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MULTIPLE CONJUGATE FUNCTIONS AND MULTIPLICATIVE
LIPSCHITZ CLASSES

BY

FERENC MÓRICZ (Szeged)

Abstract. We extend the classical theorems of I. I. Privalov and A. Zygmund from
single to multiple conjugate functions in terms of the multiplicative modulus of continuity.
A remarkable corollary is that if a function f belongs to the multiplicative Lipschitz
class Lip(α1, . . . , αN ) for some 0 < α1, . . . , αN < 1 and its marginal functions satisfy
f(·, x2, . . . , xN ) ∈ Lipβ1, . . . , f(x1, . . . , xN−1, ·) ∈ LipβN for some 0 < β1, . . . , βN < 1

uniformly in the indicated variables xl, 1 ≤ l ≤ N , then ef (η1,...,ηN ) ∈ Lip(α1, . . . , αN ) for
each choice of (η1, . . . , ηN ) with ηl = 0 or 1 for 1 ≤ l ≤ N .

1. Introduction: Conjugate functions of one variable. We briefly
summarize the basic results known in the literature. Given a complex-valued
function f ∈ L1(T), where T := (−π, π] is the one-dimensional torus, its
Fourier series is defined by

(1.1) f(x) ∼
∑
k∈Z

f̂(k)eikx, x ∈ T,

where
f̂(k) :=

1
2π

�

T
f(x)e−ikx dx, k ∈ Z,

are the Fourier coefficients of f .
We recall that the function f̃ conjugate to f is defined by

f̃(x) :=
1
π

P.V.
π�

−π
f(x− t) 1

2
cot

t

2
dt :=

1
π

lim
h→0+

�

h≤|t|≤π

.

It is known (see, e.g., [6, Vol. I, p. 131]) that this principal value integral
exists for almost every x ∈ T, but f̃ 6∈ L1(T) in general. However, in case
f̃ ∈ L1(T) the Fourier series of f̃ is given by

(1.2) f̃(x) ∼
∑
k∈Z

(−i sign k)f̂(k)eikx.
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The series in (1.2) is called the conjugate series to the Fourier series in (1.1).
It is also known (see, e.g., [6, Vol. I, p. 253]) that f̃ may be discontinuous
in the case when f is continuous.

We recall that the modulus of continuity of a 2π-periodic continuous
function f (in symbols: f ∈ C(T)) is defined by

ω(f ; δ) := sup
0<|h|≤δ

max
x∈T
|f(x+ h)− f(x)|, δ > 0.

The following theorem is due to Zygmund [4] (see also [6, Vol. 1, p. 121]).

Theorem 0. If f ∈ C(T) is such that

(1.3) t−1ω(f ; t) ∈ L1(0, π),

then the principal value integral defining f̃(x) exists in Lebesgue’s sense for
every x ∈ T, f̃ ∈ C(T), and

ω(f̃ ; δ) ≤ A
[ δ�

0

ω(f ; t)
t

dt+ δ

π�

δ

ω(f ; t)
t2

dt

]
, δ ∈ (0, π].

Here and below, by A we denote an absolute constant whose value may
be different at each occurrence.

It follows immediately that if f is in Lipα (or lipα) for some 0 < α < 1,
then so is f̃ . Furthermore, if f ∈ Lip 1, then

ω(f̃ ; δ) ≤ Aδ log
2π
δ
, δ ∈ (0, π].

These particular cases were proved by Privalov [2].
Our aim is to extend the above results to functions of several variables.

We will confine our attention basically to functions of two variables. In the
last Section 5, we briefly summarize our results for functions f ∈ C(Tn),
n ≥ 3.

2. Conjugate series and functions of two variables. Let f(x, y)
be a complex-valued function, 2π-periodic in each variable and integrable
over the two-dimensional torus T2, in symbols: f ∈ L1(T2). We remind the
reader that the double Fourier series of f is defined by

(2.1) f(x, y) ∼
∑
k∈Z

∑
l∈Z

f̂(k, l)ei(kx+ly) =: S[f ], (x, y) ∈ T2,

where the double Fourier coefficients f̂(k, l) are defined by

f̂(k, l) :=
1

(2π)2
� �

T2

f(x, y)e−i(kx+ly) dx dy, (k, l) ∈ Z2.
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We recall that the three conjugate series to the Fourier series S[f ] in
(2.1) are defined as follows:

(2.2) S̃(1,0)[f ] :=
∑
k∈Z

∑
l∈Z

(−i sign k)f̂(k, l)ei(kx+ly)

(conjugate with respect to the first variable),

(2.3) S̃(0,1)[f ] :=
∑
k∈Z

∑
l∈Z

(−i sign l)f̂(k, l)ei(kx+ly)

(conjugate with respect to the second variable), and

(2.4) S̃(1,1)[f ] :=
∑
k∈Z

∑
l∈Z

(−i sign k)(−i sign l)f̂(k, l)ei(kx+ly)

(conjugate with respect to both variables). We note that the series (2.1)–(2.4)
are interrelated as follows:

(2.5) S[f ] + iS̃(1,0)[f ] + iS̃(0,1)[f ] + i2S̃(1,1)[f ]

= f̂(0, 0) + 2
∞∑
k=1

f̂(k, 0)zk + 2
∞∑
l=1

f̂(0, l)wl + 4
∞∑
k=1

∞∑
l=1

f̂(k, l)zkwl,

where z := eix and w := eiy.
The corresponding conjugate functions are the following:

f̃ (1,0)(x, y) :=
1
π

P.V.
�

T
f(x− t, y)

1
2

cot
t

2
dt,

f̃ (0,1)(x, y) :=
1
π

P.V.
�

T
f(x, y − t) 1

2
cot

t

2
dt,

and

f̃ (1,1)(x, y) :=
1
π2

P.V.
� �

T2

f(x− t1, y − t2)
(

1
2

cot
t1
2

)(
1
2

cot
t2
2

)
dt1 dt2

:=
1
π2

lim
h1→0+
h2→0+

�

h1≤|t1|≤π

�

h2≤|t2|≤π

.

It follows from the corresponding one-dimensional theorem that if f ∈
L1(T2), then both f̃ (1,0)(x, y) and f̃ (0,1)(x, y) exist for almost every (x, y)
∈ T2. Furthermore, Sokó l-Soko lowski [3] proved that if f ∈ L log+ L(T2),
then f̃ (1,1)(x, y) exists for almost every (x, y) ∈ T2.

3. Main results. Let f(x, y) be a continuous function, 2π-periodic in
each variable, in symbols: f ∈ C(T2). We introduce the notion of the mul-
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tiplicative modulus of continuity of f by setting

ω(f ; δ1, δ2) := sup
0<|hj |≤δj , j=1,2

max
(x,y)∈T2

|f(x+ h1, y + h2)

− f(x, y + h2)− f(x+ h1, y) + f(x, y)|, δ1, δ2 > 0.

We note that in the particular case when

f(x, y) = f1(x)f2(y), (x, y) ∈ T2,

it is clear that

ω(f ; δ1, δ2) = ω(f1; δ1)ω(f2; δ2), δ1, δ2 > 0.

This explains the term “multiplicative modulus of continuity”.
We recall that the (ordinary) total modulus of continuity of a function

f ∈ C(T2) is defined by

ω̃(f ; δ1, δ2) := sup
0<|hj |≤δj , j=1,2

max
(x,y)∈T2

|f(x+h1, y+h2)−f(x, y)|, δ1, δ2 > 0.

In the particular case when

f(x, y) = f1(x) + f2(y), (x, y) ∈ T2,

it is clear that

ω̃(f ; δ1, δ2) = ω(f1; δ1) + ω(f2; δ2), δ1, δ2 > 0.

On the other hand, in the multiplicative case only the following estimate
is available:

ω̃(f1(x)f2(y); δ1, δ2) ≤ ‖f2‖ω(f1; δ1) + ‖f1‖ω(f2; δ2), δ1, δ2 > 0,

where ‖ · ‖ is the usual maximum norm in C(T). This is why we use the
multiplicative modulus of continuity in place of the total modulus in the
case of multiple conjugate functions.

Our first new result reads as follows.

Theorem 1. If f ∈ C(T2) is such that

(3.1) t−1ω(f(·, y); t) ∈ L1(0, π) for every y ∈ T

and

(3.2) t−1ω(f ; t, δ2) ∈ L1(0, π) for every δ2 ∈ (0, π],

then the principal value integral defining f̃ (1,0)(x, y) exists in Lebesgue’s
sense for every (x, y) ∈ T2 and

(3.3) ω(f̃ (1,0); δ1, δ2)

≤ A
[ δ1�

0

ω(f ; t, δ2)
t

dt+ δ1

π�

δ1

ω(f ; t, δ2)
t2

dt

]
, δ1, δ2 ∈ (0, π].
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If , in addition,

(3.4) lim
δ2→0+

π�

0

ω(f ; t, δ2)
t

dt = 0,

then f̃ (1,0) ∈ C(T2).

Remark 1. It is not difficult to check that if condition (3.2) is satisfied,
then

lim
t→0+

t

π�

t

ω(f ;u, δ2)
u2

du = 0 for every δ2 ∈ (0, π].

Thus, under the conditions (3.1) and (3.2) (without (3.4)), we have

ω(f̃ (1,0); δ1, δ2)→ 0 as δ1, δ2 → 0

independently of one another.

Remark 2. We say that a function f ∈ C(T2) belongs to the multiplica-
tive Lipschitz class Lip(α, β) for some α, β > 0 if

ω(f ; δ1, δ2) ≤ Aδα1 δ
β
2 , δ1, δ2 > 0.

Furthermore, we say that a function f ∈ Lip(α, β) belongs to the multiplica-
tive little Lipschitz class lip(α, β) if

δ−α1 δ−β2 ω(f ; δ1, δ2)→ 0 as δ1, δ2 → 0

independently of one another.
Both notions were first used in [1], on the present author’s suggestions,

to investigate the continuity behavior of the sum of double trigonometric
series with nonnegative coefficients.

Now, it is easy to check that if f ∈ Lip(α, β) for some 0 < α < 1
and β > 0, and condition (3.1) is satisfied, then it follows from (3.3) that
f̃ (1,0) ∈ Lip(α, β). Furthermore, if f ∈ lip(α, β) for some 0 < α < 1 and
β > 0, and condition (3.1) is satisfied, then f̃ (1,0) ∈ lip(α, β). We note that
if f ∈ Lip(1, β) for some β > 0 and condition (3.1) is satisfied, then

ω(f̃ (1,0), δ1, δ2) ≤ Aδ1δβ2 log
2π
δ1
, 0 < δ1, δ2 ≤ π.

Remark 3. The proof of the symmetric counterpart of Theorem 1 for
the conjugate function f̃ (0,1) runs along the lines analogous to those in The-
orem 1.

Theorem 1′. If f ∈ C(T2) is such that

t−1ω(f(x, ·); t) ∈ L1(0, π) for every x ∈ T
and

t−1ω(f ; δ1, t) ∈ L1(0, π) for every δ1 ∈ (0, π],
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then the principal value integral defining f̃ (0,1) exists in Lebesgue’s sense for
every (x, y) ∈ T2 and

ω(f̃ (0,1); δ1, δ2) ≤ A
[ δ2�

0

ω(f ; δ1, t)
t

dt+ δ2

π�

δ2

ω(f ; δ1, t)
t2

dt

]
, δ1, δ2 ∈ (0, π].

If , in addition,

lim
δ1→0+

π�

0

ω(f ; δ1, t)
t

dt = 0,

then f̃ (0,1) ∈ C(T2).

Each of the statements in Remarks 1 and 2 can be reformulated for f̃ (0,1)

in place of f̃ (1,0).

Remark 4. We say that the marginal function f(·, y) is in Lipα1 for
some α1 > 0 uniformly in y ∈ T if the inequality

ω(f(·, y); δ1) ≤ Aδα1
1 , δ1 > 0,

holds for every y ∈ T with the same Lipschitz constant A.

The following Corollary 1 is a simple consequence of Theorems 1 and 1′,
on taking into account Remarks 1 and 2 and their symmetric counterparts.

Corollary 1. (a) If f ∈ Lip(α, β) for some 0 < α, β < 1, and f(·, y) ∈
Lipα1 for some 0 < α1 < 1 uniformly in y ∈ T, and f(x, ·) ∈ Lipβ1 for
some 0 < β1 < 1 uniformly in x ∈ T, then

(3.5) f̃ (1,0), f̃ (0,1) ∈ Lip(α, β).

Furthermore,

(3.6)
f̃ (1,0)(·, y), f̃ (0,1)(·, y) ∈ Lipα1,

f̃ (1,0)(x, ·), f̃ (0,1)(x, ·) ∈ Lipβ1,

and the memberships in (3.6) hold uniformly in y ∈ T or x ∈ T, respectively.
(b) Part (a) remains valid if each Lip is replaced by lip.

Remark 5. Finally, we recall the following well-known fact. If f ∈
L2(T2), then each of the conjugate functions f̃ (1,0), f̃ (0,1), f̃ (1,1) also be-
longs to L2(T2), and

(f̃ (1,0))∼(0,1)(x, y) = (f̃ (0,1))∼(1,0)x, y) = f̃ (1,1)(x, y)

for almost every (x, y) ∈ T2. This is a straightforward consequence of the
unicity of Fourier series of functions in L2(T2).

Keeping this fact in mind, we can conclude that, under the conditions of
Corollary 1, the conclusions (3.5) and (3.6) also hold true for f̃ (1,1) in place
of f̃ (1,0) or f̃ (0,1).
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4. Proof of Theorem 1. (i) Due to (3.1), Theorem 0 applies to the
marginal function f(·, y), where y ∈ T is fixed. As a result, f̃ (1,0)(x, y) is
continuous in x ∈ T; furthermore, by (2.5) and (3.1), we have

f̃ (1,0)(x, y) = − 1
π

lim
h→0+

π�

h

[f(x+ t, y)− f(x− t, y)]
1
2

cot
t

2
dt

= − 1
π

π�

0

[f(x+ t, y)− f(x− t, y)]
1
2

cot
t

2
dt,

since the integrand is majorized by t−1ω(f(·, y); 2t) which is Lebesgue in-
tegrable on the interval (0, π). Thus, the principal value integral defining
f̃ (1,0)(x, y) exists in Lebesgue’s sense for every (x, y) ∈ T2.

It follows from the above representation that for any real number h2 we
have

|f̃ (1,0)(x, y + h2)− f̃ (1,0)(x, y)|

=
∣∣∣∣− 1
π

π�

0

[f(x+ t, y+h2)−f(x−t, y+h2)−f(x+t, y)+f(x−t, y)]
1
2

cot
t

2
dt

∣∣∣∣
≤ 1
π

π�

0

ω(f ; 2t, |h2|)
t

dt→ 0 as h2 → 0,

independently of (x, y), where the limit relation is due to (3.4). This proves
that the family of functions {f̃ (1,0)(x, y) : x ∈ T} is equicontinuous in the
second variable y. Since we have seen above that f̃ (1,0) is continuous in the
first variable x, we conclude that f̃ (1,0) ∈ C(T2).

(ii) Now, we turn to the proof of (3.3). To this end, we introduce the
auxiliary functions

(4.1) φy,h2(x) := f(x, y + h2)− f(x, y), x ∈ T,

where y ∈ T and 0 < |h2| ≤ π are fixed. We claim that condition (1.3) in
Theorem 0 is satisfied with φy,h2 in place of f . Indeed, it follows from (3.1)
that

t−1ω(φy,h2 ; t) ≤ t−1[ω(f(·, y + h2); t) + ω(f(·, y); t)] ∈ L1(0, π).

Applying Theorem 0 yields φy,h2 ∈ C(T) for all fixed y ∈ T and 0 < |h2| ≤ π,
and

(4.2) ω(φ̃y,h2 ; δ1) ≤ A
[ δ1�

0

t−1ω(φy,h2 ; t) dt+ δ1

π�

δ1

t−2ω(φy,h2 ; t) dt
]
,

δ1 ∈ (0, π].
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By (4.1) and (i) above, we have

(4.3) φ̃y,h2(x) =
1
π

�

T
φy,h2(x− t) 1

2
cot

t

2
dt

= f̃ (1,0)(x, y + h2)− f̃ (1,0)(x, y), (x, y) ∈ T2, 0 < |h2| ≤ π.
Replacing x by x+ h1 in (4.3), we find that

(4.4) φ̃y,h2(x+ h1)− φ̃y,h2(x)

= f̃ (1,0)(x+ h1, y + h2)− f̃ (1,0)(x+ h1, y)

− f̃ (1,0)(x, y + h2) + f̃ (1,0)(x, y)

:= ∆(f̃ (1,0);x, y;h1, h2), (x, y) ∈ T2, 0 < |hj | ≤ π, j = 1, 2.

Analogously, we also have

(4.5) φy,h2(x+ h1)− φy,h2(x) = ∆(f ;x, y;h1, h2).

By (4.4) and (4.5), inequality (4.2) can be rewritten as

(4.6) sup
0<|h1|≤δ1

max
x∈T
|∆(f̃ (1,0);x, y;h1, h2)|

= sup
0<|h1|≤δ1

max
x∈T
|φ̃y,h2(x+ h1)− φ̃y,h2(x)|

≤ A
[ δ1�

0

t−1 sup
0<|h1|≤δ1

max
x∈T
|∆(f ;x, y;h1, h2)| dt

+ δ1

π�

δ1

t−2 sup
0<|h1|≤δ1

max
x∈T
|∆(f ;x, y;h1, h2)| dt

]
.

Now, taking the supremum over y ∈ T and 0 < |h2| ≤ δ2 on both sides
of (4.6) gives (3.1) to be proved.

5. Extension to functions of several variables. We recall (see, e.g.,
[5] or [6, Vol. II, Ch. 17]) that the multiple Fourier series of a function
f ∈ L1(TN ) is given by

(5.1) f(x1, . . . , xN )

∼
∑
k1∈Z
· · ·
∑
kN∈Z

f̂(k1, . . . , kN )ei(k1x1+···+kNxN ), (x1, . . . , xN )∈TN ,

where the multiple Fourier coefficients f̂(k1, . . . , kN ) are defined by

f̂(k1, . . . , kN ) :=
1

(2π)N
�
· · ·

�

TN
f(x1, . . . , xN )e−i(k1x1+···+kNxN ) dx1 . . . dxN ,

(k1, . . . , kN ) ∈ ZN .
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Let j1, . . . , jn and n be natural numbers such that

1 ≤ j1 < . . . < jn ≤ N, 1 ≤ n ≤ N.
The N -fold series

(5.2)
∑
k1∈Z

. . .
∑
kN∈Z

n∏
m=1

(−i sign kjm)f̂(k1, . . . , kN )ei(k1x1+···+kNxN )

is called the conjugate series to the Fourier series in (5.1) with respect to the
specified variables xj1 , . . . , xjn . Clearly, altogether there are 2N−1 conjugate
series to the Fourier series in (5.1).

Set

ηl :=
{

1 if l = jm for some 1 ≤ m ≤ n,
0 otherwise, where l = 1, . . . , N .

The conjugate function f̃ (η1,...,ηN ) to f with respect to the variables
xj1 , . . . , xjn is defined by means of a principal value integral as follows:

f̃ (η1,...,ηN )(x1, . . . , xN ) :=
1
πn

P.V.
�
. . .

�

T(j1,...,jn)

f(x1 − η1t1, . . . , xN − ηN tN )

×
n∏

m=1

(
1
2

cot
tjm
2

)
dtj1 . . . dtjn :=

1
πn

lim
hj1 ,...,hjn→0+

�
. . .

�

T(hj1 ,...,hjn )

,

where
T(j1,...,jn) := {(tj1 , . . . , tjn) : tjm ∈ T, m = 1, . . . , n},

T(hj1 , . . . , hjn) := {(tj1 , . . . , tjn) : hjm ≤ |tjm | ≤ π, m = 1, . . . , n}.
The following theorem is due to Zygmund [5]: If�
· · ·

�

TN
|f(x1, . . . , xN )|(log+ |f(x1, . . . , xN )|)n−1 dx1 . . . dxN <∞,

then the principal value integral defining f̃ (η1,...,ηN )(x1, . . . , xN ) exists for
almost every (x1, . . . , xN ); furthermore, if�

. . .
�

TN
|f(x1, . . . , xN )|(log+ |f(x1, . . . , xN )|)n dx1 . . . dxN <∞,

then f̃ (η1,...,ηN ) ∈ L1(TN ) and the conjugate series (5.2) is the Fourier series
of the conjugate function f̃ (η1,...,ηN ) for each N -tuple (η1, . . . , ηN ) with ηl = 0
or 1 for 1 ≤ l ≤ N .

Finally, given a function f defined on TN , (x1, . . . , xN ) ∈ TN , and hj 6= 0,
j = 1, . . . , N , we use the notation

∆(f ;x1, . . . , xN ;h1, . . . , hN )

:=
1∑

η1=0

. . .

1∑
ηN=0

(−1)η1+···+ηN f(x1 + η1h1, . . . , xN + ηNhN ).
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We introduce the notion of the multiplicative modulus of continuity of f ∈
C(TN ) as follows: for δ1, . . . , δN > 0, set

ω(f ; δ1, . . . , δN )
:= sup

0<|hj |≤δj , j=1,...,N
max

(x1,...,xN )∈TN
|∆(f ;x1, . . . , xN ;h1, . . . , hN )|.

Now, the extension of Theorem 1 reads as follows.

Theorem 2. If f ∈ C(TN ) is such that

t−1ω(f(t, x2, . . . , xN ); t) ∈ L1(0, π) for every (x2, . . . , xN ) ∈ TN−1

and

t−1ω(f ; ·, δ2, . . . , δN ) ∈ L1(0, π) for every δ2, . . . , δN ∈ (0, π],

then the principal value integral defining f̃ (1,0,...,0) exists in Lebesgue’s sense
at every (x1, . . . , xN ) ∈ TN and

(5.3) ω(f̃ (1,0,...,0); δ1, δ2, . . . , δN )

≤ A
[ δ1�

0

ω(f ; t, δ2, . . . , δN )
t

dt+ δ1

π�

δ1

ω(f ; t, δ2, . . . , δN )
t2

dt

]
,

δ1, δ2, . . . , δN ∈ (0, π].
If , in addition,

lim
δ2,...,δN→0+

π�

0

ω(f ; t, δ2, . . . , δN )
t

dt = 0,

then f̃ (1,0,...,0) ∈ C(TN ).

Theorem 2 can be proved by induction on N . Indeed, according to The-
orems 0 and 1, the conclusion is true for N = 1 and N = 2. Let N ≥ 3 and
assume that the conclusion has been proved for N − 1. From this induction
hyphothesis, the validity of (5.3) can be justified in the same way as in the
proof of Theorem 1 by relying on Theorem 0. In particular, this time we
consider the auxiliary functions

φxN ,hN (x1, . . . , xN−1) := f(x1, . . . , xN−1, xN + hN )

− f(x1, . . . , xN−1, xN ), (x1, . . . , xN−1) ∈ TN−1,

where xN ∈ T and 0 < |hN | ≤ π are fixed. The additional statement in
Theorem 2 can also be justified along the same lines as in the case of the
analogous statement in Theorem 1.

Remark 6. It is evident that a theorem analogous to Theorem 2 holds
true for each conjugate function f̃ (η1,...,ηN ) in place of f̃ (1,0,...,0), where ηm = 1
for a certain 2 ≤ m ≤ N and ηl = 0 for every l 6= m, 1 ≤ l ≤ N .
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Remark 7. We say that f ∈ C(TN ) belongs to the multiplicative Lip-
schitz class Lip(α1, . . . , αN ) for some α1, . . . , αN > 0 if

ω(f ; δ1, . . . , δN ) ≤ Aδα1
1 . . . δαNN , δ1, . . . , δN > 0;

and that f ∈ Lip(α1, . . . , αN ) belongs to the multiplicative little Lipschitz
class lip(α1, . . . , αN ) if

δ−α1
1 . . . δ−αNN ω(f ; δ1, . . . , δN )→ 0 as δ1, . . . , δN → 0

independently of one another.

Now, the following Corollary 2 of Theorem 2 is the extension of Corol-
lary 1 from double to multiple conjugate functions.

Corollary 2. (a) If f ∈ Lip(α1, . . . , αN ) for some 0 < α1, . . . , αN < 1,
and the marginal functions satisfy f(·, x2, . . . , xN ) ∈ Lipβ1 for some 0 <
β1 < 1 uniformly in (x2, . . . , xN ) ∈ TN−1, . . ., f(x1, . . . , xN−1, ·) ∈ LipβN
for some 0 < βN < 1 uniformly in (x1, . . . , xN−1) ∈ TN−1, then f̃ (η1,...,ηN ) ∈
Lip(α1, . . . , αN ) for each N -tuple (η1, . . . , ηN ) with ηl = 0 or 1, 1 ≤ l ≤ N.

(b) Part (a) remains valid if each Lip is replaced by lip.

Corollary 2 can also be proved by induction on N , making use of the
uniqueness of Fourier series of functions in L2(TN ). By the uniqueness, if
f ∈ L2(TN ), then f (η1,...,ηN ) ∈ L2(TN ) for each N -tuple (η1, . . . , ηN ), where
ηj1 = · · · = ηjm = 1 for 1 ≤ j1 < · · · < jm ≤ N , 1 ≤ m ≤ N , and ηl = 0
otherwise, 1 ≤ l ≤ N ; furthermore, for this N -tuple (η1, . . . , ηN ) we have

f̃ (η1,...,ηN )(x1, . . . , xN ) = (f̃ (0,...,ηj1 ,...,0))∼···∼(0,...,ηjm ,...,0)(x1, . . . , xN )

for almost every (x1, . . . , xN ) ∈ TN .
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