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AN EXAMPLE OF A SIMPLE DERIVATION IN TWO VARIABLES

BY

ANDRZEJ NOWICKI (Torun)

Abstract. Let k be a field of characteristic zero. We prove that the derivation D =
9/0z + (y° + px)(8/dy), where s > 2, 0 # p € k, of the polynomial ring k[z,y] is simple.

1. Introduction. Throughout the paper k is a field of characteristic
zero. Assume that d is a derivation of a commutative k-algebra R. We say
that d is simple if R has no d-invariant ideals other than 0 and R.

Simple derivations are useful for constructions of simple noncommutative
rings which are not fields. It is well known (|2]) that if R[t,d] is the Ore
extension of R with respect to d ([11], [5]), then RJt, d] is a simple ring (that
is, RJt,d] has no two-sided ideals other than 0 and R[t,d]) if and only if the
derivation d is simple.

We can use simple derivations to construct simple Lie rings. Recall that
a Lie ring L is said to be simple if it has no Lie ideals other than 0 and L.
Denote by Ry the Lie ring whose elements are the elements of R, with the
product [a,b] = ad(b) — d(a)b for all a,b € Ry. It is known ([4], |9]) that Ry
is simple if and only if d is simple.

A. Seidenberg [13] showed that if R is a finitely generated domain and
d is simple, then R is regular. R. Hart [3| showed that if R is a finitely
generated local domain, then R is regular if and only if there exists a simple
derivation of R.

Examples, applications and various properties of simple derivations can
be found in many other papers (see, for example, [12], [7], [6], [10], [8], [1]).

Let R = k[z1,...,zy] be the polynomial ring over k in n variables and
let d(z1) = f1,...,d(xy) = fn. It would be of considerable interest to find
necessary and sufficient conditions on fi,..., f, for d to be simple. The

answer is obvious only for n = 1.

If n = 2, then only some sporadic examples of simple derivations of R =
k[z,y] are known.

The problem seems to be difficult even if we assume that d(z) = 1. In [10]
and [1], there is a description of all simple derivations d of k[z,y] such that
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d(xz) =1 and d(y) = a(x)y + b(x), where a(z),b(x) € k[z]. A. Maciejewski,
J. Moulin-Ollagnier and the author [8] gave an algebraic characterization of
simple derivations d of k[z,y] such that d(z) = 1 and d(y) = y?>+a(z)y+b(z),
where a(z), b(x) € k[z]. Analytic proofs of our results with more precise char-
acterizations of simple derivations of such forms were given by H. Zoladek
in [14].

Recently, P. Brumatti, Y. Lequain and D. Levcovitz [1]| constructed ex-
amples of simple derivations d of the local ring k[, 3], such that d(z) = 1
and deg, d(y) = s, where s is an arbitrary positive integer. Most of the pub-
lished examples of simple derivations d of k[z,y] with d(z) = 1 are of the
typed = 0/0z+F(x,y)(0/0y), where F(x,y) € k[z,y] and deg, F'(z,y) < 2.
In particular, there does not seem to be any example with deg, F'(x,y) an
arbitrary positive integer. The aim of this paper is to provide such an ex-
ample. We prove, in an elementary way, that if s > 2 and 0 # p € k, then
the derivation 0/0z + (y* + px)(0/dy) is simple.

2. Preliminaries and notations. Let d be a derivation of k[z,y]. We
say (as in [8]) that a polynomial F' € k[z,y] is a Darbouzx polynomial of d if
F ¢ k and d(F') = AF for some A € k[z,y|, or equivalently (F') is a proper
d-invariant ideal of k[z,y]. Note the following easy observation.

ProPOSITION 1. If d: k[z,y] — k[z,y] is a derivation such that d(x) =1,
then d is simple if and only if d has no Darbouz polynomials.

Proof. This is well known (see, for example, Proposition 2.1 in [8]) if the
field £ is algebraically closed. In the general case we use standard arguments
(see [10]). =

Throughout the paper, D denotes the derivation of k[z,y| defined by

D =0/0x + (y* + px)(0/0y),
where s > 0 and p € k\ {0}. If s = 0, then this derivation is not simple,
because D(y — x — %me) = 0. If s =1, then D is not simple either, because
D(y + px + p) =y + pr + p. We will assume that s > 2. Note that if s = 2,
then we know ([8, Theorem 6.2|) that D is simple. We will prove that the
same is true for any s > 2. For the proof we need to show (by Proposition 1)
that D has no Darboux polynomials.

Suppose that D has a Darboux polynomial. Let F' and A be fixed poly-

nomials from k[z, y| such that F' ¢ k and D(F) = AF. Using these notations
we have:

LEMMA 1. A € k[y] \ {0}, degA = s — 1 and A = ny*~1 + X\, where
n =deg, F', A € k[y] with deg A < s —1.

Proof. First suppose that A = 0, that is, D(F') = 0. Let F' = Ay" + G,
where 0 # A € klz], n > 0 and G € k[z,y] with deg, G < n. If n = 0,
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then F' = A € k[z] and 0 = D(F) = A’, where A’ is the derivative of A
with respect to z. So, if n = 0, then F' € k, and we have a contradiction.
If n > 0, then 0 = D(F) = nAy™ D+ + H for some H € k[z,y] with
deg, H <n+ s — 1, and again we have a contradiction. Therefore, A # 0.

Let F' = a(y)z™ + G and A = b(y)z" + H, where a(y),b(y) € kly] \ {0},
m,r > 0, G,H € k[z,y], deg, G < m and deg, H < r. Then D(F) =
pa(y)'z™! + U and AF = a(y)b(y)z™" + V for some U,V € k[z,y] with
deg, U < m+1 and deg, V < m+r, where a(y)’ is the derivative of a(y) with
respect to y. But D(F) = AF. So, if » > 1 then we have the contradiction
0 = a(y)b(y) # 0, and if » = 1 then we have the equality pa(y) = a(y)b(y),
which is also an evident contradiction. Hence, 7 = 0 (and a(y)’ = 0), which
means that A = b(y) € kly].

Now, comparing in D(F') = AF the leading terms with respect to powers
of y, we see that deg, A = s —1 and that the leading coefficient of A is equal
to deg, . =

By the above lemma we may fix the following notations. Assume that
n = deg, F,

F=Ag"+ A" 4+ Ay,

where Ay, ..., A, € k[x] with Ag # 0, and

1 s—2

A=ny ! —ayy agy® 3+t as_oy +as_1,

where a1,...,as—1 € k. It is obvious that n > 1. Since every polynomial of
the form cF', where 0 # ¢ € k, is also a Darboux polynomial of D, we may
assume that Ag is monic. Assume also that A; =01if 7 >n or i < 0.

If u is a polynomial from k[z], then we denote by v’ the derivative du/dz,
by |u| the degree of u, and by u* the leading monomial of u. Moreover, if
u and v are polynomials from k[z], then we write u ~ v if there exists a
positive rational number ¢ such that u = qv. Let r be the degree of Ay.
Thus, [Ag| =7 > 0 and Af = z".

3. The proof of the main result. Comparing in D(F) = AF the
coefficients (belonging to k[z]) of ¢’ for j=n+s—1,...,2,1,0, we obtain

(1) 0A; =a1As1+a2Ao—2+ -+ as—14,_(5-1)
+ A;—(s—l) + (n +s— U)Aa—spl'
forallc =1,...,n+s— 1. Putting ¢ = 7 + s we obtain
(2) (T4+8)Arys =a1Arys—1 +a2Aris—o+ -+ as—14:41

+ AL+ (n—1)Apa
forall7=—(s—1),—(s—2),...,—1,0,1,...,n— 1.
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The above equalities will play an important role in our proof. Observe
that we have the following sequence of equalities:

A1 = a1Ao,
2A3 = a1 A1 + a24o,
3A3 = a1 A2 + a2A1 + az Ao,

(s =2)As—2 =a1ds_3+a2As—a+ -+ as—240,
(s —1)As—1 =a1ds_o+azAs_3+ -+ as—1A0 + A,

sAs =a1As_1+azAs_2+ - +as_1A1 + A] + nAgpaz,
(3) (s+ 1)Ast1 = a1As + agAs_1 + - +as_142 + Ay + (n — 1) A1 pr,

nAn, =a1An-1+a2An_2+---+ as—lAn+1—s + A{n+175 + SAnfsva
0=a14n+a2An_1+ - +as—1Ant2-s + A;«l+2_s + (3 - I)A,LJrl,pr,
0=a2A, + a3An71 + -+ asflAn+3fs + A;L+375 + (5 - Q)An+2fspx7

0=as—2An +tas_1An_1+ A;’L—l + 2A,_opx,

0=as_1An + A’/n + Ap_1px.

foro=1,...,s — 1.
LEMMA 2. (a) If i is an integer such that 0 < is < n, then
Ais #0, |Aisl=7r+1i and A, ~ pla Tl

(b) If i,7 are integers such that 0 < is+j < n and 0 < j < s, then
‘Ai5+j| <r+4i.

Proof. Since Ag # 0 and Ajj = 2", statement (a) is true for ¢ = 0. Since
ai,...,as—1 € k, the initial equalities of (3) imply that for i = 0 statement
(b) is also true.

Assume now that both (a) and (b) hold for some ¢ > 0. Assume also that
(i +1)s < n. Then, by (2), Ait1)s = Ais+s ~ B, where

B = a1Ajsis—1 + a2 Aisrs—2 + -+ as_1Aisp1 + Ajgy + (n — is) Aisp.

So, by induction, Af; ), ~ (n — is) A pr ~ pla™ipi = pTlamH )| This
means that (a) holds for ¢ + 1.
Let j be an integer such that 0 < j < sand (i+ 1)s+j <n.Ifj=1

then, by (2)7 A(i+1)s+1 = A(is+1)+s ~ B, where
B = a1A(i1)sTa2Ais i (s—1) s 1A+ Ajg o+ (n—(is+1)) Ajsr1pz.
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We already know that [A1)s| =7+ (i+1), s0 [a1Agi1)s| <7+ (i+1). We
also know that the degrees |a2Ai5+(S_1)\, ooy |as—1As42| are smaller than
r 4 (i + 1). Moreover, |(n — (is + 1)) Ajs41px| = [Aisp1| +1 < (r+i) + 1 =
7+ (i +1). Hence, [A(j11)s41| < 7+ (i + 1). Repeating the same argument
successively for j = 2,...,s — 1 (using a new induction) we deduce that
|A(i+1)s4+j] <7+ (i + 1). This completes the proof. =

LEMMA 3. The number s divides n.

Proof. Suppose that n = is+ 7, where ¢ > 0 and 0 < j < s, and consider
the equality (4) for o = j. We have
0=as jAistj + (s jy11Aiss(j—1) + - + as1Aisy1 + Algyy + jAsipz.

By Lemma 2, jAg;pzx is a nonzero polynomial of degree r+ (i+1). Moreover,
also by that lemma, the remaining terms of the right side have degrees smaller
than r + (i + 1). So, we have a contradiction. m

It follows from the above lemma that
(5) n =ts,
where t is a positive integer.

LEMMA 4. The coefficient ay is equal to zero.

Proof. Suppose that a; # 0. Then, by (2), A} = a1z” (because, as we
assumed, A§ = 2"). We will show, by induction, that if is + 1 < n, then
(6) Ay ~ arp'a,
For i = 0, this is clear. Let (i +1)s + 1 < n. Then, by (2), Ajt1)s41 =
Alis+1)+s ~ B, where
B = a1A(i11)sTa2Ais i (s—1) s 1 Ao+ Ajg o+ (n—(is+1)) Ajsp1pz.
Observe that, by Lemma 2, (a14;41ys)* ~ ar1pt 12"+ and, by induction,

((n—(is + 1)) Aisr1pz)* ~ arp'a"ipr = allexH(iH).

The degrees of the remaining components of B are, by Lemma 2, smaller

than 7 + (i 4+ 1). So, A?¢+1)s+1 ~ B* ~ apttam ) 4ogpitlprt ) o
aypt a0+ Thus, (6) is proven.

Consider now the equality (4) for 0 = s — 1. We have
0:alAts+a2A(t—1)s+(5_1)+' : '+as—1A(t—1)s+2+A/(t_1)s+2+(5_1)A(t—1)s+1p$-

But (a3 A4ss)* ~ aip'a™" (Lemma 2) and, by (6), ((s — 1)Ag_1)sp1p2)* ~
a1p'z"*t; moreover, the degrees of all the remaining terms are (by Lemma 2)

smaller than 7 + t. So, we have the contradiction 0 = a1p’ # 0. =

LEMMA 5. All the coefficients aq,...,as_1 are equal to zero.
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Proof. Suppose otherwise, and let m € {1,...,s — 1} be smallest such
that a,, # 0. Then, by Lemma 4, m > 1land a; = -+ = a;—1 = 0. Moreover,
by (2), A%, ~ amx”, and repeating the same arguments as in the proof of
Lemma 4, we get

(7) A;s+m ~ amp' r+i

for all ¢ with is + m < n. Consider the equality (4) for o = s — m. We have
0= CLm14ts + aerlAtsfl + -+ asflA(t—l)s—i—m—&—l

+ A,(t—l)s—i-m—f—l + (S - m)A(t_1)5+mp."L‘.

But (amAss)* ~ amp'a™" (Lemma 2) and, by (7), ((s —m) A 1)s4mpT)* ~
amp'z"tt; moreover, the degrees of all remaining components are (by Lem-

ma 2) smaller than r + ¢. So, we have the contradiction 0 = a,;,p* # 0. m

Now the equalities (3) have simpler forms. We know that Ay = --- =
As—2 =0, Ag_1 ~ A6 and, by (2)7

(8) AGt1ys—1 = AGs—1yts ~ Ajs + ((t = §)s + 1) Ajs1pz
for all j with 0 < (j + 1)s — 1 < ts. Moreover, by (4) (for ¢ = 1), we have
9) 0= A}, + Ais_1pz.

Suppose t = 1. Then 0 = A, + As_1px and (AL)* = (r+1)pz" ~pz". If r =0,
then Ay 1 =0 (because A ~ Af) and so 0 ~ p # 0, a contradiction. If » > 0,
then (As_1pz)* ~ pz" and, in this case, 0 ~ pz” # 0, a contradiction again.
Therefore, t > 1. Now, using induction and (8), we see that
(Ags1)s—1)" ~ pla !
for all j such that 0 < (j + 1)s — 1 < ts. In particular, (A¢s—1pz)* ~

pi Tl 2py = pta™=1 Moreover, by Lemma 2, (A4},)* ~ pla™™t=1. So,

by (9), we obtain the contradiction 0 ~ ptz" =1 =£ 0.
We have proved the following theorem.

THEOREM 1. Let k be a field of characteristic zero and let D be a deriva-
tion of klz,y| of the form

0 0
D=— s —
5 T W +px)3y,
where s > 2 and 0 # p € k. Then D is simple. u
Note also the following fact.

THEOREM 2. Let k be a field of characteristic zero and let d be a deriva-
tion of klx,y| of the form

d—2+( S+ px + )2
where s > 2, p,q € k, p# 0. Then d is simple.
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Proof. Let o : klz,y] — k[z,y] be the automorphism defined by o(z) =

z+p'qgand o(y) = y. Then d = 0 Do~!, where D is the derivation from
Theorem 1.
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