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THE DIMENSION OF THE DERIVED CATEGORY OF
ELLIPTIC CURVES AND

TUBULAR WEIGHTED PROJECTIVE LINES

BY

STEFFEN OPPERMANN (Trondheim)

Abstract. We show that the dimension of the derived category of an elliptic curve or
a tubular weighted projective line is one. We give explicit generators realizing this number,
and show that they are in a certain sense minimal.

1. Introduction. The dimension of a triangulated category has been
introduced by Rouquier in [20]. It measures how long it takes to build the
entire triangulated category starting from just one object. In subsequent
papers [3–7, 11, 15, 16, 19] this has been shown to be a useful invariant.

Rouquier has shown in [20, Proposition 7.4] that the dimension of the
derived category of an algebra is bounded above by the global dimension.
However, this is not true for abelian categories in general (see Remark 4.2).
In this paper, two tubular situations are studied: coherent sheaves over an
elliptic curve, and coherent sheaves over a weighted projective line of tubu-
lar type. We show that the dimension of the derived category is one in both
cases. Orlov has independently shown that the dimension of the derived
category of a smooth projective curve is exactly one [17]. This implies our
result in the case of elliptic curves. Orlov’s methods are based on geometric
information. Our methods simultaneously cover elliptic curves and tubular
weighted projective lines, and are based on explicit knowledge of the cate-
gory of coherent sheaves. The following result, describing exactly what kind
of sheaves generate the derived category in one step, is our main result of
this paper (for the notation see Section 2):

Theorem. Let X be an elliptic curve or a weighted projective line of
tubular type.

(1) Let F be any sheaf such that the indecomposable direct summands
of F have at most two different slopes. Then 〈F〉2 6= Db(coh X).
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Here 〈F〉2 denotes the full subcategory of all objects which are direct
summands of cones of maps between objects in add{F [i] | i ∈ Z}
(see Definition 2.6).

(2) Given any three tubes of pairwise different slopes, there is a sheaf
F having indecomposable direct summands only in those three tubes,
such that 〈F〉2 = Db(coh X).

The main ideas of the proof are the following:
We prove (1) by showing that for such a sheaf F , any indecomposable

sheaf G which is of the same slope as some indecomposable direct summands
of F , but does not lie in the same tube as any summand of F , is not contained
in 〈F〉2.

For the proof of (2) we first note that since coh X is hereditary, it suf-
fices to show that coh X ⊂ 〈F〉2. We divide coh X into the three parts
coh≤(µ1+µ2)/2 X, coh>(µ2+µ3)/2 X, and coh>(µ1+µ2)/2 X ∩ coh≤(µ2+µ3)/2, ac-
cording to the slopes of the sheaves, where µ1 < µ2 < µ3 are the slopes
of the tubes of the Theorem. We show that one can resolve all sheaves in
coh>(µ2+µ3)/2 X by sheaves in the first two tubes, and similarly for sheaves
in coh≤(µ1+µ2)/2 X. Finally, all sheaves in coh>(µ1+µ2)/2 X∩coh≤(µ2+µ3)/2 are
obtained as images of a map from a sheaf in the first tube to a sheaf in the
last tube. In each case it follows that the sheaves are in 〈F〉2 for a suitable F .

In Section 2 we first introduce the notation and recall some well-known
facts about the categories of coherent sheaves over elliptic curves and weight-
ed projective lines of tubular type. Then we give Rouquier’s definition of the
dimension of a triangulated category, and some immediate consequences of
that definition.

In the third section we study what part of the category of coherent
sheaves is generated by certain sheaves. We explicitly calculate the rank
and Euler characteristic of the minimal right and left approximations, and
therefore also obtain these values for the kernels.

In Section 4 we apply the results of Section 3 to obtain our main theorem.

2. Notation and background

2.1. Elliptic curves and tubular weighted projective lines.
Throughout this paper we assume k to be an algebraically closed field. More-
over, we assume that we have one of the following setups:

(1) X is an elliptic curve, or
(2) X is a weighted projective line of tubular type, that is, of type

(2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6)—see [10], in particular [10,
5.4.2] (see also [9] for a study of general sheaves, somewhat related
to what we do in this paper).



DIMENSION OF THE DERIVED CATEGORY 145

2.1. Remarks.

(1) By [10, Section 4], the category coh X of coherent sheaves over a
weighted projective line X is derived equivalent to the category of
modules over a canonical algebra. Hence all results on the derived
categories of tubular weighted projective lines are automatically also
results on the derived categories of tubular algebras (see [18, Chap-
ter 5], see also [21] for an introduction to tubular algebras).

(2) By [10, 5.4.1], weighted projective lines of “smaller” type (that is,
of Euler characteristic χ(O) > 0) are derived equivalent to tame
hereditary algebras. Hence the dimension of their derived category
is also 1.

We study the category coh X of coherent sheaves on X. Facts 2.2, 2.4 and
2.5 below are well-known (see [1, 8], in particular [8, Summary after 4.26],
for the case of elliptic curves, and [10, 13], in particular [10, Theorem 5.6],
for the case of tubular weighted projective lines; see also [12] for a good
summary of the basics in both cases).

2.2. Fact. The category coh X is a hereditary, Hom-finite abelian cat-
egory which has AR-sequences. Moreover, all AR-components are tubes, so
in particular the AR-translation τ has finite order.

For F ∈ coh X we denote by p(F) the minimal positive integer such that
τp(F)F = F . Moreover, we set F =

⊕p(F)
i=1 τ iF .

2.3. Definition. Let F ∈ coh X. We denote by rk(F) the rank of F ,
and by

χ(F) = dimk Hom(O,F)− dimk Ext(O,F)

its Euler characteristic. Moreover, we set

χ(F) =
1

p(F)
χ(F).

That is, χ(F) is the average Euler characteristic over the τ -translates of F .
Finally, we denote by µ(F) = χ(F)/rk(F) the slope of F (we set µ(F) =∞
if rk(F) = 0, that is, if F is a torsion sheaf).

Note that rk, χ and χ are additive on short exact sequences. Hence they
can be defined as maps on the Grothendieck group.

We denote by ind X a fixed set of representatives of isomorphism classes
of indecomposable sheaves; we also use indµ X = {F ∈ ind X | µ(F) = µ},
ind>µ X = {F ∈ ind X | µ(F) > µ}, and similar variations.

Moreover, we set cohµ X = add indµ X. This is the category of semistable
sheaves of slope µ, which is (except for µ = ∞) strictly smaller than the
category of all sheaves of slope µ.
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2.4. Fact. All sheaves in one AR-component have the same slope. For
a fixed slope µ the category indµ X decomposes into a one-parameter family
of uniserial categories.

In case X is an elliptic curve this family is indexed by points on the
curve, and all the uniserial categories are tubes of rank 1.

In case X is a weighted projective line of type (p0, . . . , pn) the family is
indexed by points in P1

k, all but finitely many of the uniserial categories are
tubes of rank 1, and the remaining ones are tubes of ranks p0, . . . , pn.

The prefix “quasi-” indicates that some concept is applied to the abelian
category of objects in one specific tube. For instance the objects in the
mouth of a tube are called quasi-simple. We denote by q.Rad, q.Soc, and
q.length the quasi-radical, quasi-socle, and quasi-length, respectively.

Note that F and F , and hence also χ(F) and χ(F) coincide whenever
F is in a homogeneous tube. In particular, they always coincide if X is an
elliptic curve.

For F ,G ∈ coh X, we set

〈F ,G〉 = dimk Hom(F ,G)− dimk Ext(F ,G),

〈〈F ,G〉〉 =
1

p(G)
〈F ,G〉.

Just as for χ, we note that these notions coincide whenever F or G lies in a
homogeneous tube, so in particular they coincide for elliptic curves.

2.5. Fact.

(1) For µ > ν we have

Hom(cohµ X, cohν X) = 0 and Ext(cohν X, cohµ X) = 0.

(2) (Riemann–Roch theorem—see [8, Theorem 4.13] for elliptic curves
and [10, 2.9] and [12, p. 25] for weighted projective lines) For any
F ,G ∈ coh X we have

〈〈F ,G〉〉 = rk(F)χ(G)− χ(F) rk(G).

2.2. Rouquier’s dimension of a triangulated category. Let T be
a triangulated category. We recall Rouquier’s definition (see [20]) of the
dimension dim T.

2.6. Definition. Let X ∈ Ob T. We set

〈X〉0 = 0,
〈X〉1 = add{X[i] | i ∈ Z},
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〈X〉n+1 = add{Cone(f) | f ∈ Hom(〈X〉n, 〈X〉1)},

〈X〉∞ =
⋃
n∈N
〈X〉n.

The dimension of T is

dim T = inf{n ∈ N0 | ∃X such that 〈X〉n+1 = T}.

2.7. Observation. If T is not finite up to shifts (in particular in both
situations we study here) we have dim T ≥ 1.

2.8. Observation. Let T be a triangulated category with dim T < ∞.
Let X ∈ Ob T be such that 〈X〉∞ = T. Then there is some n ∈ N such that
〈X〉n = T.

Proof. Since dim T < ∞, there is Y ∈ Ob T and n ∈ N such that
〈Y 〉n = T. Since Y ∈ 〈X〉∞, we have Y ∈ 〈X〉m for some m ∈ N. Hence
〈X〉mn = 〈Y 〉n = T.

3. Approximations. In this section we determine the class of coherent
sheaves generated and cogenerated by a fixed sheaf F with the following
properties:

(1) all direct summands of F have the same slope 6=∞,
(2) τF ∈ addF .

We denote by Gen F the category of all sheaves generated by F , that is,
the category of all sheaves G such that there is an epimorphism Fn � G
for some n. Dually, we denote by Cog F the category of sheaves cogenerated
by F , that is, the category of all sheaves G such that there is a monomor-
phism G � Fn for some n.

3.1. Remark. If the slope of all direct summands of F is ∞ (that is, if
F is a torsion sheaf), then F does not generate or cogenerate any sheaves
of other slopes. We restrict to the case of finite slope to avoid having two
cases in all the following results.

Let I be the set of tubes containing an indecomposable direct summand
of F . For each t ∈ I, we choose some indecomposable Ft which is of maximal
quasi-length in addF ∩ t. Then

add{τ iFt | i ∈ Z, t ∈ I} ⊆ addF ⊆ add{q.Radj τ iFt | i, j ∈ Z, j ≥ 0, t ∈ I}

and therefore

Gen F = Gen{τ iFt | i ∈ Z, t ∈ I}, Cog F = Cog{τ iFt | i ∈ Z, t ∈ I}.
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With the notation above we set

δ(F) =
1∑

t∈I

(rk(Ft))2p(Ft)
q.lengthFt

.

3.2. Definition. Let G ∈ coh X. We define a right F-approximation
of G to be a map f : F ′ → G, with F ′ ∈ addF , such that any other map
from addF to G factors through f . Equivalently, one could require that the
map Hom(F ,F ′) f∗−→ Hom(F ,G) is onto.

A minimal right F-approximation of G is a right F-approximation which
is right minimal in the sense of [2, I.2], that is, it does not vanish on any
direct summand of F ′.

Left approximations, and minimal left approximations, are defined du-
ally.

3.3. Proposition.

(1) Let G ∈ coh>µ(F) X, and assume F ′ → G is a minimal right F-ap-
proximation. Then

rk(F ′) =
χ(G)− rk(G)µ(F)

δ(F)
, χ(F ′) =

χ(G)µ(F)− rk(G)µ(F)2

δ(F)
.

(2) Let G ∈ coh<µ(F) X, and assume G → F ′′ is a minimal left F-
approximation. Then

rk(F ′′) =
rk(G)µ(F)− χ(G)

δ(F)
, χ(F ′′) =

rk(G)µ(F)2 − χ(G)µ(F)
δ(F)

.

Proof. We only prove (1), the proof of (2) is dual. Moreover, it suffices
to prove the formula for rk(F ′); the formula for χ(F ′) then follows from
µ(F) = µ(F ′) = χ(F ′)/rk(F ′).

Any map from a sheaf in the intersection of addF with t to G factors
through some τ -shift of Ft. Therefore the minimal right F-approximation
of G is of the form

f : F ′ =
⊕
t∈I

p(Ft)⊕
i=1

(τ iFt)dti → G.

The short exact sequence q.Soc τ iFt ↪→ τ iFt � τ iFt/q.Soc τ iFt induces
an exact sequence

Hom
(

τ iFt

q.Soc τ iFt
,G
)

� Hom(τ iFt,G) � Hom(q.Soc τ iFt,G).

Since any map τ iFt/q.Soc τ iFt → G factors through τ i−1Ft, these maps do
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not occur in the minimal right approximation, and hence

dti = dimk Hom(q.Soc τ iFt,G).

Now we can directly calculate the rank of F ′:

rk(F ′) = rk
(⊕

t

p(Ft)⊕
i=1

(τ iFt)dti

)

=
∑
t∈I

p(Ft)∑
i=1

rk(τ iFt) dimk Hom(q.Soc τ iFt,G)

=
∑
t∈I

rk(Ft)
p(Ft)∑
i=1

dimk Hom(q.Soc τ iFt,G)

=
∑
t∈I

rk(Ft)p(Ft)〈〈q.SocFt,G〉〉

=
∑
t∈I

rk(Ft)p(Ft)[rk(q.SocFt)χ(G)− χ(q.SocFt) rk(G)]

=
∑
t∈I

(rk(Ft))2p(Ft)
q.lengthFt

[χ(G)− µ(Ft) rk(G)]

= (χ(G)− µ(F) rk(G))
∑
t∈I

(rkFt)2p(Ft)
q.lengthFt

.

The claim follows by definition of δ(F).

The observation below follows immediately from the fact that any sheaf
has non-negative rank, and moreover, any sheaf of rank 0 has slope ∞, so
that, by 2.5, there are no morphisms from it to sheaves of any other slope.

3.4. Observation. Let G f−→ G′ ∈ coh X. Then

f mono ⇒ rk(G) ≤ rk(G′),
f epi ⇒ rk(G) ≥ rk(G′).

If, in addition, G ∈ coh<∞X and f is not an isomorphism then

f epi ⇒ rk(G) > rk(G′).

3.5. Corollary.

(1) Let G ∈ ind>µ(F) X and let f : F ′ → G be a minimal right F-
approximation. Then

f mono ⇒ µ(G) ≤ µ(F) + δ(F),
f epi ⇒ µ(G) > µ(F) + δ(F).
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(2) Let G ∈ ind<µ(F) X and let f : G → F ′ be a minimal left F-approxi-
mation. Then

f mono ⇒ µ(G) ≤ µ(F)− δ(F),
f epi ⇒ µ(G) > µ(F)− δ(F).

We now show that the implications in Corollary 3.5 are actually equiv-
alences.

3.6. Theorem.

(1) Let G ∈ ind>µ(F) X and let f : F ′ → G be a minimal right F-approx-
imation. Then

f mono ⇔ µ(G) ≤ µ(F) + δ(F),
f epi ⇔ µ(G) > µ(F) + δ(F).

In particular,

Gen F = add({q.Radj τ iFt | i, j ∈ N, t ∈ I} ∪ ind>µ(F)+δ(F) X).

(2) Let G ∈ ind<µ(F) X and let f : G → F ′ be a minimal left F-approxi-
mation. Then

f mono ⇔ µ(G) ≤ µ(F)− δ(F),
f epi ⇔ µ(G) > µ(F)− δ(F).

In particular,

Cog F = add({q.Radj τ iFt | i, j ∈ N, t ∈ I} ∪ ind≤µ(F)−δ(F) X).

Proof. We only prove the first part, the proof for the second one is
similar. Let G, F ′, and f be as in part (1) of the theorem, and let H be the
image of f . Since the induced map F ′ → H is epi, by Corollary 3.5 we have
H = H′ ⊕ H′′ with H′ ∈ cohµ(F) X and H′′ ∈ coh>µ(F)+δ(F) X. It is easily
seen that H′ ∈ addF . We denote the cokernel of the induced map H′′ ↪→ G
by G′. Then we have the left diagram below, and applying Hom(F ,−) to it
we obtain the right diagram.

H′′ ========H′′ Hom(F ,H′′) ===== Hom(F ,H′′)

H

(0,1)

?

∩

⊂ - G
?

∩

Hom(F ,H)
?

∩

∼= - Hom(F ,G)
?

∩

H′

(
1
0

)
??
- - G′

??

Hom(F ,H′)
?? ∼= - Hom(F ,G′)

??
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Therefore the map H′ � G′ is an addF-approximation of G′. Since it is
mono we have G′ ∈ coh≤µ(F)+δ(F) by Corollary 3.5. Hence the short exact
sequence H′′ ↪→ G � G′ splits. Since G is indecomposable, we have either
G = H′′, so f is epi and µ(G) > µ(F) + δ(F), or G = G′, so f is mono and
µ(G) ≤ µ(F) + δ(F).

3.7. Corollary. Let t be a tube of slope µ 6=∞. Then

Gen t = add(t ∪ ind>µ X) and Cog t = add(t ∪ ind<µ X).

3.8. Proposition. Let F be as above, G ∈ coh>µ(F)+δ(F), and let

f : F ′ � G a minimal right F-approximation. Then Ker f
ker f
↪−−−→ F ′ is a

minimal left F-approximation of Ker f .

Proof. We first show that ker f is an F-approximation, that is, the in-
duced map Hom(F ′,F)→ Hom(Ker f,F) is onto. We apply Hom(−,F) to
the short exact sequence Ker f ↪→ F ′ � G to obtain

Hom(F ′,F) - Hom(Ker f,F) - Ext(G,F) - Ext(F ′,F)

Hom(τ−F ,G)∗

wwwww
- Hom(τ−F ,F ′)∗

wwwww
The lower map is mono, since τ−F ∈ addF and f is an F-approximation.
Therefore the map Hom(Ker f,F) → Ext(G,F) vanishes, and the left map
in the diagram is onto as required.

For the minimality, we assume G to be indecomposable. Assume that the
map ker f factors through a morphism F ′′ ϕ−→ F ′ in addF . Then we obtain
a cokernel morphism as indicated in the following diagram:

Ker f ⊂
ker f

- F ′
f

-- G

F ′′
?

?

ϕ
- F ′

wwwww
-- Cokϕ

??

But Cokϕ ∈ cohµ(F) X, so any map G → Cokϕ vanishes. Hence ϕ is onto.
However, there are no non-split epimorphisms addF → F ′ (see the con-
struction of the approximation in the proof of Proposition 3.3). Therefore ϕ
is split epi, and hence ker f is minimal.

3.9. Corollary. Taking kernels of F-approximations induces an equiv-
alence

coh>µ(F)+δ(F) X→ coh≤µ(F)−δ(F) X.
We obtain a new proof of the fact that all tubular families are separating.

This is “classically” shown using tubular mutations [14].
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3.10. Corollary. All tubular families are separating; that is, for any
µ, any tube t of slope µ, any G ∈ coh>µ X, any H ∈ coh<µ X, and any
ϕ : H → G, there is F ∈ add t such that ϕ factors through F .

Proof. We may assume G and H to be indecomposable. Choose F ∈
add t such that τF = F and δ(F) < 1

2 min{µ(G)−µ, µ−µ(H)}. Let H� F ′
be a minimal left F-approximation of H, and let C be its cokernel. Then

µ(C) =
χ(C)
rk(C)

=
χ(F ′)− χ(H)

rk(F ′)− rk(H)
=

rk(H)µ2−χ(H)µ
δ(F) − χ(H)

rk(H)µ−χ(H)
δ(F) − rk(H)

=
µ2 − µ(H)µ− µ(H)δ(F)

µ− µ(H)− δ(F)
= µ+ δ(F)

µ− µ(H)
µ− µ(H)− δ(F)

< µ+ 2δ(F) < µ(G).

Since by Corollary 3.9 the sheaf C is indecomposable, we have Ext(C,G) = 0.
Therefore the map Hom(F ′,G)→ Hom(K,G) is onto. This means that any
map K → G factors through F ′, as claimed.

4. Generating the derived category. Since any object in the derived
category is a direct sum of stalk complexes, we may restrict our attention
to sheaves.

4.1. Observation. Let F ∈ coh X be such that all direct summands
of F have the same slope. Then

〈F〉∞ ⊆
〈⋃

t∈I
t
〉

1
,

where I denotes the set of all tubes which contain a direct summand of F .
If moreover τF ⊆ addF (so in particular whenever X is an elliptic

curve) then we have equality.
However, 〈F〉r ( 〈

⋃
t∈I t〉1 for any r ∈ N, so in particular, for any tube t,

the triangulated category 〈t〉1 = 〈t〉∞ = Db(t) has no strong generator. In
other words: dimDb(t) =∞.

4.2. Remark. This shows that the equality dimDb(coh X) = 1 does not
follow directly from the hereditariness of the abelian category coh X.

The following proposition is essential in showing that certain sheaves
from any three given tubes of different slopes generate the derived category
in one step.

4.3. Proposition. Let µ1 < µ2 < ∞ and Fi ∈ cohµi X be such that
τFi ∈ addFi. Assume ∆ = µ(F2)− δ(F2)− (µ(F1) + δ(F1)) > 0. Then
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(1) coh≤µ(F1)−δ(F1)−δ(F1)/∆ X ⊆ 〈F1 ⊕F2〉2,
(2) coh>µ(F2)+δ(F2)+δ(F2)/∆ X ⊆ 〈F1 ⊕F2〉2,
(3) coh>µ1+δ(F1) X ∩ coh≤µ2−δ(F2) X ⊆ 〈F1 ⊕F2〉2.

Proof. For the proof of (1), let G ∈ ind≤µ(F1)−δ(F1)−δ(F1)/∆ X. By The-
orem 3.6, the left F1-approximation G → F ′1 of G is mono, and by Corol-
lary 3.9 the cokernel C of this approximation is indecomposable. A straight-
forward calculation, using the formulas in Proposition 3.3, shows

µ(C) =
χ(C)
rk(C)

=
χ(F ′1)− χ(G)

rk(F ′1)− rk(G)
= µ(F1) + δ(F1) +

δ(F1)
µ(F1)− δ(F1)− µ(G)

.

Thus we have

µ(C) ≤ µ(F1) + δ(F1) +
δ(F1)

µ(F1)− δ(F1)− (µ(F1)− δ(F1)− δ(F1)/∆)
= µ(F1) + δ(F1) +∆ = µ(F2)− δ(F2).

By Theorem 3.6, this means that C ∈ Cog F2. Hence we have an exact
sequence

G � F ′1 → F ′2 � H,
with F ′i ∈ addFi and some coherent sheaf H. Since coh X is hereditary, any
complex in Db(coh X) is isomorphic to its homology. Hence the cone of the
map F ′1 → F ′2 above is isomorphic to G[1]⊕H, and we have a triangle

F ′1 → F ′2 → G[1]⊕H → F ′1[1]

in Db(coh X). Therefore G ∈ 〈F1 ⊕F2〉2.
The second claim is proven similarly.
For the third claim note that, for any G∈coh>µ1+δ(F1) X∩coh≤µ2−δ(F2) X,

by Theorem 3.6 there is an epimorphism F ′1 � G and a monomorphism
G � F ′2 with F ′i ∈ addFi. Denoting the kernel of the former map by
K and the cokernel of the latter by C we obtain the first row and last
column of the following diagram. Since coh X is hereditary, the induced map
Ext(C,F ′1) � Ext(C,G) is onto, and hence the following diagram may be
completed:

K ⊂ - F ′1 -- G

K

wwwwww
- - H

?

?

-- F ′2
?

?

C
??
========= C

??

The upper right square is exact, so it gives rise to a short exact sequence
F ′1 � G ⊕H� F ′2. Hence G ∈ 〈F1 ⊕F2〉2.
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4.4. Corollary. Let t1, t2, and t3 be tubes of pairwise different slopes.
Then there are F1 ∈ add t1, F2 ∈ add t2, and F3 ∈ add t3 such that

Db(coh X) = 〈F1 ⊕F2 ⊕F3〉2.
Proof. We may assume that none of the slopes is ∞, because otherwise

there is by [14] (also see [8, 4.18]) a tubular mutation (an autoequivalence
of Db(X)) such that after applying this mutation all slopes are finite. We set
µi = µ(ti) (i = 1, 2, 3), and assume µ1 < µ2 < µ3.

Let Fi ∈ ti be such that addFi is closed under τ . We denote by q.LLFi
the Loewy quasi-length of Fi, that is, the quasi-length of the quasi-longest
indecomposable direct summand. Moreover, we denote by Si any quasi-
simple in ti. Then

δ(Fi) =
1

(q.LLFi)2p(ti)
q.lengthFi

=
1

p(ti) rk(Si)2︸ ︷︷ ︸
only depends on ti

1
q.LLFi

.

In particular, δ(Fi) gets arbitrarily small when we increase the Loewy quasi-
length of Fi.

By Proposition 4.3 we have:

(1) coh≤µ2−δ(F2)−δ(F2)/(µ2−δ(F2)−µ3−δ(F3)) X ⊆〈F2⊕F3〉2. Hence, if δ(F2)
and δ(F3) are sufficiently small, or equivalently, if F2 and F3 have
sufficiently large Loewy quasi-length, then

coh≤(µ1+µ2)/2 X ⊆ 〈F2 ⊕F3〉2.
(2) Similarly, if F1 and F2 have sufficient Loewy quasi-length, then

coh>(µ2+µ3)/2 X ⊆ 〈F1 ⊕F2〉2.
(3) If F1 and F3 have large enough Loewy quasi-length

coh>(µ1+µ2)/2 X ∩ coh≤(µ2+µ3)/2 X ⊆ 〈F1 ⊕F3〉2.
This covers all of coh X. Since any object in the derived category is the shift
of a sheaf, we have also shown 〈F1⊕F2⊕F2〉2 = Db(coh X) for any Fi ∈ ti
closed under τ and of sufficient Loewy quasi-length.

4.5. Corollary. dimDb(coh X) = 1.

4.6. Example. Let X be an elliptic curve, and let L1 and L2 be quasi-
simple sheaves of slopes −3 and 3 respectively (then they are line bundles).
Then

〈L1 ⊕O ⊕ L2〉2 = Db(coh X).

Proof. For any line bundle L over X we have δ(L) = 1.

We end this paper by studying the possibility of generating the derived
category from indecomposable sheaves with only two different slopes.

4.7. Corollary. Let µ1 < µ2. Then 〈indµ1 X∪ indµ2 X〉2 = Db(coh X).
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4.8. Corollary. Let µ1 < µ2 and Fi ∈ cohµi X be closed under τ .
Then 〈F1 ⊕ F2〉∞ = Db(coh X), and therefore, by Observation 2.8, there is
n such that 〈F1 ⊕F2〉n = Db(coh X).

4.9. Proposition. Let µ1 < µ2 and Fi ∈ cohµi X. Then 〈F1 ⊕ F2〉2 (
Db(coh X).

Proof. Let G ∈ cohµ2 X be such that G does not lie in the same tube as
any of the direct summands of F2. Assume G ∈ 〈F1 ⊕ F2〉2 ( Db(coh X).
That means there is a triangle F ′ → F ′′ → G⊕C → F ′[1] for some F ′,F ′′ ∈
〈F1⊕F2〉 and C ∈ Db(coh X). We can write F ′ = F ′1⊕F ′2 and F ′′ = F ′′1 ⊕F ′′2
with F ′1,F ′′1 ∈ 〈F1〉 and F ′2,F ′′2 ∈ 〈F2〉.

By the octahedral axiom we obtain the following commutative diagram:

F ′′2 ======== F ′′2

F ′ - F ′′
incl

?
- G ⊕ C

?
- F ′[1]

F ′

wwwww
- F ′′1

proj
?

- H
?

- F ′[1]

wwwww

F ′′2 [1]

0
?

====== F ′′2 [1]
?

Applying Hom(−,G) to the right vertical triangle, we see that the map
Hom(H,G)→ Hom(G⊕C,G) is onto, and hence that G is a direct summand
of H. Therefore we may assume F ′′ ∈ 〈F1〉, and similarly one may assume
F ′ ∈ 〈F1〉. This is a contradiction, since clearly 〈F1〉∞ ⊂ add{(indµ1 X)[i] |
i ∈ Z}. Therefore G 6∈ 〈F1 ⊕F2〉2.
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