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MULTIPLE CONJUGATE FUNCTIONS AND MULTIPLICATIVE
LIPSCHITZ CLASSES

BY

FERENC MORICZ (Szeged)

Abstract. We extend the classical theorems of I. I. Privalov and A. Zygmund from
single to multiple conjugate functions in terms of the multiplicative modulus of continuity.
A remarkable corollary is that if a function f belongs to the multiplicative Lipschitz

class Lip(ai,...,an) for some 0 < a1,...,any < 1 and its marginal functions satisfy
f(,z2,...,zNn) € LipBa,..., f(z1,...,2Nn—-1,-) € LipfBn for some 0 < B1,...,0nv < 1
uniformly in the indicated variables z;, 1 <! < N, then f{"~) ¢ Lip(ai,...,an) for

each choice of (n1,...,mn) with g, =0or 1 for 1 <1< N.

1. Introduction: Conjugate functions of one variable. We briefly
summarize the basic results known in the literature. Given a complex-valued

function f € L(T), where T := (—m, ] is the one-dimensional torus, its
Fourier series is defined by
(1.1) fla)~ > fk)e*,  zeT,
kEZ
where
~ 1

f(k): S f(x)e ™ dx, keZ,
T
are the Fourier coefficients of f.

We recall that the function f conjugate to f is defined by

~ 1 1 t 1 .
f(z) = = P.V. S flz—1) §C0t B dt := — lim S
-7 h<|t|<m

"~ or

It is known (see, e.g., [6, Vol. I, p. 131]) that this principal value integral
exists for almost every x € T, but f ¢ L'(T) in general. However, in case
f € LY(T) the Fourier series of f is given by
(1.2) fla) ~ Z(—z sign k) f(k)e'™.

keZ
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The series in (1.2) is called the conjugate series to the Fourier series in (1.1).
It is also known (see, e.g., [6, Vol. I, p. 253]) that f may be discontinuous
in the case when f is continuous.

We recall that the modulus of continuity of a 2w-periodic continuous
function f (in symbols: f € C(T)) is defined by

w(f;0):= sup max|f(x+h)— f(z)], 6>0.
0<|h|<s €T

The following theorem is due to Zygmund [4] (see also [6, Vol. 1, p. 121]).
THEOREM 0. If f € C(T) is such that
(1.3) tlw(fit) € L0, 7),

then the princﬁpal value integral defining f(x) exists in Lebesque’s sense for

every x € T, f € C(T), and

3 T
;T

SW(J;’ >dt+5s

0 0

w(f;t)
t2

w(f“;a)gA[ dt], § € (0,7].

Here and below, by A we denote an absolute constant whose value may
be different at each occurrence.

It follows immediately that if f is in Lip « (or lip @) for some 0 < v < 1,
then so is f Furthermore, if f € Lip 1, then

w(F:6) < Adlog 2% 5 (0,7).

These particular cases were proved by Privalov [2].

Our aim is to extend the above results to functions of several variables.
We will confine our attention basically to functions of two variables. In the
last Section 5, we briefly summarize our results for functions f € C(T"),
n > 3.

2. Conjugate series and functions of two variables. Let f(z,v)
be a complex-valued function, 27-periodic in each variable and integrable
over the two-dimensional torus T2, in symbols: f € L'(T?). We remind the
reader that the double Fourier series of f is defined by

21 fly) ~ D> D> kD F = S[f), (w,y) € T2,
keZ 1eZ

~

where the double Fourier coefficients f(k,1) are defined by

~

Flk,1) == Wi ye " dedy, (k1) € 2°.

TZ

1
(2m)?
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We recall that the three conjugate series to the Fourier series S[f] in
(2.1) are defined as follows:

(2.2) sa 0) Z Z —isign k: l)ei(kxﬂy)
keZ leZ
(conjugate with respect to the first variable),
(2.3) ZZ —isignl)f k: ekt
kEZ leZ
(conjugate with respect to the second variable), and
(2.4) SOD[f] =" (—isignk)(—isignl) f(k, 1)e' =)
k€EZ IeZ

(conjugate with respect to both variables). We note that the series (2.1)—(2.4)
are interrelated as follows:

(25)  S[f]+iSEOf]+iSOD[f] + '25“’”[f]
= F(0,0) + i ka—i—QZfOl 4iifkl
=1 k=1 I[=1

where z := e and w := e%.
The corresponding conjugate functions are the following:

~ 1 1
FAO(z y) = = P.V. S flx —t,y) = cot % dt,
T
T

2
f(o’l)(:ﬁ,y) = % P.V. 1Srf(:lc,y —t) %cot % dt,
and
£ (z,y) = % P.V. §T§ flz —t1,y —t2) (; cot t21> (; cot t;) dty dto
—

ho—0+ h1<‘t1|<ﬂ' h2<‘t2‘<7r

It follows from the corresponding one-dimensional theorem that if f €
LY(T?), then both f(19(z 4) and fOV(z,y) exist for almost every (z,y)
€ T2. Furthermore, Sokél-Sokolowski [3] proved that if f € Llog™ L(T?),

then f(1Y(z,y) exists for almost every (z,y) € T2.

3. Main results. Let f(z,y) be a continuous function, 27-periodic in
each variable, in symbols: f € C(T?). We introduce the notion of the mul-
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tiplicative modulus of continuity of f by setting

w(f;d1,02) = sup max_|f(x + h1,y + h2)
0<|h;|<8;,j=1,2 (z,y)€T?

— flx,y+ha) = f(x+ h1,y)+ f(z,y)], 1,02 > 0.

We note that in the particular case when

fay) = @) fly), (zy) €T

it is clear that

w(f;61,02) = w(fi;01)w(f2;02), 1,02 > 0.
This explains the term “multiplicative modulus of continuity”.

We recall that the (ordinary) total modulus of continuity of a function
f € O(T?) is defined by

w(f;01,02) := sup max |f(z+hy,y+h2)—f(z,y)], 01,62 >0.
0<|h;|<8;,5=1,2 (z.y)€T?

In the particular case when

f($7y):f1($)+f2(y)v (x,y)E']I‘Q,

it is clear that
W(f;61,02) = w(fi;01) +w(fa;02), 61,62 > 0.

On the other hand, in the multiplicative case only the following estimate
is available:

O(fi(x)f2(y); 01, 02) < | fallw(f1;01) + | fillw(f2;02), 01,92 >0,

where || - || is the usual maximum norm in C(T). This is why we use the
multiplicative modulus of continuity in place of the total modulus in the
case of multiple conjugate functions.

Our first new result reads as follows.

THEOREM 1. If f € C(T?) is such that

(3.1) tlw(f(,y);t) € LY0,7)  for every y €T
and
(3.2) tlw(f;t, 02) € LY0,7)  for every & € (0,7,

then the principal value integral defining f(l’o)(x,y) exists in Lebesgue’s
sense for every (z,y) € T? and

(33)  w(f10;61,)
01 . ™ .
S W(f,t,(;g) dt+61 S w(f;;a(b)

<4|
0 51

dt:|, 51,526(0,7[‘].
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If , in addition,
w(f t 52)

4
(3 ) 621—>I%+§ t

dt =0,

then 9 € C(T2).
REMARK 1. It is not difficult to check that if condition (3.2) is satisfied,
then

u=0 for every ds € (0, 7].

Thus, under the conditions (3.1) and (3.2) (without (3.4)), we have
w(f(l’o); 51, 52) — 0 as (51, (52 — 0
independently of one another.

REMARK 2. We say that a function f € C(T?) belongs to the multiplica-
tive Lipschitz class Lip(a, 3) for some «, § > 0 if

w(f;61,8) < AS6E. 61,8 > 0.

Furthermore, we say that a function f € Lip(a, 3) belongs to the multiplica-
tive little Lipschitz class lip(a, ) if

57965 Pw(f;61,82) — 0 as 61,00 — 0

independently of one another.

Both notions were first used in [1], on the present author’s suggestions,
to investigate the continuity behavior of the sum of double trigonometric
series with nonnegative coefficients.

Now, it is easy to check that if f € Lip(a, ) for some 0 < a < 1
and # > 0, and condition (3.1) is satisfied, then it follows from (3.3) that
f(l’o) € Lip(a, 3). Furthermore, if f € lip(«, 3) for some 0 < a < 1 and
B > 0, and condition (3.1) is satisfied, then f(l’o) € lip(a, 3). We note that
if f € Lip(1, ) for some 3 > 0 and condition (3.1) is satisfied, then

w(fH)8),8,) < A6185 log ?IT, 0<0d1,00 <.

REMARK 3. The proof of the symmetric counterpart of Theorem 1 for
the conjugate function f £O0) puns along the lines analogous to those in The-
orem 1.

THEOREM 1. If f € C(T?) is such that
t~Yw(f(x,-);t) € LY0,7)  for every z € T

and
(f 61a ) (0 7T) fOT every 01 € (Ov,ﬁ]?
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then the principal value integral defining ]?(0’1) exists in Lebesque’s sense for
every (z,y) € T? and

™

02 . .
W(FOV551,85) < A[g S dt], 51,82 € (0, 7).
0 o2
If , in addition, -
lim S M dt =0,
(51—>0+0 t

then fO1) e C(T?2).
Each of the statements in Remarks 1 and 2 can be reformulated for ]?(0’1)
in place of f(1-0).

REMARK 4. We say that the marginal function f(-,y) is in Lip«a; for
some 1 > 0 uniformly in y € T if the inequality

w(f(,y);01) < ASYH, 61> 0,
holds for every y € T with the same Lipschitz constant A.

The following Corollary 1 is a simple consequence of Theorems 1 and 1,
on taking into account Remarks 1 and 2 and their symmetric counterparts.

COROLLARY 1. (a) If f € Lip(«, ) for some 0 < o, 3 < 1, and f(-,y) €
Lipay for some 0 < a; < 1 uniformly iny € T, and f(x,-) € Lip 5 for
some 0 < 1 < 1 uniformly in x € T, then

(3.5) F1L0), FOU € Lip(a, ).
Furthermore,

FEOCy), FOV(y) € Lipay,
f(l,O)(x, ')7 .]?(071)('7;7 ) € Lip ﬁl’

and the memberships in (3.6) hold uniformly iny € T or xz € T, respectively.
(b) Part (a) remains valid if each Lip is replaced by lip.

(3.6)

REMARK 5. Finally, we recall the following well-known fact. If f €
L?(T?), then each of the conjugate functions f(1L0), fOD (D) 3]50 be-
longs to L2(T?), and

(FEN~OD (@, y) = (FOV)* 10z, y) = FID (2, y)
for almost every (x,y) € T2. This is a straightforward consequence of the
unicity of Fourier series of functions in L?(T?).
Keeping this fact in mind, we can conclude that, under the conditions of
Corollary 1, the conclusions (3.5) and (3.6) also hold true for f(\'Y) in place
of .]?(1’0) or ]'F(O,l).
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4. Proof of Theorem 1. (i) Due to (3.1), Theorem 0 applies to the

marginal function f(-,y), where y € T is fixed. As a result, f(l’o) (z,y) is
continuous in x € T; furthermore, by (2.5) and (3.1), we have

™

. 1 1t
(170) —_ 1 — — — —
fUO e, y) = —— lim. }Sl [fx+ty) = [ —t,y)] 5 cot 5 dt

™

1 1
== ty) — Flo—ty)] = cot = dt,
7r(S)[f(fb”r ) = fle—ty)] 5 cot 5
since the integrand is majorized by t~'w(f(-,y);2t) which is Lebesgue in-
tegrable on the interval (0,7). Thus, the principal value integral defining
f(1.0) (x,7) exists in Lebesgue’s sense for every (x,y) € T?.

It follows from the above representation that for any real number hy we
have

1A @,y + he) — FOO (2, )]

1 1 t
:’—WS[f(1:+t,y+hQ)—f(a:—t,y+h2)—f(x+t,y)+f(z—t,y)]2cot2dt
0
1y 2
77§wf £ [hal) dt -0 as hy — 0,
T
0

independently of (z,y), where the limit relation is due to (3.4). This proves
that the family of functions {f(9)(z,y) : z € T} is equ1cont1nuous in the
second variable y. Since we have seen above that f is continuous in the
first variable z, we conclude that f 1.0) € C(T?).

(ii) Now, we turn to the proof of (3.3). To this end, we introduce the
auxiliary functions

(4.1) Gy hy () = f(x,y+ho) — f(z,y), €T,

where y € T and 0 < |hg| < 7 are fixed. We claim that condition (1.3) in
Theorem 0 is satisfied with ¢, 5, in place of f. Indeed, it follows from (3.1)
that

Wy hait) <t Hw(f(y + ha)it) +w(f(y)it)] € L0, 7).

Applying Theorem 0 yields ¢, 5, € C(T) for all fixed y € T and 0 < |ho| < 7,
and

01 T
(4.2)  w(Pyhy;01) < A{ S t W ( By ng; t) dt + 6 S t 2w ( By ny; t) dt |,
0 1

01 € (0,7T].
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By (4.1) and (i) above, we have

(43)  Buan(@) = — [yl — 1) 5 cot L di
T

= f(l,O)($7y + hQ) - fN(LO)(xay): (xay) S TQ? 0< |h2‘ <
Replacing z by x 4+ hy in (4.3), we find that

(44)  Gyny(@ + h1) — dypy(2)
= fO0 (2 4+ hy,y + ho) — FOO (2 + hy, )

— FOO @,y + ho) + FO ()
= A0,y b, ho),  (2,y) €T3, 0< |y <, j = 1,2.

Analogously, we also have

(45) ¢y,h2 (.%’ + hl) - d)y,hz (l‘) = A(f7 z,y; ha, h2)
By (4.4) and (4.5), inequality (4.2) can be rewritten as
(4.6) sup  max |A(fO0: 2 y; by, hy)|

0<‘h1 |§51 zeT

= sup max |¢y ha (x + hl) d)y,hz (I)|
0<|h1|<51 zeT

o1
§A|:St sup ma‘X|A(f71" yahl)h@)’dt

+ 01 S t72 sup max|A(f;z,y; hl,hg)\dt]
5 0<lm|<a =€T

Now, taking the supremum over y € T and 0 < |hg| < d2 on both sides
of (4.6) gives (3.1) to be proved.

5. Extension to functions of several variables. We recall (see, e.g.,
[5] or [6, Vol. II, Ch. 17]) that the multiple Fourier series of a function
f € LY(TN) is given by

(5.1) flx1,...,zN)
~ Z Z f ki,..., kN ikt +kNIN) (l’l,...,.’IJN)ETN,

k1€Z kNEZ

where the multiple Fourier coefficients f(k‘l, ..., kn) are defined by

. 1 .
f(kl, e k;N) = W S . ..Sf(xl’ o 7JUN)e—z(kmm—i—...—i—kzxmﬂzv) dxy ... dzy,

™ (kl,...,k]v) GZN.
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Let j1,...,jn and n be natural numbers such that
1<ji<...<jpn <N, 1<n<N.
The N-fold series
n
(5.2) ST T (isignk, ) flky, .. ky)elFrmtthnan)

k1€Z knyE€Zm=1
is called the conjugate series to the Fourier series in (5.1) with respect to the

specified variables z;,, ..., z;,. Clearly, altogether there are 2N _1 conjugate
series to the Fourier series in (5.1).
Set

(1 ifl=jmfor some 1 <m <mn,
= 0 otherwise, where [ =1,...,N.

The conjugate function f(m“"’”N) to f with respect to the variables

Zj,,...,Tj, is defined by means of a principal value integral as follows:
~ 1
FOmenn) (g ) = pr pP.V. SS flx1—mt1,...,on — NtN)
TG1s Jn)
D1t 1
Jm . e :
X H <2 cot 2) dt]l . dt]n = o hjl’...l,l}LI;’ln_}()—i- S . S s
m=1 T(hjy i)

where

Tt i) = (tjrs--ntjn) it €T, m=1,...,n},
T(hju""hjn) = {(tjl,...,tjn) : hjm S ‘tjm’ S ™, m = 1,...,n}.
The following theorem is due to Zygmund [5]: If

VoV @)l Qogt If (@, zw) )" da - day < oo,

TN
then the principal value integral defining f(m"“’”N )(ajl, ...,xyN) exists for
almost every (x1,...,zy); furthermore, if
VNI @, an)|(ogt |f (21, an) )" day - day < oo,
TN

then f(n1,~m1v) € L'(TV) and the conjugate series (5.2) is the Fourier series
of the conjugate function fv(m’“""N) for each N-tuple (n1,...,nn) withg, =0
orlforl1<[<N.

Finally, given a function f defined on TV, (z1,...,2x) € TV, and h; # 0,
j=1,..., N, we use the notation

A(f;l'l,...,.fCN;hl,...,hN)

1 1
= Z - Z (—1)771+“'+an(.%'1 + 771h1, o, IN T+ nNhN)-
=0 nn=0
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We introduce the notion of the multiplicative modulus of continuity of f €
C(T¥) as follows: for d1,...,6n5 > 0, set

w(f;(slv"w(;N)

= sup max |A(f;21,..., N3 h1, ..., hN)]|.
0<|h;|<8;,j=1,....N (Z1,.,xn)ETN

Now, the extension of Theorem 1 reads as follows.
THEOREM 2. If f € C(TYN) is such that
t Y w(f(t,z,. .., xn);it) € LY0,7)  for every (zo,...,zx) € TN
and
tYw(f;-, 09,...,0n) € L0, 1) for every da,...,0n5 € (0,7,

then the principal value integral defining f(LO"“’O) exists in Lebesgue’s sense
at every (z1,...,oyx) € TV and

(5.3)  w(fO00:51,8,,...,0n)

1)

Sl w(fat562776N)
t

0

™

dt + 61 S w(f;t,&i;...,(SN) i
o

<

61,09,...,0N € (0,7[‘].
If , in addition,

then f(1:0--0) ¢ C(TN).

Theorem 2 can be proved by induction on N. Indeed, according to The-
orems 0 and 1, the conclusion is true for N =1 and N = 2. Let N > 3 and
assume that the conclusion has been proved for N — 1. From this induction
hyphothesis, the validity of (5.3) can be justified in the same way as in the
proof of Theorem 1 by relying on Theorem 0. In particular, this time we
consider the auxiliary functions

d)xN,hN(xla - a«'UN—l) = f(:)jl, .., IN-1, TN + hN)
— f(z1,...,an—_1,2N), (T1,...,25_1) € TN 7L

where zy € T and 0 < |hy| < 7 are fixed. The additional statement in
Theorem 2 can also be justified along the same lines as in the case of the
analogous statement in Theorem 1.

REMARK 6. It is evident that a theorem analogous to Theorem 2 holds
true for each conjugate function f~) in place of f(10--9) where 9y, = 1
for a certain 2 <m < N and g, =0 for every l #m, 1 <[ < N.



MULTIPLE CONJUGATE FUNCTIONS 31

REMARK 7. We say that f € C(T) belongs to the multiplicative Lip-
schitz class Lip(ayq,...,ay) for some aq,...,any > 0 if

w(f;él,...,éN)gAéf‘l...é%N, 01,...,0N > 0;

and that f € Lip(a,...,an) belongs to the multiplicative little Lipschitz
class lip(aq, ..., ay) if

61_‘“...6;,“Nw(f;51,...,5N)HO aScSl,...,(SNHO
independently of one another.

Now, the following Corollary 2 of Theorem 2 is the extension of Corol-
lary 1 from double to multiple conjugate functions.

COROLLARY 2. (a) If f € Lip(aa,...,an) for some0 < aq,...,ay < 1,
and the marginal functions satisfy f(-,z2,...,xzn) € Lip 81 for some 0 <
Br < 1 uniformly in (za,...,2zx5) € TN ..., f(21,...,28_1,") € Lip By
for some 0 < Bn < 1 uniformly in (z1,...,2x_1) € TN7L, then f(m""’"N) €
Lip(aa,...,an) for each N-tuple (n1,...,nn) with iy =0 or 1,1 <[ < N.

(b) Part (a) remains valid if each Lip is replaced by lip.

Corollary 2 can also be proved by induction on N, making use of the

uniqueness of Fourier series of functions in L?(T"). By the uniqueness, if
f € L2(TN), then fOm-15) ¢ L2(TN) for each N-tuple (11, ...,7nx), where

Ny = =10, =1lfor 1 <j1 <---<jp, <N, 1<m< N,and g =0

otherwise, 1 <[ < N; furthermore, for this N-tuple (11,...,ny5) we have
J?(m,---,mv)(xl, o) = (FO i 0y Ores o 0) (- zN)

for almost every (z1,...,zy) € TV.
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