Cr=?|hey |2,
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where C is a positive constant not depending on h and r, and

d

or(x) = [T = fail/r) ifze g3,
=1
0 otherwise.

REMARK 2.5. From Proposition 2.1(b) and Proposition it is clear
that for 0 < < 1 we have

~ ~ 64/2 1/2
d/2 —d/2 2
bl < 672 1l Blle < =5 (}W@dﬂ
0

that is,

N 6d/22d B
N e

Therefore, for small values of r, inequality is stronger than .
Let us record an immediate consequence of @:

COROLLARY 2.6. Suppose that 1 < a < p < 2. Let C' be the constant
of @ Then for all p € MP, we have the following inequalities:

d(1/a—1

() supr 0/ iy g < © sup r VDl
r> s

(i) limsup 4@/ =P 17 00 < Climsup 40/ | pl|,,

r—00 r—0

i) inf d(1/a'=1/p") = , < inf d(1/a—1)
(iit) infr el oo < € f 7 rllellp,

(iv) T inf 0/ ) oo < Climin 902D )

The inequalities (i) and (ii) of the previous corollary yield Theorem 3.4
established by K. S. Lau in [LJ].
A direct consequence of Corollary [2.6] and Theorem [2:2] is the following:

COROLLARY 2.7. Suppose that 1 < o < 2. Let C' be the constant of @
and D the constant of Theorem [2.2] Then for any non-negative measure p
of M?, we have the following inequalities:

d(1/a—1 d(1/a’—1/2

(a) D sup r ) ollpll2 < supr V17l 2,00
0<r<1 r>1

< C sup ™D )l

0<r<1
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(b) Dlimsup /=Y || ully < limsup /=12 17|50
r—00

7T—

< Climsup r®/2=D )y,

T—

(€) D int rf00a) < inf 90/

< C inf D,

0<r<1
(@) Dliminf r0/2D s < limsup /% /20 7l
r—00

< ohggfrd@/a—l) clleell2-

The relation (a) yields a converse of Theorem 3.4 of K. S. Lau mentioned
above in the case p = 2.

3. Estimate on the average of the Fourier transform of a gener-
alized Cantor measure. Let us consider:

(i) two integers m and 1/p such that m > 1 and 1/p > 1,

(ii) m distinct elements b; (1 < j < m) of R? such that the coordinates
of each point (1/p)b; are integers denoted by (1/p)bj; (1 < i < d)
satistying 0 < (1/p)bys < (1/p) — 1,

(iii) a permutation o of {1,...,d}, R the orthogonal transformation de-
fined by R(z) = (zy(1),---»Te(q)) for all z € R?, m contractive
similarities S; = pR + b;,

(iv) m elements a; such that 0 < a; < 1for j =1,...,m and } 7", a;
=1.

J. E. Hutchinson proved in [Hu| that for the system (S}, a;, m), there exists
a unique non-negative Borel measure p = £1(S;, aj, m) with compact support
such that u(R?) = 1 and p = > it aj ,uon_l. So p is the self-similar measure
on R? associated to the system (Sj,a;, m).

Denote by @ the closure of I&, O the set of interior points of I&, and F
the support of u = u(S;,aj, m). For any positive integer n, we set

Ay ={J=01,---,jn) 1 ji €{1,...,m},i=1,...,n}

and Sy =S5;, 0---08; for J € A,.

Notice that the sequence of contractive similarities (S})1<;j<m satisfies the
following open set condition: O is an open bounded subset of R? , S;(O) C O
for j =1,...,m and S;(O) N S,(O) = 0 for j # k. Therefore, we have the

following remark:
REMARK 3.1 (see [Hul, [St2] or [L-W]). Let n be a positive integer. Then:

(1) ECUjea, Ss(Q) CQ,
(ii) for J € A,, S;(O) is an open subset of R? and S;(O) C O,
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(iii) S;(0)N Sy (0) =0 for J,J” € A, such that J # J”,
(i) 1(S5(0)) = [T, a;n(O) for J € A,.
Thus, p is a generalized Cantor measure.

PROPOSITION 3.2. Let i = ju(Sj, a;, m) be a generalized Cantor measure.
If
K={k=(ki,...,kq) - ki € {0,1},i=1,...,d}

and Ko = {k € K : u(I}) > 0}, then Ky is a singleton.
Proof. Particular case: Suppose that R is the identity map of R?. Each
element k of Ky has a length |k| = Z‘ij:l k; < d. Let k be an element of

maximal length of Kj. _ _
(a) Suppose that all the coordinates of k are equal to 1. Then IEIHQ = {k}

and there exists an element j of {1,...,m} such that k € S;(Q). Since for

j=1,....m, S;(Q)={x € Q :bj; <x; <bj +p,i=1,...,d}, we have
keSj(Q) = bi=1—p,i=1,....d.

Therefore, there exists a unique element j of {1,...,m} such that ke S;(Q).

In addition, k = S~.(k). It follows that

0 # p({k}) Za;u Y({k}) = azu({k}) < p({k}).

We arrive at a contradiction. So k has at least one coordinate different from 1.
(b) Set
A={ie{l,...,d}:ki=1}, B={1,....d}\ A4,
T={zrxeQ:i€ A= z; =1, there exists i € B with z; = 1},
P={zeQ:icA=x=1,ie B=0<uz; <1},
M ={j e{lL,....m}: u(P N S;(Q)) # 0}
Let P denote the closure of P. Notice that P = I% NQ, P=PUT and
T C U\k\>|E| I} N Q. It follows that pu(P) # 0, u(T) =0 and M # 0.
Fix j € M. Notice that P N S;(Q) # 0 because u(P N S;(Q)) # 0.

Furthermore, for any « € PN S;(Q) we have 1 < z; < bj; +pforalli e A
and therefore

bji—F,O:l, 1€ A, and xESj(PUT).
So bj; +p=1forall i € A and
PNSj(Q)=PNS;(PUT)=(PNS;(P))U(PNS;(T)).

Fix y € P. Let x = S;(y). Then, for all i € A, y; =1 and so z; = bj; + p. In
addition, for all i € B, 0 <y; <1 and so bj; < x; = bj; + py; < bj +p < 1.
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It follows that S;(y) € P. Thus, S;(P) C P and we obtain

(9) PN S;(Q) = 8;(P)U (PN S;(T)).
We have
P)=> aju(S; (P Zagu H(PNS;(Q)))
j=1

Notice that
JEM = u(PRSiQ) =0 = u(S;'(PNS;Q) =0,
Since p(P) # 0, it follows from these implications and (9] that
= 2 anl(S7 (PNS@Q) = D ai(u(P) + (S5 (P)NT))

JEM JjEM

= au(P

JEM

Therefore M = {1,...,m} and
=JSi(Q cP={reQ:dP) < Vdp},
j=1

where d(z, P) denotes the distance between z and P. According to (9)), we
have S;(P) C PN S;(Q) for j =1,...,m. It follows that

Sjp 054, (P) C 8j,(P) N Sj, 055, (Q) € PN Sj, 055(Q)
for all (j1, j2) € Ag. By iterating this process, we have S;(P) C PN S;(Q)
for all positive integers n and all J € A,,. So for all positive integers n,
= | S/Q c Ppr={zeQ:dP)<Vdp"}.
JeA,

Since (S™(Q))n>1 and (Ppn),>1 are two decreasing sequences of bounded
subsets of R¢ which converge respectively to E and P, we have

1 = u(B) = u(P) = u(P) = p(Iy).

So Ko = {%}

General case: For a given permutation o of {1,...,d}, there exists an
integer s > 1 such that ¢® = o o--- 00 = idga. Notice that for all J € A,
Sy = p®idpa + by where

1< . A
_ EZPS_ZRS_Zbﬂ
=1
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has all its coordinates in {0,1,...,1/p® — 1}. In addition, if J and J” are
two distinct elements of Ag then by and by~ are distinct. We have

p=Y amos;’
JeAs

with ay = [[;_; aj; € (0,1) for all J € As and > ;.4 ay = 1. So p is the
self-similar measure associated to the system (S, ay, m®) of m* contractive
similarities S; and weights ay (J € Ag). We apply the particular case to
conclude that Ky is a singleton. =

The construction of the generalized Cantor measure allows us to make
the following remarks.

REMARK 3.3. Let p = (S}, a;, m) be a generalized Cantor measure and
Ky = {k} defined as in Proposition

(1) Let n be a positive integer and K, = {k € N : u(Ign) # 0}. Then:

(a) K, has m™ elements,
(b) to each element k of K, is associated an element J of A,, such
that

I =5, and  p(If") =]]a.
i=1
(2) For 1 < p < oo we have

m n/
(10) pllally = (3oaf)™ men.
j=1

Now we state and prove the main result of this note.

THEOREM 3.4. Let 1 < p < 2 and p be a generalized Cantor measure.
Suppose that o > 1 satisfies p¥/*" = (Z;”Zl a?)l/p. Then:

(i) There exists a constant D1 = D1(p,d) such that

! / / 1/pl ’
(11) St;grd(l/“ ~i/p )( | AP dy) <Dip ¥, zeR%
e J::

(ii) For p =2, there exists a constant Dy = Dy(d) such that

/ ! 1/2
d/a : d(1/a'—1/2) -~ 2
Dyp™* < infr (JS [h(y)| dy)
0

! 1/2 /
< sup sup r*V VD ([ ) Pdy) T < Dipm e
r>1 zcRd Jr
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Proof. Since ||fi||co < 1, we have

! / / 1 !
12 pd/a’=1/p") w(y)P d <1, zeRYr<i.
Y Y
Ji
Let » > 1. Then there exists a non-negative integer n such that p"t! <
1/r < p™. By Proposition and , we have
(13) Yl < (") TV ), = 3Y 2P pm e
and
(14) Y llplly = ()BT 2R ||, = 3T 2T
Therefore, combining and @, we obtain
(15) ra(1/a’=1/p") Al o < C 34V 9d/pp=dfe’ >

From and , we deduce by taking D; = max{1,C 3%/?'24/7},

Suppose now that p = 2. Combining and Theorem we obtain
the first inequality of assertion (ii) of Theorem The other inequalities
are simple consequences of (L1]). u

REMARK 3.5. Note that for p > 1,if o > 1 satisfies p%/® = (DI a?)l/p,
then 1 < a < p since pd(p_l) < 1/mp_1 < ZTZI a? < 1. Therefore, from
Theorem we deduce the inequalities and displayed in the intro-

duction by taking 3, = dp’/c/.
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