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AN EXAMPLE OF A SIMPLE DERIVATION IN TWO VARIABLES

BY

ANDRZEJ NOWICKI (Toruń)

Abstract. Let k be a field of characteristic zero. We prove that the derivation D =
∂/∂x + (ys + px)(∂/∂y), where s ≥ 2, 0 6= p ∈ k, of the polynomial ring k[x, y] is simple.

1. Introduction. Throughout the paper k is a field of characteristic
zero. Assume that d is a derivation of a commutative k-algebra R. We say
that d is simple if R has no d-invariant ideals other than 0 and R.

Simple derivations are useful for constructions of simple noncommutative
rings which are not fields. It is well known ([2]) that if R[t, d] is the Ore
extension of R with respect to d ([11], [5]), then R[t, d] is a simple ring (that
is, R[t, d] has no two-sided ideals other than 0 and R[t, d]) if and only if the
derivation d is simple.

We can use simple derivations to construct simple Lie rings. Recall that
a Lie ring L is said to be simple if it has no Lie ideals other than 0 and L.
Denote by R0 the Lie ring whose elements are the elements of R, with the
product [a, b] = ad(b)− d(a)b for all a, b ∈ R0. It is known ([4], [9]) that R0

is simple if and only if d is simple.
A. Seidenberg [13] showed that if R is a finitely generated domain and

d is simple, then R is regular. R. Hart [3] showed that if R is a finitely
generated local domain, then R is regular if and only if there exists a simple
derivation of R.

Examples, applications and various properties of simple derivations can
be found in many other papers (see, for example, [12], [7], [6], [10], [8], [1]).

Let R = k[x1, . . . , xn] be the polynomial ring over k in n variables and
let d(x1) = f1, . . . , d(xn) = fn. It would be of considerable interest to find
necessary and sufficient conditions on f1, . . . , fn for d to be simple. The
answer is obvious only for n = 1.

If n = 2, then only some sporadic examples of simple derivations of R =
k[x, y] are known.

The problem seems to be difficult even if we assume that d(x) = 1. In [10]
and [1], there is a description of all simple derivations d of k[x, y] such that
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d(x) = 1 and d(y) = a(x)y + b(x), where a(x), b(x) ∈ k[x]. A. Maciejewski,
J. Moulin-Ollagnier and the author [8] gave an algebraic characterization of
simple derivations d of k[x, y] such that d(x) = 1 and d(y) = y2+a(x)y+b(x),
where a(x), b(x) ∈ k[x]. Analytic proofs of our results with more precise char-
acterizations of simple derivations of such forms were given by H. Żołądek
in [14].

Recently, P. Brumatti, Y. Lequain and D. Levcovitz [1] constructed ex-
amples of simple derivations d of the local ring k[x, y](x,y) such that d(x) = 1
and degy d(y) = s, where s is an arbitrary positive integer. Most of the pub-
lished examples of simple derivations d of k[x, y] with d(x) = 1 are of the
type d = ∂/∂x+F (x, y)(∂/∂y), where F (x, y) ∈ k[x, y] and degy F (x, y) ≤ 2.
In particular, there does not seem to be any example with degy F (x, y) an
arbitrary positive integer. The aim of this paper is to provide such an ex-
ample. We prove, in an elementary way, that if s ≥ 2 and 0 6= p ∈ k, then
the derivation ∂/∂x+ (ys + px)(∂/∂y) is simple.

2. Preliminaries and notations. Let d be a derivation of k[x, y]. We
say (as in [8]) that a polynomial F ∈ k[x, y] is a Darboux polynomial of d if
F 6∈ k and d(F ) = ΛF for some Λ ∈ k[x, y], or equivalently (F ) is a proper
d-invariant ideal of k[x, y]. Note the following easy observation.

Proposition 1. If d : k[x, y]→ k[x, y] is a derivation such that d(x) = 1,
then d is simple if and only if d has no Darboux polynomials.

Proof. This is well known (see, for example, Proposition 2.1 in [8]) if the
field k is algebraically closed. In the general case we use standard arguments
(see [10]).

Throughout the paper, D denotes the derivation of k[x, y] defined by
D = ∂/∂x+ (ys + px)(∂/∂y),

where s ≥ 0 and p ∈ k \ {0}. If s = 0, then this derivation is not simple,
because D(y− x− 1

2px
2) = 0. If s = 1, then D is not simple either, because

D(y + px+ p) = y + px+ p. We will assume that s ≥ 2. Note that if s = 2,
then we know ([8, Theorem 6.2]) that D is simple. We will prove that the
same is true for any s ≥ 2. For the proof we need to show (by Proposition 1)
that D has no Darboux polynomials.

Suppose that D has a Darboux polynomial. Let F and Λ be fixed poly-
nomials from k[x, y] such that F 6∈ k and D(F ) = ΛF . Using these notations
we have:

Lemma 1. Λ ∈ k[y] \ {0}, degΛ = s − 1 and Λ = nys−1 + λ, where
n = degy F , λ ∈ k[y] with deg λ < s− 1.

Proof. First suppose that Λ = 0, that is, D(F ) = 0. Let F = Ayn + G,
where 0 6= A ∈ k[x], n ≥ 0 and G ∈ k[x, y] with degy G < n. If n = 0,
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then F = A ∈ k[x] and 0 = D(F ) = A′, where A′ is the derivative of A
with respect to x. So, if n = 0, then F ∈ k, and we have a contradiction.
If n > 0, then 0 = D(F ) = nAy(n−1)+s + H for some H ∈ k[x, y] with
degyH < n+ s− 1, and again we have a contradiction. Therefore, Λ 6= 0.

Let F = a(y)xm +G and Λ = b(y)xr +H, where a(y), b(y) ∈ k[y] \ {0},
m, r ≥ 0, G,H ∈ k[x, y], degxG < m and degxH < r. Then D(F ) =
pa(y)′xm+1 + U and ΛF = a(y)b(y)xm+r + V for some U, V ∈ k[x, y] with
degx U < m+1 and degx V < m+r, where a(y)′ is the derivative of a(y) with
respect to y. But D(F ) = ΛF . So, if r > 1 then we have the contradiction
0 = a(y)b(y) 6= 0, and if r = 1 then we have the equality pa(y)′ = a(y)b(y),
which is also an evident contradiction. Hence, r = 0 (and a(y)′ = 0), which
means that Λ = b(y) ∈ k[y].

Now, comparing in D(F ) = ΛF the leading terms with respect to powers
of y, we see that degy Λ = s−1 and that the leading coefficient of Λ is equal
to degy F .

By the above lemma we may fix the following notations. Assume that
n = degy F ,

F = A0y
n +A1y

n−1 + · · ·+An,

where A0, . . . , An ∈ k[x] with A0 6= 0, and

Λ = nys−1 − a1y
s−2 − a2y

s−3 + · · ·+ as−2y + as−1,

where a1, . . . , as−1 ∈ k. It is obvious that n ≥ 1. Since every polynomial of
the form cF , where 0 6= c ∈ k, is also a Darboux polynomial of D, we may
assume that A0 is monic. Assume also that Ai = 0 if i > n or i < 0.

If u is a polynomial from k[x], then we denote by u′ the derivative du/dx,
by |u| the degree of u, and by u∗ the leading monomial of u. Moreover, if
u and v are polynomials from k[x], then we write u ∼ v if there exists a
positive rational number q such that u = qv. Let r be the degree of A0.
Thus, |A0| = r ≥ 0 and A∗0 = xr.

3. The proof of the main result. Comparing in D(F ) = ΛF the
coefficients (belonging to k[x]) of yj for j = n+ s− 1, . . . , 2, 1, 0, we obtain

σAσ = a1Aσ−1 + a2Aσ−2 + · · ·+ as−1Aσ−(s−1)(1)

+A′σ−(s−1) + (n+ s− σ)Aσ−spx

for all σ = 1, . . . , n+ s− 1. Putting σ = τ + s we obtain

(τ + s)Aτ+s = a1Aτ+s−1 + a2Aτ+s−2 + · · ·+ as−1Aτ+1(2)
+A′τ+1 + (n− τ)Aτpx

for all τ = −(s− 1),−(s− 2), . . . ,−1, 0, 1, . . . , n− 1.
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The above equalities will play an important role in our proof. Observe
that we have the following sequence of equalities:

(3)



A1 = a1A0,

2A2 = a1A1 + a2A0,

3A3 = a1A2 + a2A1 + a3A0,

...

(s− 2)As−2 = a1As−3 + a2As−4 + · · ·+ as−2A0,

(s− 1)As−1 = a1As−2 + a2As−3 + · · ·+ as−1A0 +A′0,

sAs = a1As−1 + a2As−2 + · · ·+ as−1A1 +A′1 + nA0px,

(s+ 1)As+1 = a1As + a2As−1 + · · ·+ as−1A2 +A′2 + (n− 1)A1px,

...

nAn = a1An−1 + a2An−2 + · · ·+ as−1An+1−s +A′n+1−s + sAn−spx,

0 = a1An + a2An−1 + · · ·+ as−1An+2−s +A′n+2−s + (s− 1)An+1−spx,

0 = a2An + a3An−1 + · · ·+ as−1An+3−s +A′n+3−s + (s− 2)An+2−spx,

...

0 = as−2An + as−1An−1 +A′n−1 + 2An−2px,

0 = as−1An +A′n +An−1px.

for σ = 1, . . . , s− 1.

Lemma 2. (a) If i is an integer such that 0 ≤ is ≤ n, then

Ais 6= 0, |Ais| = r + i and A∗is ∼ pixr+i.

(b) If i, j are integers such that 0 ≤ is + j ≤ n and 0 < j < s, then
|Ais+j | ≤ r + i.

Proof. Since A0 6= 0 and A∗0 = xr, statement (a) is true for i = 0. Since
a1, . . . , as−1 ∈ k, the initial equalities of (3) imply that for i = 0 statement
(b) is also true.

Assume now that both (a) and (b) hold for some i ≥ 0. Assume also that
(i+ 1)s ≤ n. Then, by (2), A(i+1)s = Ais+s ∼ B, where

B = a1Ais+s−1 + a2Ais+s−2 + · · ·+ as−1Ais+1 +A′is+1 + (n− is)Aispx.

So, by induction, A∗(i+1)s ∼ (n − is)A∗ispx ∼ pixr+ipi = pi+1xr+(i+1). This
means that (a) holds for i+ 1.

Let j be an integer such that 0 < j < s and (i + 1)s + j ≤ n. If j = 1
then, by (2), A(i+1)s+1 = A(is+1)+s ∼ B, where

B = a1A(i+1)s+a2Ais+(s−1)+ · · ·+as−1Ais+2+A′is+2+(n−(is+1))Ais+1px.
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We already know that |A(i+1)s| = r+(i+1), so |a1A(i+1)s| ≤ r+(i+1). We
also know that the degrees |a2Ais+(s−1)|, . . . , |as−1Ais+2| are smaller than
r + (i+ 1). Moreover, |(n− (is+ 1))Ais+1px| = |Ais+1|+ 1 ≤ (r + i) + 1 =
r + (i + 1). Hence, |A(i+1)s+1| ≤ r + (i + 1). Repeating the same argument
successively for j = 2, . . . , s − 1 (using a new induction) we deduce that
|A(i+1)s+j | ≤ r + (i+ 1). This completes the proof.

Lemma 3. The number s divides n.

Proof. Suppose that n = is+ j, where i ≥ 0 and 0 < j < s, and consider
the equality (4) for σ = j. We have

0 = as−jAis+j + a(s−j)+1Ais+(j−1) + · · ·+ as−1Ais+1 +A′is+1 + jAsipx.

By Lemma 2, jAsipx is a nonzero polynomial of degree r+(i+1). Moreover,
also by that lemma, the remaining terms of the right side have degrees smaller
than r + (i+ 1). So, we have a contradiction.

It follows from the above lemma that

(5) n = ts,

where t is a positive integer.

Lemma 4. The coefficient a1 is equal to zero.

Proof. Suppose that a1 6= 0. Then, by (2), A∗1 = a1x
r (because, as we

assumed, A∗0 = xr). We will show, by induction, that if is+ 1 ≤ n, then
(6) A∗is+1 ∼ a1p

ixr+i.

For i = 0, this is clear. Let (i + 1)s + 1 ≤ n. Then, by (2), A(i+1)s+1 =
A(is+1)+s ∼ B, where

B = a1A(i+1)s+a2Ais+(s−1)+ · · ·+as−1Ais+2+A′is+2+(n−(is+1))Ais+1px.

Observe that, by Lemma 2, (a1A(i+1)s)∗ ∼ a1p
i+1xr+(i+1) and, by induction,

((n− (is+ 1))Ais+1px)∗ ∼ a1p
ixr+ipx = a1p

i+1xr+(i+1).

The degrees of the remaining components of B are, by Lemma 2, smaller
than r + (i + 1). So, A∗(i+1)s+1 ∼ B∗ ∼ a1p

i+1xr+(i+1) + a1p
i+1xr+(i+1) ∼

a1p
i+1xr+(i+1). Thus, (6) is proven.
Consider now the equality (4) for σ = s− 1. We have

0=a1Ats+a2A(t−1)s+(s−1)+· · ·+as−1A(t−1)s+2+A
′
(t−1)s+2+(s−1)A(t−1)s+1px.

But (a1Ats)∗ ∼ a1p
txr+t (Lemma 2) and, by (6), ((s − 1)A(t−1)s+1px)∗ ∼

a1p
txr+t; moreover, the degrees of all the remaining terms are (by Lemma 2)

smaller than r + t. So, we have the contradiction 0 = a1p
t 6= 0.

Lemma 5. All the coefficients a1, . . . , as−1 are equal to zero.
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Proof. Suppose otherwise, and let m ∈ {1, . . . , s − 1} be smallest such
that am 6= 0. Then, by Lemma 4,m > 1 and a1 = · · · = am−1 = 0. Moreover,
by (2), A∗m ∼ amx

r, and repeating the same arguments as in the proof of
Lemma 4, we get
(7) A∗is+m ∼ ampixr+i

for all i with is+m ≤ n. Consider the equality (4) for σ = s−m. We have
0 = amAts + am+1Ats−1 + · · ·+ as−1A(t−1)s+m+1

+A′(t−1)s+m+1 + (s−m)A(t−1)s+mpx.

But (amAts)∗ ∼ amptxr+t (Lemma 2) and, by (7), ((s−m)A(t−1)s+mpx)∗ ∼
amp

txr+t; moreover, the degrees of all remaining components are (by Lem-
ma 2) smaller than r + t. So, we have the contradiction 0 = amp

t 6= 0.
Now the equalities (3) have simpler forms. We know that A1 = · · · =

As−2 = 0, As−1 ∼ A′0 and, by (2),
(8) A(j+1)s−1 = A(js−1)+s ∼ A′js + ((t− j)s+ 1)Ajs−1px

for all j with 0 ≤ (j + 1)s− 1 ≤ ts. Moreover, by (4) (for σ = 1), we have
(9) 0 = A′ts +Ats−1px.

Suppose t = 1. Then 0 = A′s+As−1px and (A′s)
∗= (r+1)pxr ∼ pxr. If r= 0,

then As−1 = 0 (because As−1∼A′0) and so 0∼ p 6= 0, a contradiction. If r > 0,
then (As−1px)∗ ∼ pxr and, in this case, 0 ∼ pxr 6= 0, a contradiction again.

Therefore, t > 1. Now, using induction and (8), we see that

(A(j+1)s−1)
∗ ∼ pjxr+j−1

for all j such that 0 ≤ (j + 1)s − 1 ≤ ts. In particular, (Ats−1px)∗ ∼
pt−1xr+t−2px = ptxr+t−1. Moreover, by Lemma 2, (A′ts)

∗ ∼ ptxr+t−1. So,
by (9), we obtain the contradiction 0 ∼ ptxr+t−1 6= 0.

We have proved the following theorem.

Theorem 1. Let k be a field of characteristic zero and let D be a deriva-
tion of k[x, y] of the form

D =
∂

∂x
+ (ys + px)

∂

∂y
,

where s ≥ 2 and 0 6= p ∈ k. Then D is simple.

Note also the following fact.

Theorem 2. Let k be a field of characteristic zero and let d be a deriva-
tion of k[x, y] of the form

d =
∂

∂x
+ (ys + px+ q)

∂

∂y
,

where s ≥ 2, p, q ∈ k, p 6= 0. Then d is simple.
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Proof. Let σ : k[x, y] → k[x, y] be the automorphism defined by σ(x) =
x + p−1q and σ(y) = y. Then d = σDσ−1, where D is the derivation from
Theorem 1.
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