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PERIODS OF SETS OF LENGTHS: A QUANTITATIVE RESULT AND
AN ASSOCIATED INVERSE PROBLEM

BY

WOLFGANG A. SCHMID (Graz)

Abstract. The investigation of quantitative aspects of non-unique factorizations in
the ring of integers of an algebraic number field gives rise to combinatorial problems
in the class group of this number field. In this paper we investigate the combinatorial
problems related to the function P(H,D, M)(x), counting elements whose sets of lengths
have period D, for extreme choices of D. If the class group meets certain conditions, we
obtain the value of an exponent in the asymptotic formula of this function and results
that imply oscillations of an error term.

1. Introduction and main results. Let K be an algebraic number
field, R its ring of integers, H the monoid of non-zero principal ideals of R,
and G the ideal class group. Then every non-zero element of R (or every
element of H, respectively) is a product of finitely many irreducible el-
ements (principal ideals, respectively), but such a factorization need not
be unique (unless G is trivial). In the sixties W. Narkiewicz initiated the
investigation of quantitative aspects of non-unique factorizations in alge-
braic number fields. That is, one studies, for arithmetically interesting sub-
sets Z ⊂ H, the asymptotic behavior of the associated counting function
Z(x) = |{a ∈ Z : |a| ≤ x}| for x tending to infinity. For an overview on
known results see [20, Chapter 9], and [10, Chapter 9], and for recent con-
tributions see, e.g., [1] and [24].

We start our discussion with a classical example, which is relevant for the
investigations of this paper. Then we turn to the problem actually considered
in this paper and formulate the main results.

Suppose that |G| ≥ 3 and let a ∈ H. If a = u1 · . . . ·ul is a factorization of
a into irreducible elements u1, . . . , ul ∈ H, then l is called the length of the
factorization and L(a) = {l ∈ N0 : a has a factorization of length l} ⊂ N0

denotes the set of lengths of a. Recall that |G| ≥ 3 implies that for every
N ∈ N there exists some a ∈ H such that |L(a)| ≥ N . If k ∈ N and
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Gk = Gk(H) = {a ∈ H : |L(a)| ≤ k}, then

Gk(x) ∼ Cx(log x)−1+µ(G)/|G|(log log x)ψk(G),

where C is a positive real constant, and µ(G) ∈ N and ψk(G) ∈ N0 depend
only on G and k (see Subsection 2.2 for the precise definition of µ(G) and
ψk(G)).

The function Gk(x) was introduced by W. Narkiewicz (see [18, Theo-
rem III]) and the above result (with the combinatorial description of the
exponents) was given by A. Geroldinger [6]. Although Gk(x) received a lot
of attention in recent years (for an overview see [10, Chapter 9]), there are
still many open questions around it. For example, even for cyclic groups the
precise value of µ(G) is in general unknown (see [23]) and even less is known
on ψk(G) (see [25, 29]). Yet, since it is known that µ(G) < |G| for |G| ≥ 3, a
simple consequence of the above formula is that the density of all elements
a ∈ H with |L(a)| ≤ k is zero.

In the present paper we study counting functions that deal with arbi-
trarily long sets of lengths. Such counting functions were considered initially
in [5, Proposition 10] and [6, Satz 2], and more recently in [10, Chapter 9].
By a result of A. Geroldinger [5] (see [9] or [10] for generalizations and re-
finements) it is known that sets of lengths have a certain structure. Namely,
there exists some bound MG ∈ N, just depending on G, such that every set
of lengths in H is an almost arithmetical multiprogression (an AAMP for
short) with some difference d ∈ ∆∗(G), period {0, d} ⊂ D ⊂ {0, . . . , d} and
bound MG (see Subsection 2.2 for a precise definition and see below and
Subsection 2.1 for the definition of the set ∆∗(G)).

Now fix some difference d, some period D and some bound M , and let
P(H,D,M) denote the set of all a ∈ H for which the set of lengths L(a) is
a long AAMP with difference d, period D and bound M (in Subsection 2.2
we make the term “long” precise).

The present paper is devoted to the counting functions P(H,D,M)(x).
Theorem 1.1 gives their asymptotics, and Theorems 1.2 and 1.3, which are
the main results of the paper, deal with the exponents of log x and log log x
in the main term of the asymptotic formulas.

A weaker asymptotic formula, valid in the more general setting of ab-
stract formations, for P(H,D,M)(x) by A. Geroldinger and F. Halter-Koch
can be found in [10, Theorem 9.4.10]. We restrict to the number field case.
Thus, after showing that the sets P(H,D,M) are arithmetical, we can di-
rectly apply the analytic results of J. Kaczorowski [15] and M. Radziejewski
[24], building on results of J. Kaczorowski, A. Perelli, and J. Pintz (see
[16, 17]), to get the following result (for the short argument see Section 3).

Theorem 1.1. Let R be the ring of integers of an algebraic number
field K, H the set of all non-zero principal ideal and G the ideal class group
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with |G| ≥ 3. Let M ∈ N be sufficiently large, d ∈ ∆∗(G) and {0, d} ⊂
D ⊂ {0, . . . , d} be such that P(H,D,M) 6= ∅. There exist aD(G) ∈ N and
bD(G) ∈ N0, just depending on G and D, such that :

(1) For x ≥ ee,

P(H,D,M)(x) = x(log x)−1+aD(G)/|G|
(
VD(log log x) +O

(
(log log x)m

(log x)γ

))
with VD a polynomial with positive leading coefficient and degree
bD(G), γ = (1/|G|) min{1, 1 − cos (2π/|G|)} and m ∈ N depending
on D and K.

(2) If bD(G) > 0, then the following error term is subject to oscillations
of positive lower logarithmic frequency and size x1/2−ε:

P(H,D,M)(x)− 1
2πi

�

C
ζ(s,P(H,D,M))

xs

s
ds,

with ζ(s,P(H,D,M)) =
∑

I∈P(H,D,M)(R : I)−s for <(s) > 1, and
the contour of integration C going counterclockwise around the points
1/2 and 1.

The condition that M is “sufficiently large” can be made more precise
(see Subsection 2.2).

The main subject of this paper is the investigation of the constants aD(G)
and bD(G) occurring in Theorem 1.1. In [10, Theorem 9.4.10] abstract com-
binatorial descriptions for aD(G) and bD(G) were obtained (see below and
Subsection 2.2). Building on these descriptions, we derive explicit results in
some special cases.

In [10, Theorem 9.4.10] the special case where D = {0, 1} has been
considered. In that case P(H,D,M) is the set of all a ∈ H whose sets of
lengths are almost arithmetical progressions with difference 1. It is proved
that aD(G) = |G| and bD(G) = 0. Indeed, it is even known that the set
P(H,D,M) has density 1 (cf. [10, Theorem 9.4.11]).

Here, we consider sets of lengths that are almost arithmetical progres-
sions (that is the case where D = {0, d}); for simplicity we set ad(G) =
a{0,d}(G) and bd(G) = b{0,d}(G).

The starting point for all investigations of the invariants aD(G) and
bD(G) is the set (see Subsection 2.1 for definitions of ∆(G0) and the term
“half-factorial”)

∆∗(G) = {min∆(G0) : G0 ⊂ G is not half-factorial},
which received a lot of attention in the recent literature (for an overview
see [10, Section 6.8]). The structure of ∆∗(G) heavily depends on whether
or not the exponent of G is large in comparison with |G| (see Section 4 for
further discussion).
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In [10, Theorem 9.4.10] it is proved that if d ∈ ∆∗(G) and no multiple
of d is in ∆∗(G), then

ad(G) = max{|G0| : G0 ⊂ G, min∆(G0) = d}.

Thus to determine ad(G) we have to solve an inverse problem, in the sense
of additive number theory. The combinatorial description of bd(G) is more
involved; we recall it in Subsection 2.2 after introducing more notation. To
determine bd(G) this inverse problem is relevant as well.

In particular, under the assumption that the exponent of G is sufficiently
large (this is made precise by supposing that the invariant m(G), see Def-
inition 4.1, is small; for now we note that 4 log |G| ≤ exp(G) is sufficient)
we consider an extreme case, namely d = max∆∗(G) = exp(G)− 2. In this
case and the case d = exp(G)− 3, we solve the inverse problem, and derive
the following formulas for ad(G). (Note that the invariant µ(·) in the results
below is the same as the one appearing in the asymptotic formula for Gk(x).)

Theorem 1.2. Let G = G′ ⊕Cn be a finite abelian group where G′ ⊂ G
is a subgroup and exp(G) = n.

(1) If n > m(G) + 2, then

an−2(G) =
{

3 + µ(G′) if n is prime and G has even rank ,
2 + µ(G′) otherwise.

(2) If G′ = G′′⊕Cn for some subgroup G′′ ⊂ G′ and n > m(G)+3, then
an−3(G) = 3 + µ(G′′).

We note that the condition that the exponent is large is essential (cf. Sec-
tion 4 for further discussion).

Then we consider the question of positivity of bd(G) and obtain the
following result. (For the significance of this question cf. Theorem 1.1(2).)

Theorem 1.3. Let G be a finite abelian group with exp(G) = n.

(1) If n > m(G) + 2, then bn−2(G) = 0 if and only if G is cyclic.
(2) If n > m(G) + 3 and n− 3 ∈ ∆∗(G), then bn−3(G) > 0.

The result that bn−2(G) = 0 for all cyclic G is quite surprising, since it is
in contrast to results obtained for related counting functions (cf. [10, Chap-
ter 9]). More precisely, for the counting functions Fk(x) and Bk(x), counting
the number of elements with at most k distinct and block-distinct factoriza-
tions respectively, it is known that the constants analogous to bd(G), i.e.,
the exponents of log log x in the leading term of the asymptotic formulas,
are positive for any group G, apart from the exceptional cases |G| = 1 and
|G| ≤ 2, respectively (see [19, Proposition 9] and [8, Corollary 1]); moreover,
for Gk(x) it was conjectured ([24, Conjecture]) that ψk(G) is positive, apart
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from the exceptional case |G| ≤ 2, and this was proved for k ≥ 2, and for
k = 1 for various types of groups (see [25]).

Yet, all these exceptions as well as the fact that b{0,1}(G) = 0, mentioned
above, are in a certain sense “obvious” exceptions. All relevant constants
can be defined as the maximal length of sequences, in certain free monoids,
satisfying an additional condition (cf. the definition of bd(G) and ψk(G)
in Subsection 2.2), and in all those exceptional cases, in contrast to our
case, the free monoids just contain the empty sequence, and the constants
are 0 essentially by definition. Moreover, for Bk(x), Fk(x), and Gk(x) the
exceptional cases coincide with the degenerate cases that either every or no
ideal is counted according as k = 1 or k > 1.

2. Notations and basic results. Our terminology is consistent with
the monograph [10], to which we refer for a detailed discussion of the notions
we briefly mention.

For integers a, b we denote by [a, b] the interval of integers. Let G de-
note an, additively written, finite abelian group; let r(G) denote its rank
and exp(G) its exponent.We denote by Cn a cyclic group with n elements.
A set {e1, . . . , er} ⊂ G, where the ei are distinct, is called independent if∑r

i=1 aiei = 0, with integers ai, implies aiei = 0 for each i ∈ [1, r].

2.1. Monoids. For G0 ⊂ G we denote by F(G0) the (multiplicatively
written) free abelian monoid with basis G0. An element S =

∏l
i=1 gi =∏

g∈G0
gvg(S) ∈ F(G0) is called a sequence. The identity element of F(G0) is

called the empty sequence; it will be denoted by 1. Divisors of sequences are
called subsequences. |S| = l is called the length of S, σ(S) =

∑l
i=1 gi the sum,

and k(S) =
∑l

i=1 1/ord gi the cross number ; the set supp(S) = {g1, . . . , gl}
is called the support. If σ(S) = 0 ∈ G, then S is called a zero-sum sequence
(or a block); the monoid B(G0) = {S ∈ F(G0) : σ(S) = 0} is called the block
monoid over G0; the minimal zero-sum sequences, i.e., those without proper
non-trivial zero-sum subsequence, are the irreducible elements (atoms) of
B(G0), denoted by A(G0). If there exists no subsequence 1 6= T |S with
σ(T ) = 0, then S is called zero-sumfree. For G0 ⊂ G and S ∈ F(G \G0) let
Ω(G0, S) = S · F(G0) ∩ B(G) and Ω(G0, S, l) = {B ∈ Ω(G0, S) : vg(B) ≥ l
for each g ∈ G0}.

As already mentioned in the Introduction, for the monoid of principal
ideals of the ring of integers, we denote by L(a) the set of lengths of a ∈ H,
where H is a Krull monoid (for instance, a block monoid).

For a set L = {l1, l2, . . . } ⊂ N with li < li+1, typically a set of lengths,
let ∆(L) = {l2 − l1, l3 − l2, . . . } denote the set of (successive) distances. For
G0 ⊂ G let ∆(G0) =

⋃
B∈B(G0)∆(L(B)) be the set of distances of G0. Note

that ∆(G0) = ∆(G0 ∪ {0}) for every G0 ⊂ G.
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The set of differences of G is defined as

∆∗(G) = {min∆(G0) : G0 ⊂ G, ∆(G0) 6= ∅};
we will frequently make use of the fact that indeed min∆(G0) = gcd∆(G0).

A set G0 ⊂ G with ∆(G0) = ∅ is called half-factorial , since in this
case B(G0) is a half-factorial monoid; a monoid is called half-factorial if
|L(u)| = 1 for each element u of the monoid. It is a well known result,
obtained by L. Skula [30] and A. Zaks [31], that G0 is half-factorial if and
only if

(1) k(A) = 1 for every A ∈ A(G0);

moreover, B(G) is half-factorial if and only if |G| ≤ 2. Thus ∆∗(G) = ∅ if
and only if |G| ≤ 2. Moreover, for |G| ≥ 3 one has min∆(G) = 1 ∈ ∆∗(G).

Naturally, if ∆(G0) 6= ∅, then G0 is referred to as non-half-factorial ; if
all proper subsets of G0 are half-factorial, G0 is called minimal non-half-
factorial. For a non-half-factorial set G0 some information on ∆(G0) can
as well be obtained from the cross numbers of atoms. More precisely, the
following holds: if n denotes the exponent of G, then for every A ∈ A(G0)
one has {n, n k(An)} ⊂ L(An); in particular (see [4])

(2) min∆(G0) |n(k(A)− 1).

2.2. AAMPs and related notions. Now, we recall the central definitions
for our investigations. Let d,M ∈ N and {0, d} ⊂ D ⊂ [0, d]. A set L ⊂ Z is
called an AAMP with difference d, period D and bound M if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ
for some integer y, ∅ 6= L∗ = [0,maxL∗] ∩ (D + dZ), L′ ⊂ [−M, 1], and
L′′ ⊂ maxL∗ + [1,M ]. The sets L′, L′′, and L∗ are called the initial, end,
and central part, respectively.

Let H be a Krull monoid with finite class group G and |G| ≥ 3. Then
there exists a constant MG, just depending on G, such that for each a ∈ H
the set of lengths L(a) is an AAMP with bound MG (see [10, Chapter 4] or
[9] for even more general statements).

For d ∈ N and {0, d} ⊂ D ⊂ [0, d] let

P(H,D,M) = {a ∈ H : L(a) is an AAMP with period D and bound M,

max L−min L ≥ 3M + d2
0},

where d0 = max∆(G) (the constant d0 is indeed finite, for instance
d0 ≤ |G| − 2 and more precise results are known). For simplicity we write
P(G, d,M) instead of P(B(G), {0, d},M).

In Theorem 1.1 we formulated a result on the counting functions of the
sets P(H,D,M) for all sufficiently large M . To get the result as stated, it
turns out we only need to suppose that M is sufficiently large to ensure that
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every set of lengths of an element of B(G) is an AAMP with bound M −d0,
i.e., M ≥MG+d0. Yet, the combinatorial descriptions for aD(G) and bD(G)
obtained in [10, Theorem 9.4.10] are only known to be valid if M satisfies
an additional condition. This condition is very technical and, since we do
not need its full precision, we only mention that there exists a constant
M(G) such that for M ≥ M(G) the statement of Theorem 1.1 holds, in
particular M(G) ≥MG+d0, and the exponents aD(G) and bD(G) are given
in the following way (we only formulate the special case we actually consider,
the general case is similar but rather more technical): For d ∈ ∆∗(G) let
Ad(G) = {G0 ⊂ G : min∆(G0) = d}. Then (see [10, Theorem 9.4.10])

ad(G) = max{|G0| : G0 ∈ Ad(G)}

and

bd(G) = max{|S| : G0 ∈ Ad(G), S ∈ F(G \G0), and for some l ∈ N
∅ 6= Ω(G0, S, l) ⊂ P(G, d,M(G))}.

For d /∈ ∆∗(G) we set Ad(G) = ∅ and ad(G) = bd(G) = 0. Since we need
it in the proof of Lemma 7.1, we finally mention that for G′ ⊂ G one has
M(G′) ≤M(G).

Now, we recall the combinatorial description for the invariants µ(G) and
ψk(G). We have µ(G) = max{G0 ⊂ G : G0 half-factorial} and

ψk(G) = max{|S| : G0 ⊂ G half-factorial, µ(G) = |G0|, S ∈ F(G \G0)
and |L(B)| ≤ k for every B ∈ Ω(G0, S)}.

2.3. Indecomposable sets. We recall the definition of an indecomposable
set and some related notions (see [27]). A subset G0 ⊂ G is called decompos-
able if B(G0) = B(G1) · B(G2) for non-empty and disjoint G1, G2 ⊂ G0, or
equivalently, 〈G0〉 = 〈G1〉 ⊕ 〈G2〉 and G0 = G1 ∪̇G2; we call G1, G2 compo-
nents of G0 and speak of a decomposition of G0. If B(G0) = B(G1) . . .B(Gs)
with indecomposable and pairwise disjoint sets Gi, then we refer to this as
a decomposition into indecomposables and call Gi the indecomposable com-
ponents of G0. Every set has an essentially (i.e., up to ordering) unique
decomposition into indecomposables. We recall that a set is half-factorial if
and only if all its components are half-factorial. Moreover, if G0 is not half-
factorial andG1, . . . , Gs are its indecomposable components, then min∆(G0)
= gcd{min∆(Gi) : Gi non-half-factorial}.

3. Proof of Theorem 1.1. We start with the definition of an arith-
metical set (see [10, Definition 9.4.1], also cf. [14, Definition 5]) for subsets
of the block monoid. Let G be a finite abelian group. A subset Z ⊂ B(G)
is called arithmetical if for all B1, B,B2 ∈ B(G) the conditions B1, B2 ∈ Z
and B1 |B |B2 imply that B ∈ Z.
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Next, we prove that the sets P(B(G),D,M) are arithmetical.

Lemma 3.1. Let G, d, D, and M be as in Theorem 1.1. Then P(G,D,M)
is an arithmetical set.

In the proof of this result we make use of two facts on subsets of the
integers (cf. [10, Lemma 4.2.4]): Let d, d′ ∈ N, y ∈ Z, and A,B ⊂ Z. If
y+A+dZ ⊂ A+dZ, then y+A+dZ = A+dZ. If (B+dZ)∩ [y+1, y+ l] ⊂
A+ d′Z and l ≥ lcm{d, d′}, then B + dZ ⊂ A+ d′Z.

Proof of Lemma 3.1. Recall that we have M ≥MG +d0 (see Subsection
2.2). Let B1, B2 ∈ P(B(G),D,M) and B ∈ B(G) be such that B1 |B |B2.
We have to show that B ∈ P(B(G),D,M). Let C1, C2 ∈ B(G) be such that
C1B1 = B and BC2 = B2. Let ci ∈ L(Ci). Then c1 + L(B1) ⊂ L(B) ⊂ −c2 +
L(B2). By the definition of P(B(G),D,M) we know that L(B1) and L(B2) are
AAMPs with difference d, period D, bound M and max L(Bi)−min L(Bi) ≥
3M+d2

0, where d0 = max∆(G), i.e., L(Bi) = yi+(L′i∪L∗i ∪L′′i ) ⊂ yi+D+dZ
for some integer yi, ∅ 6= L∗i = [0,maxL∗i ] ∩ (D + dZ), L′i ⊂ [−M, 1], and
L′′i ⊂ maxL∗i + [1,M ], and we know that maxL∗i ≥ M + d2

0. Moreover,
we know that L(B) is an AAMP with some difference d′ ∈ ∆∗(G), some
period D′ and bound M − d0 (indeed, this is true for each element of B(G),
cf. Subsection 2.2), i.e., L(B) = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + D′ + d′Z for
some integer y, ∅ 6= L∗ = [0,maxL∗] ∩ (D′ + d′Z), L′ ⊂ [−M + d0, 1],
and L′′ ⊂ maxL∗ + [1,M − d0]. Additionally, since L(B) contains a shift
of L(B1), we know that max L(B) − min L(B) ≥ 3M + d2

0. Thus, we have
maxL∗ ≥M + d2

0.
Since c1 + (y1 + L∗1) ⊂ c1 + L(B1) ⊂ L(B) ⊂ y +D′ + d′Z, we have

c1 + y1 + ([0,maxL∗] ∩ (D + dZ)) ⊂ y +D′ + d′Z.

Since by definition d, d′ ≤ d0 it follows (cf. above) that c1 + y1 +D + dZ ⊂
y+D′+d′Z. Considering L(B) ⊂ −c2 +L(B2), we find in the same way that

y +D′ + d′Z ⊂ −c2 + y2 +D + dZ.

Thus, we get (cf. above) c1 +y1 +D+dZ = −c2 +y2 +D+dZ = y+D′+d′Z.
So L∗ = [0,maxL∗]∩(−c2+y2+D+dZ). Let D′′ = [0, d]∩(−c2+y2+D+dZ).
Then L is an AAMP with difference d, period D′′ and bound M − d0.
Thus, “shifting” the central part possibly at the expense of increasing the
bound (see [10, Lemma 4.2.6] for a precise statement), it follows that L is
an AAMP with difference d, period D and bound M . We already noted that
max L(B)−min L(B) ≥ 3M + d2

0. Hence B ∈ P(B(G),D,M).

Now, Theorem 1.1 follows quite directly from known results.

Proof of Theorem 1.1. By Lemma 3.1 we know that P(B(G),D,M) is an
arithmetical set. Thus (see [10, Proposition 9.4.2]), there exist G1, . . . , Gn
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⊂ G, Si ∈ F(G \Gi) and li ∈ N0 such that

(3) P(B(G),D,M) =
n⋃
i=1

Ω(Gi, Si, li).

We note that for Ω(Gi, Si, li) 6= ∅, we have Ω(Gi ∪ {0}, Si0− v0(Si), li) ⊂
P(B(G),D,M). Therefore max{|Gi| : i ∈ [1, n]} > 0. Now, by (3), the first
statement follows from results of J. Kaczorowski [15] (see in particular the
proof of Theorem 2; also see [14, Section 5]), with aD(G) = max{|Gi| :
i ∈ [1, n]} and bD(G) = max{|Si| : |Gi| = aD(G)}.

For the second statement we may assume that aD(G) < |G|, since oth-
erwise bD(G) = 0 and it is vacuously true. Now, again by (3) the statement
follows from results of M. Radziejewski [24] (see in particular Theorem 6
and the proof of Theorem 5).

4. The invariant m(G). We recall that the structure of ∆∗(G) depends
on the size of exp(G) relative to |G|. To illustrate this, we recall some results:
If G is cyclic of order n, then (see [11])

max∆∗(G) = n− 2, max(∆∗(G) \ {n− 2}) = bn/2c − 1.

Yet, if G is a p-group of large rank, then ∆∗(G) is an interval (see [4]). How-
ever, much on ∆∗(G) is up to now unknown; for general G, even max∆∗(G)
is only known if the exponent of G is sufficiently large, and in that case
max∆∗(G) = exp(G)− 2 (see [28]).

In this section we describe m(G), used in the formulations of Theorems
1.2 and 1.3 to give a precise meaning to the informal statement that exp(G)
is large. First, we introduce the notion of LCN-set; the idea motivating
this definition is well known and present in several earlier investigations on
∆∗(G).

Definition 4.1. Let G be a finite abelian group.

(1) A subset G0 ⊂ G is called a set with large cross numbers (LCN-set
for short) if k(A) ≥ 1 for each A ∈ A(G0).

(2) We set

m(G) = max{min∆(G0) : G0 ⊂ G a non-half-factorial LCN-set};

if there exists no non-half-factorial LCN-set, then m(G) = 0.

We note that, since gord g ∈ A(G0) is an atom with cross number 1 for
every g ∈ G0, the value 1 is the largest possible for which such a definition
makes sense. Moreover, by (1) half-factorial sets are LCN-sets.

Next, we explain the significance of these notions for our investigations.
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Proposition 4.2 ([4]). Let G be a finite abelian group with exponent n.
If n > 2, then

max{min∆(G0) : G0 non-half-factorial and non-LCN } = n− 2;

in particular , max∆∗(G) = max{n− 2,m(G)}.

Thus, the conditions on the exponent in Theorem 1.2 are just strong
enough to assert that the sets in question are not LCN-sets. We have to
impose this condition, since for LCN-sets not even the basic direct problems,
for instance to determine m(G), are solved in general. Thus, at present it
does not seem (to the author) feasible to address the inverse problems. In
any case, results on LCN-sets for (elementary) p-groups with large rank
(cf. Proposition 4.4 and the subsequent remark) indicate that results (and
proofs) for groups with “small” exponent should be quite different.

At the end of this section we give upper and lower bounds for m(G),
which can be used to decide, for various types of groups, whether the con-
ditions of Theorem 1.2 hold.

First, we recall the definition of the (little) cross number , k(G), of a
finite abelian group G, and some results. It is a well known, in the context
of non-unique factorizations, invariant defined as

k(G) = max{k(S) : S ∈ F(G) zero-sumfree}.
For k(G) a variety of results are known, though the precise value is unknown
in general; we summarize those that we shall need in this paper.

Proposition 4.3. Let G be a finite abelian group.

(1) k(G) ≤ log |G| (see [13]).
(2) If G = Cn1 ⊕ · · · ⊕ Cnr is a p-group, then k(G) =

∑r
i=1(ni − 1)/ni

(see [7]).
(3) If G = Cpm⊕Cpn⊕Csq with m,n, s ∈ N and distinct primes p and q,

then k(G) = (pm − 1)/pm + (pn − 1)/pn + s(q − 1)/q (see [12]).

In [26, Theorem 5.4] it is proved that

(4) m(G) ≤ 2 k(G)− 1;

clearly, using Proposition 4.3, more explicit bounds can be derived from (4).
Inequality (4) is sharp for elementary 2-groups, yet not in general, as can
be seen from the following result.

Proposition 4.4. Let G be a finite abelian group with r(G) ≥ 2. Then
m(G) ≥ r(G)− 1. If G is an elementary p-group, then equality holds.

Moreover, [4, Theorem 1.5] implies that m(G) = r(G) − 1 for p-groups
with sufficiently large rank (relative to the exponent) as well. We apply the
following lemma to prove the proposition.
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Lemma 4.5. Let G0 = {g, e1, . . . , er} with the ei independent and g ∈ G.
If G0 is a non-half-factorial LCN-set , then min∆(G0) ≤ r − 1.

In [28, Proposition 4.1], min∆(G0) for “simple” sets has been investi-
gated. This lemma strengthens that result under the additional condition
that G0 is a LCN-set; the proofs are very similar.

Proof of Lemma 4.5. By [27, Theorem 4.5] we may assume without re-
striction that g =

∑r
i=1 aiei with aiei 6= 0 for each i ∈ [1, r]. Let n = ord g

and D = min∆(G0). For j ∈ [1, n] let Wj denote the (unique) minimal
block with vg(Wj) = j; let Bj ∈ B({e1, . . . , er}) be such that WjBj = W j

1 .
Note that L(Bj) = {k(Bj)} for every j. We know that W1 and Wn = gn are
atoms, and define m = min{j ∈ [2, n] : Wj ∈ A(G0)}. If m = n, it follows
(by [28]) that min∆(G0) = |n − 1 − r|; since 1 ≤ k(W1) = (r + 1)/n, we
have |n − 1 − r| ≤ r − 1. If k(W1) = 1, it follows (by [28]) that for any
A ∈ A(G0) with k(A) 6= 1, min∆(G0) ≤ k(A)− 1 < r. Thus assume m < n
and k(W1) > 1. Let k = min{j ∈ [2, n] : L(Wj) + L(Bj) 6= {j}}. It follows
(by [28]) that Wk ∈ A(G0) and thus {1}+ {k(Bk)} = L(Wk) + L(Bk). Con-
sequently, min∆(G0) ≤ |1 + k(Bk)− k|. If 1 + k(Bk) > k it follows (by [28])
that min∆(G0) ≤ r− 1. Thus assume 1 + k(Bk) < k. By the definition of k
we have {k−1} = L(Wk−1)+L(Bk−1); let l ∈ N be such that {l} = L(Wk−1).

We assert that l ≤ r. Note Wk−1 = gk−1F with F ∈ F({e1, . . . , er})
zero-sumfree, thus k(F ) ≤

∑r
i=1(1 − 1/ord ei) < r and k(Wk−1) < r + 1.

Yet, since G0 is a LCN-set, we have k(Wk−1) ≥ l and the assertion is proved.
Since Wk is an atom, Bk 6= Bk−1 and thus k(Bk) ≥ 1 + k(Bk−1). All this
yields

k − (1 + k(Bk)) ≤ k − (2 + k(Bk−1)) = k − (2 + k − 1− l) ≤ r − 1,

and finishes the proof.

Proof of Proposition 4.4. Let r(G) = r. First, we show that m(G) ≥ r−1.
Let {e1, . . . , er} ⊂ G be independent with ord e1 = · · · = ord er, and g =∑r

i=1 ei. By [4, Proposition 5.2], the set G0 = {g, e1, . . . , er} is an LCN-set
and min∆(G0) = r − 1.

Now, assume G is an elementary p-group and let G0 ⊂ G be a LCN-set.
We have to show that min∆(G0) ≤ r−1. Without restriction we assume that
G0 is minimal non-half-factorial. If G0 satisfies the conditions of Lemma 4.5
the result is obvious, and if this is not the case it follows that min∆(G0) ≤
1/p + k(G) − 1 < r − 1, the first inequality by [28, Corollary 3.1] (also cf.
proof of Theorem 4.1 there) and the second by Proposition 4.3.

Finally, we prove a (weak) upper bound for m(C2
n), which we will need

in Section 6.

Lemma 4.6. Let n ≥ 5. Then m(C2
n) ≤ n− 4.
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Since we make use of it in the proof of this result, we briefly recall the
definition of Davenport’s constant, D(G), of a finite abelian group G:

D(G) = max{|A| : A ∈ A(G)}.
It is easy to see that D(G) = 1 + max{|S| : S ∈ F(G) zero-sumfree}. The
value of Davenport’s constant is known for various groups, but is in general
unknown (cf. [10, Chapter 5] for a detailed discussion). We only use the fact
that D(C2

n) = 2n− 1 for each n ∈ N (see [21]).

Proof of Lemma 4.6. By (4) we know m(C2
n) ≤ 2 k(C2

n)− 1. This yields
m(C2

n) ≤ 4(log n) − 1, which is less than n − 3 for n ≥ 12, and m(C2
n) ≤ 3

if n is a prime power, by Proposition 4.3 part (1) and (2), respectively.
Moreover, by Proposition 4.4 we know that m(C2

n) = 1 if n is a prime. Thus,
it remains to consider n = 6 and n = 10. Using Proposition 4.3(3), we get
m(C2

10) ≤ 21/5 and m(C2
6 ) ≤ 11/3.

Consequently, it remains to show that m(C2
6 ) 6= 3. Seeking a contradic-

tion, we assume that there exist some subset G0 ⊂ C2
6 that is an LCN-set

with min∆(G0) = 3. Since we know that m(C2
6 ) < 6, we may assume with-

out restriction that G0 is minimal non-half-factorial. Let A ∈ A(G0). By (2)
we know that 6(k(A)− 1) is a multiple of 3 and thus, by Proposition 4.3(3)
and since G0 is an LCN-set, k(A) ∈ {1, 3/2, 2, 5/2}.

Let W ∈ A(G0) with maximal cross number. We note that k(W ) > 1 and
supp(W ) = G0. We write W = S2S3S6 where Si denotes the subsequence
of elements of order i. We recall that |Si| ≤ D(C2

i ) for each i ∈ [1, 3], and
equality can only hold if W = Si.

Case 1: k(W ) = 3/2. Since k(W 2) = 3, we have max L(W 2) ≤ 3. Since
min∆(G0) = 3, this yields L(W 2) = {2}. Consequently, every factoriza-
tion of W 2 consists of two atoms each with cross number 3/2. This implies
that S2 = 1, since otherwise W 2 would be divisible by an atom with cross
number 1. Similarly, since k(W 3) = 9/2 we have S3 = 1 and vg(W ) = 1
for each g ∈ G0. Now, let h ∈ G0 and consider (h−1W )2. Since we know
that |W | = 6 k(W ) = 9, we have |(h−1W )2| > D(C2

6 ) and (h−1W )2 is not
zero-sumfree. Since G0\{h} is half-factorial, this implies that W 2 is divisible
by an atom with cross number 1, a contradiction.

Case 2: k(W ) = 2. Again, we have L(W 2) = {2} and W 2 is not divisible
by an atom with cross number less than 2, in particular S2 = 1. Since 2|S3|+
|S6| = 12, we conclude that both S3 and S6 are non-empty. This implies that
S2

3 and S2
6 are zero-sumfree, since any minimal zero-sum subsequence of S3

or S6 would have cross number 1 and divide W 2. However, this implies
2|Si| < D(C2

i ) for i ∈ {3, 6} and contradicts 2|S3|+ |S6| = 12.

Case 3: k(W ) = 5/2. It is easy to see that S6 6= 1. First we show that
S3 = 1. We assume S3 6= 1. Then W 3 = S3

3 · (S
−1
3 W )−1 is a factorization of



PERIODS OF SETS OF LENGTHS 45

W 3 into two blocks, each over a half-factorial set. This implies that k(W 3)
is an integer, a contradiction.

Now, we have 3|S2|+|S6| = 15, and |S2| < 3 and |S6| ≤ 11. Consequently
|S2| = 2 and |S6| = 9. Since |S6| > D(C2

3 ), the sequence S6 has a non-trivial
proper subsequence T6 such that ordσ(T6) = 2. The sequence σ(T6)S2 has
a non-trivial zero-sum subsequence and thus T6S2 as well. Consequently,
W = S2S6 has a non-trivial proper zero-sum subsequence, a contradiction.

5. Subsets with min∆(G0) = max∆∗(G). In this section we investi-
gate the structure of subsets G0 ⊂ G such that min∆(G0) = max∆∗(G) for
groups with “large” exponent, namely exp(G) > m(G) + 2; in particular, we
prove Theorem 1.2(1).

As discussed in the preceding section, it is well known that in this case
max∆∗(G) = exp(G) − 2. Moreover, it is known that min∆({−g, g}) =
ord g − 2 for every g ∈ G with ord g ≥ 3 (cf. [4, Proposition 5.2]), which
provides examples of sets with minimal distance equal to max∆∗(G). In
the following results we show that every indecomposable set with minimal
distance equal to max∆∗(G) is of this form.

Theorem 5.1. Let G be a finite abelian group with exp(G) > m(G) + 2
and let G0 ⊂ G. Then G0 is indecomposable with min∆(G0) = max∆∗(G)
if and only if

G0 = {−g, g} with ord g = exp(G).

Proof. Let exp(G) = n. By Proposition 4.2 we have min∆(G0) = n− 2.
Since by [4, Proposition 5.2], min∆({−g, g}) = ord g − 2 for g ∈ G with
ord g ≥ 3, one implication is obvious. It remains to prove the other one.

Thus, let G0 ⊂ G be indecomposable with min∆(G0) = n−2 and assume
to the contrary that G0 is not of the claimed form; moreover assume that
G0 is minimal with this property. Clearly, G0 is not an LCN-set. Thus, there
exists some A ∈ A(G0) such that k(A) < 1 and by (2) indeed k(A) = 2/n.
Consequently, A = (−g)g for some g with ord g = n, in particular {−g, g} ⊂
G0. By assumption G0 \ {−g, g} 6= ∅.

Since G0 is indecomposable, there exists some S ∈ A(G0 \ {−g, g}) with
σ(S) ∈ 〈g〉\{0}, say σ(S) = ag with a ∈ [1, n−1]. Assume S is minimal with
this property, i.e., has no proper subsequence with this property. We consider
the atoms U = gn−aS and U ′ = (−g)aS. Note that (−g)nU = ((−g)g)n−aU ′.
Thus (n−2) | (n−a+1−2) and therefore a ∈ {1, n−1}. Without restriction
(possibly interchanging the roles of g and −g), assume a = 1.

Consequently, |S| ≥ 2 and k(U) = (n − 1)/n + k(S) > 1. Thus, the set
G0 \ {−g} is not half-factorial. We have n − 2 = min∆(G0) ≤ min∆(G0 \
{−g}) ≤ n − 2. Since G0 is indecomposable it follows that G0 \ {−g} is
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indecomposable as well and trivially G0 \ {−g} is not equal to {−h, h} for
any h ∈ G, a contradiction to the minimality of G0.

As discussed in Subsection 2.3 every set has a unique decomposition
into indecomposables, thus Theorem 5.1 yields a description of all sets with
minimal distance equal to max∆∗(G).

Corollary 5.2. Let G be a finite abelian group with exp(G) > m(G)+2,
and let G0 ⊂ G with min∆(G0) = max∆∗(G). Further , let G0 =

⋃s
i=1Gi

be the decomposition into indecomposable components. Then each component
Gi is either half-factorial or equal to {−gi, gi} for some gi ∈ G with ord gi =
exp(G); and there exists at least one non-half-factorial component.

Proof. At least one component has to be non-half-factorial and we have
min∆(G0) = gcd{min∆(Gi) : Gi non-half-factorial} (see Subsection 2.3).
We know that min∆(G0) is maximal. Thus, if Gi is non-half-factorial, then
min∆(Gi) = min∆(G0) and the result follows by Theorem 5.1.

Before we prove Theorem 1.2(1), we derive a further auxiliary result.

Lemma 5.3. Let G = H1 ⊕H2 and d ∈ ∆∗(G) be such that dN ∩∆∗(G)
= {d}. If d ∈ ∆∗(H1), then ad(G) ≥ ad(H1) + max{µ(H2), ad(H2)} − 1.

Proof. Let G1 ∈ Ad(H1) with (maximal) cardinality ad(H1). Further,
take H0 ⊂ H2 half-factorial and, if such a set exists, G2 ∈ Ad(H2) with
(maximal) cardinality µ(H2) and ad(H2), respectively. Then G1 ∪ G2 and
G1 ∪H0 are elements of Ad(G). Since G1 ∩G2 = G1 ∩H0 = {0}, the result
follows.

Now the proof of Theorem 1.2(1) is almost straightforward, yet there is
one exceptional case that requires the use of a recent result on half-factorial
sets in elementary p-groups.

Proof of Theorem 1.2(1). Assume n > m(G) + 2. By Theorem 5.1 it
is obvious that an−2(Cn) = 3. It follows from Lemma 5.3 that an−2(G) ≥
2 + µ(G′).

Let G0 ∈ An−2(G) and let G0 =
⋃s
i=1Gi be the decomposition into

indecomposable components. By Theorem 5.1 each Gi is either half-factorial
or equal to {−gi, gi} for some gi ∈ G0 with ord gi = n; and there exists at
least one j ∈ [1, s] such that Gj is not half-factorial. Assume there exist more
than one non-half-factorial component, say G1 and G2 are non-half-factorial.
Now consider G′0 = G′1 ∪

⋃s
i=2Gi where G′1 ⊂ 〈g1〉 \ {0} is half-factorial

with maximal cardinality, µ(Cn)− 1. We have G′0 ∈ An−2(G). Observe that
µ(Cn) ≥ 3 unless n ∈ P∪{1}. Thus, if n /∈ P, then |G′0| ≥ |G0|; consequently,
in this case, there exists a set G′′0 ∈ An−2(G) with cardinality an−2(G) and
exactly one non-half-factorial component, and the result follows.
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So assume n ∈ P, and set r = r(G). Repeated application of Lemma 5.3
yields an−2(G) ≥ 2t + µ(Cr−tp ) for every t ∈ [1, r]. Conversely, let t denote
the number of non-half-factorial components of G0. We obtain

|G0| ≤ 2t+ µ(Cr−tp ).

Recall (see [22]) that µ(Crp) equals 1 + rp/2 for even r and 2 + (r− 1)p/2 =
1 +µ(Cr−1

p ) for odd r. Thus, 2t+µ(Cr−tp ) is maximal for odd r if t = 1, and
for even r if t = 2, which implies the result.

Since µ(Cn) = 3 if and only if n = p2 for some prime p, the proof of Theo-
rem 1.2(1) shows that if n is not a prime or the square of a prime, then every
G0 ∈ An−2(G) with maximal cardinality has exactly one non-half-factorial
component. It might be interesting to note that for G = C2

p2 = 〈e1〉 ⊕ 〈e2〉
there actually exist sets in Ap2−2(G) with cardinality ap2−2(G) both with
one and two non-half-factorial components, e.g., {0, e1, pe1, e2,−e2} and
{0, e1,−e1, e2,−e2}.

6. Subsets with min∆(G0) = max∆∗(G)− 1. Having dealt with sets
where the minimal distance is maximal, we turn to the investigation of sets
with minimal distance max∆∗(G)− 1, again assuming that the exponent of
G is sufficiently large (now we assume exp(G) > m(G) + 3). Of course, for
max∆∗(G) − 1 it is not granted by definition that sets with such minimal
distance exist; indeed, as mentioned in Section 4 for cyclic groups (of order
at least 5) this is not the case. However, if two independent elements {e1, e2}
⊂ G each of order exp(G) exist, then the set {−e1 − e2, e1, e2} has minimal
distance exp(G)− 3 (see [2, Example 4.11]). It turns out that, in the case of
“large” exponent, sets of this type are the only indecomposable ones with
minimal distance exp(G)− 3.

Theorem 6.1. Let G be a finite abelian group with exp(G) > m(G) + 3
and let G0 ⊂ G. Then G0 is indecomposable with min∆(G0) = max∆∗(G)
− 1 if and only if

G0 = {−e1 − e2, e1, e2} with independent {e1, e2} and ord ei = exp(G).

In particular , max∆∗(G) − 1 ∈ ∆∗(G) if and only if there exist two inde-
pendent elements each of order exp(G).

Again, we start with some auxiliary results.

Lemma 6.2. Let exp(G) = n > m(G) + 3, and G0 ∈ An−3(G). Then
there exists an independent set {e1, e2} with ord ei = n such that {−e1 − e2,
e1, e2} ⊂ G0.

Proof. Since m(G) < n − 3 the set G0 is not LCN. Thus there exists
some A ∈ A(G0) such that k(A) < 1. By (2) we have k(A) = 3/n, in
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particular |A| ≤ 3. Since |A| ≤ 2 yields a contradiction, we have |A| = 3,
say A = gh(−g−h), and each element in A has order n. It remains to show
that g and h are independent. Suppose not. Then there exist a, b ∈ [1, n−1]
such that gahb is an atom. Again by (2) it follows that a+b ∈ {3, n, 2n−3};
and in fact a + b = 2n − 3 is impossible, since in this case gn−ahn−b | gahb,
contrary to gahb being an atom. Assume a+ b = 3, say a = 2 and b = 1. It
follows that n is odd and g(n+1)/2h is an atom with cross number (n+3)/2n,
a contradiction, since this would imply (n − 3) | (n − 3)/2. Now, assume
a+ b = n. Without restriction assume a ≤ b. We consider the block

(gahb) · (−g − h)n = ((−g − h)gh)a · ((−g − h)n−ahb−a).
If B = (−g−h)n−ahb−a is an atom, it follows that (n− 3) | (a− 1) and thus
a = 1, which implies b = n − 1 and g = h, contrary to B being an atom.
Thus B is not an atom. Since k(B) < 2, there exist some atom A1 such that
A1 |B and k(A1) < 1. Using (2) again we infer that k(A1) = 3/n. As above,
this yields an atom with cross number (n+ 3)/2n and a contradiction.

Lemma 6.3. Let n ≥ 5. Let G0 ∈ An−3(C2
n). Then G0\{0} = {−e1 − e2,

e1, e2} with independent {e1, e2} where ord ei = n.

Proof. By Lemma 4.6 we know that n > m(C2
n) + 3. Consequently, by

Lemma 6.2 we have H0 = {−e1 − e2, e1, e2} ⊂ G0 for suitable independent
{e1, e2} with ord ei = n. Thus it suffices to show that for g ∈ C2

n \ (H0∪{0})
we have min∆(H0 ∪ {g}) 6= n− 3; say g = −ae1 − be2 with a, b ∈ [0, n− 1]
and assume a ≥ b.

In case b > 0, the identity
(5) (gea1e

b
2) · (−e1 − e2)n = (g(−e1 − e2)n−bea−b1 ) · ((−e1 − e2)e1e2)b;

implies that (n− 3) | (b+ 1− 2). Thus, we have b ∈ {0, 1, n− 2}.
In case a > b, the identity

(6) (g(−e1 − e2)n−aeb+n−a2 ) · en1 = (gea1e
b
2) · ((−e1 − e2)e1e2)n−a

implies that (n− 3) | (n− a+ 1− 2). Thus, if a > b, then a ∈ {2, n− 1}.
Consequently, it remains to consider the following cases (note that (a, b)

= (1, 1) and (a, b) = (n− 1, 0) are impossible):

Case 1: (a, b) = (n− 2, n− 2). The relation
(gen−2

1 en−2
2 )2 = en1e

n
2 (g2en−4

1 en−4
2 )

implies (n− 3) | 1, a contradiction.

Case 2: (a, b) ∈ {(2, 1), (n − 1, 1), (n − 1, n − 2)}. The atom gea1e
b
2 has

cross number 4/n, 1 + 1/n, or (2− 2/n), and thus n− 3 divides n− 4, 1, or
n− 2, respectively, a contradiction.

Case 3: (a, b) = (2, 0). If n is even, then ge21 has cross number 4/n and
(n − 3) | (n − 4), a contradiction. If n is odd, then the atom g(n+1)/2e1 has
cross number (n+ 3)/2n and (n− 3) | (n− 3)/2, a contradiction.
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Proof of Theorem 6.1. We set exp(G) = n. By Proposition 4.2 we have
max∆∗(G)− 1 = n− 3. As recalled in the introduction to this section, the
set {−e1 − e2, e1, e2} with independent {e1, e2} and ord ei = n has minimal
distance n− 3, and obviously the set is indecomposable.

To prove the converse, we assume to the contrary that there exist in-
decomposable sets in An−3(G) which do not have the asserted form. Let
G0 be such a set with minimal cardinality. By Lemma 6.2 it follows that
{−e1 − e2, e1, e2} ⊂ G0 with independent {e1, e2} where ord ei = n. By as-
sumption H0 = G0 \ {−e1 − e2, e1, e2} 6= ∅. Since G0 is indecomposable, it
follows that there exists some S ∈ F(H0) such that σ(S) ∈ 〈e1, e2〉 \ {0}.
Let S be minimal with this property. Note that by Lemma 6.3, |S| ≥ 2.
Further, let a, b ∈ [0, n − 1] be such that σ(S) = −ae1 − be1, and assume
that a ≥ b.

Since S is minimal with σ(S) ∈ 〈e1, e2〉 \ {0}, the same reasoning as in
(5) and (6) applies. Thus, it suffices to consider the three cases below; in
each of them we give an example of an atom with cross number not equal
to 1 whose support is a proper subset of G0.

Case 1: For (a, b) ∈ {(n− 2, n− 2), (n− 1, 1), (n− 1, n− 2)} the atom
A = Sea1e

b
2 has cross number greater than 1.

Case 2: For (a, b) ∈ {(2, 1), (2, 0)} we consider the atom A = S(−e1
− e2)n−2en−2+b

2 .

Case 3: For (a, b) = (1, 1) or (a, b) = (n− 1, 0), we consider A = S(−e1
− e2)n−1 or A = Sen−1

1 , respectively; we recall |S| ≥ 2.

We set G′0 = supp(A). Then G′0 ( G0 is indecomposable, since it is
the support of an atom, and non-half-factorial. Since min∆(G′0) has to be
a multiple of n − 3 and max∆∗(G) ≤ n − 2 by Proposition 4.2, it follows
that min∆(G′0) = n− 3. By the minimality condition on G0, it follows that
G′0 = {−f1 − f2, f1, f2} with independent {f1, f2} where ord fi = n. In any
case, this yields a contradiction, since k(A′) ≤ 1 for every A′ ∈ A(G′0), yet
k(A) > 1.

Clearly, Theorem 6.1 implies a result similar to Corollary 5.2, since no
multiple of exp(G) − 3 is contained in ∆∗(G). We do not formulate it ex-
plicitly. Now, Theorem 1.2(2) follows immediately.

Proof of Theorem 1.2(2). Assume n > m(G) + 3. By Theorem 6.1 the
result is obvious for C2

n; and thus an−3(G) ≥ 3+µ(G′′) by Lemma 5.3. Since
µ(C2

n) ≥ 1+n > 5 (cf. [3, Corollary 6.4]), it follows that a set G0 ∈ An−3(G)
with |G0| = an−3(G) has exactly one non-half-factorial component, and the
result follows.
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Moreover, the results of this section yield an (unconditional) result on
∆∗(G) for G with rank at most 2. For these groups it is known (uncon-
ditionally) that max∆∗(G) = exp(G) − 2 (see [4, Theorem 1.4] and [10,
Corollary 6.8.11] for a different argument). Here, we answer for which G we
have exp(G) − 3 ∈ ∆∗(G). As mentioned in Section 4, for cyclic groups a
stronger result is known.

Corollary 6.4. Let G be a finite abelian group with exp(G) = n and
r(G) ≤ 2. Then n − 3 ∈ ∆∗(G) if and only if n = 4 or G ∼= C2

n with
n ≥ 5.

7. Results on bd(G). Now, we investigate bd(G). Essentially, we restrict
ourselves to proving Theorem 1.3. For the definition of the invariant ψk(G)
used below, see Subsection 2.2.

Lemma 7.1. Let G0 ∈ Ad(G) with |G0| = ad(G) where dN∩∆∗(G) = {d},
and let G0 = G1 ∪G2 be a decomposition where G1 is non-half-factorial.

(1) If G2 6= {0} is half-factorial , then bd(G) ≥ bd(〈G1〉) +ψ1(〈G2〉) + 1.
(2) If G2 is non-half-factorial , then bd(G) ≥ bd(〈G1〉) + bd(〈G2〉) + 1.

Proof. Without restriction assume 0 ∈ G2. Note that G1, and in (2)
also G2, have minimal distance d.

(1) By Lemma 5.3 we have G1 ∈ Ad(〈G1〉) and |G1| = ad(〈G1〉) − 1;
moreover, G2 is half-factorial and |G2| = µ(〈G2〉). Without restriction (con-
sidering suitable G′1 ⊂ 〈G1〉 and G′2 ⊂ 〈G2〉 if necessary), we may assume
that there exists a sequence T2 ∈ F(〈G2〉 \ G2) with |T2| = ψ1(〈G2〉) such
that |L(C)| = 1 for every C ∈ Ω(G2, T2). Further, we may assume that
there exists a sequence T1 ∈ F(〈G1〉 \ G1) with |T1| = bd(〈G1〉) such that
Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)) for some l ∈ N. (Recall from Subsection
2.2 that M(G) ≥ M(〈G1〉) and since Ω(G1, T1, l

′) ⊂ P(〈G1〉, d,M(〈G1〉))
we have Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)) for some l ≥ l′.)

Now, let g1 ∈ G1 and g2 ∈ G2 \ {0}. We set S = (g1 + g2)T1T2 and
assert that Ω(G0, S, l) ⊂ P(G, d,M(G)). Let B = SF1F2 ∈ Ω(G0, S, l)
where F1 ∈ F(G1) and F2 ∈ F(G2). Consider B′ = (g1 + g2)−1g1g2B =
(g1T1F1)(g2T2F2).

We note that B′ is a block over 〈G1〉∪〈G2〉 and thus L(B′) = L(g1T1F1)+
L(g2T2F2). Moreover, in each factorization of B there is an atom A contain-
ing g1 + g2, and (g1 + g2)−1g1g2A is a product of two atoms. Conversely,
in each factorization of B′ there are atoms A1 and A2 with gi |Ai, and
(g1g2)−1(g1 + g2)A1A2 is an atom. Consequently, L(B′) = 1 + L(B).

By the definition of T2, since g2F2 ∈ F(G2), the set L(g2T2F2) is a
singleton, say equal to {L}; and g1T1F1 ∈ Ω(G1, T1, l) ⊂ P(〈G1〉, d,M(G)).
Thus L(B) = −1 + L+ L(g1T1F1), B ∈ P(G, d,M(G)), and bd(G) ≥ |S|.
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(2) The argument is quite similar to (1). We have |G1| = ad(〈G1〉) − 1
and |G2| = ad(〈G2〉); and we may assume that, for i ∈ {1, 2}, there exists
a sequence Ti ∈ F(〈Gi〉 \Gi) with |Ti| = bd(〈Gi〉) such that Ω(Gi, Ti, li) ⊂
P(〈Gi〉, d,M(G)) for some li ∈ N. Let gi ∈ Gi \ {0}, S = (g1 + g2)T1T2

and l = max{l1, l2}; we assert Ω(G0, S, l) ⊂ P(G, d,M(G)). Again, for B =
SF1F2 ∈ Ω(G0, S, l) with Fi ∈ F(Gi) consider B′ = (g1 + g2)−1g1g2B. Then
L(B) = −1 + L(g1T1F1) + L(g2T2F2). Thus, L(B) is an AAMP with period
{0, d} and it is not difficult to see that it is bounded by M(G) (cf. [10,
Section 4.2] for more general results of this form). Finally, since max L(B)−
min L(B) ≥ max L(giTiFi)−min L(giTiFi) we have B ∈ P(G, d,M(G)).

Having the auxiliary results at hand, we deduce the theorem easily.

Proof of Theorem 1.3. (1) We assume n > m(G) + 2. First, we assume
that G is cyclic, and we have to show that bn−2(G) = 0. The argument is
similar to the proof of Theorem 5.1. Let G0 ∈ An−2(G), say G0 = {0, e,−e}
with ord e = n. Further, let S ∈ F(G\G0). We may assume |S| = 1, say S =
g = ae with a ∈ [2, n−2]. Let B = gen−a(−e)n. Then L(B) = {2, n−a+1}.
For every l ∈ N, the set Ω(G0, g, l) contains a block B1 that is divisible
by B. Thus n − a − 1 ∈ ∆(L(B1)) and L(B1) is not an AAMP with period
{0, n− 2}. Consequently, bn−2(G) = 0 for cyclic G.

Conversely, we assume G is not cyclic, and show that bn−2(G) > 0. If
G is an elementary p-group of rank 2, it follows by the proof of Theorem
1.2(1) that we can apply Lemma 7.1(2), which implies bn−2(G) > 0. In any
other case, it follows by the proof of Theorem 1.2(1) that there exists some
G0 ∈ An−2(G) that allows a decomposition G0 = G1 ∪ G2 with G2 6= {0}
half-factorial. Now, bn−2(G) > 0 by Lemma 7.1(1).

(2) We assume n > m(G) + 3. By Theorem 1.2(2) and Lemma 7.1 it
suffices to show that bn−3(C2

n) > 0. Let G0 = {0, e1, e2,−e1 − e2} with
independent {e1, e2} and ord ei = n. We assert that Ω(G0, 2e1 + 2e2, l) ⊂
P(G,n− 3,M) for sufficiently (depending on M) large l. The only atoms in
Ω(G0, 2e1 + 2e2) are gord g for g ∈ G0, e1e2(−e1 − e2), (2e1 + 2e2)en−2

1 en−2
2 ,

and (2e1 + 2e2)(−e1− e2)2. Thus, the only minimal relations are (2e1 + 2e2)
· (−e1− e2)2 · en1 · en2 = (2e1 + 2e2)en−2

1 en−2
2 · ((−e1− e2)e1e2)2 and (e1e2(−e1

− e2))n = en1 · en2 · (−e1 − e2)n, so the only possible distance is n − 3, and
the result follows.

We end with two examples, showing that the lower bounds of Lemma
7.1 can be sharp.

Example 7.2. (1) Let n ≥ 6 be even and G = C2⊕Cn = 〈e1〉⊕〈e2〉. By
Theorem 1.2, an−2(G) = 4 and we need to consider G0 = {0, e1, e2,−e2}. Let
S ∈ F(G \ G0) be such that Ω(G0, S, l) ⊂ P(G,n − 2,M) for some l ∈ N.
From the argument for cyclic groups it follows that supp(S) ⊂ {e1 + e2,
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e1 − e2}. Without restriction we assume (e1 + e2) |S. Since each of the two
blocks

(e1 + e2)e1(−e2) · (e1 − e2)e1e2 = (e1 + e2)(e1 − e2) · e21 · (−e2)e2,

(e1 + e2)2en−2
2 · (−e2)n = (e1 + e2)2(−e2)2 · (−e2e2)n−2

has {2, 3} as set of lengths, we have supp(S) = {e1 + e2} and ve1+e2(S) = 1.
This implies bn−2(G) = 1.

(2) Let p ≥ 5 be a prime and G = C2
p = 〈e1〉 ⊕ 〈e2〉. By Theorem 1.2,

ap−2(C2
p) = 5 and we need to consider G0 = {0, e1,−e1} ∪ {e2,−e2}. Let

S ∈ F(G \ G0) be such that Ω(G0, S, l) ⊂ P(G, p − 2,M) for some l ∈ N.
From the argument for cyclic groups it follows that supp(S) ⊂ {e1 +e2, e1−
e2,−e1 +e2,−e1−e2}. We assume (e1 +e2) |S. Since each of the four blocks

(e1 + e2)(−e1 − e2)(−e1)e1(−e2)e2, (e1 + e2)(−e1 + e2)(−e1)e1e
2p−2
2 ,

(e1 + e2)(e1 − e2)(−e2)e2e
2p−2
1 , (e1 + e2)2e2p−2

1 e2p−2
2

has {2, 3} as set of lengths, we have supp(S) = {e1 + e2} and ve1+e2(S) = 1.
This implies bp−2(G) = 1.
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