VOL. 115

2009

NO. 1

ASTHENO-KÄHLER STRUCTURES ON CALABI–ECKMANN MANIFOLDS

BҮ

KOJI MATSUO (Ichinoseki)

Dedicated to Professor Kentaro Mikami on his sixtieth birthday

Abstract. We show that there exist astheno-Kähler structures on Calabi–Eckmann manifolds.

1. Introduction. A Hermitian metric g on a complex manifold M of complex dimension m is called *astheno-Kähler* if its Kähler form Ω satisfies $\partial \overline{\partial} \Omega^{m-2} = 0$ (cf. [4], [5], [9]), where ∂ and $\overline{\partial}$ are the complex exterior differentials. It is known that every holomorphic 1-form on a compact astheno-Kähler manifold is closed. We note that the condition $\partial \overline{\partial} \Omega^{m-2} = 0$ is automatically satisfied for m = 2.

The author [7] showed that there exist non-trivial examples of compact astheno-Kähler manifolds. Namely, let M_i be a 3-dimensional compact Sasakian manifold with the structure tensor fields $(\phi_i, \xi_i, \eta_i, g_i)$ for each i = 1, 2. On the product manifold $M = M_1 \times M_2$, the Riemannian product metric $g = g_1 + g_2$ is compatible with A. Morimoto's complex structure [8] defined by

(1.1)
$$J = \phi_1 - \eta_2 \otimes \xi_1 + \phi_2 + \eta_1 \otimes \xi_2.$$

Then the Kähler form Ω satisfies $dd^c \Omega = 0$, which is equivalent to $\partial \overline{\partial} \Omega = 0$, that is, the metric g is astheno-Kähler. Moreover, it was also shown in [7] that there exists a similar astheno-Kähler structure on the product manifold of a 3-dimensional compact Sasakian manifold and a compact cosymplectic manifold of dimension ≥ 3 . In these examples, the dimensions of Sasakian manifolds are restricted to 3. For instance, the Calabi–Eckmann manifold $S^3 \times S^3$ is one of these astheno-Kähler manifolds.

In [10], K. Tsukada introduced a family of complex structures on the Calabi–Eckmann manifold $S^{2m_1+1} \times S^{2m_2+1}$ containing Morimoto's complex structure (1.1) and defined Hermitian metrics compatible with the complex

²⁰⁰⁰ Mathematics Subject Classification: 53C55, 53C15, 53C25.

Key words and phrases: astheno-Kähler structures, Calabi–Eckmann manifolds, Sasakian manifolds.

structures. In this paper, we show that there exist astheno-Kähler structures among Tsukada's Hermitian structures on Calabi–Eckmann manifolds.

2. Preliminaries. Let (M, J, g) be a Hermitian manifold of complex dimension $m \geq 3$ with complex structure J and Hermitian metric g. The Kähler form Ω on M is defined by $\Omega(X, Y) = g(X, JY)$ for all vector fields X, Y on M. Extend the complex structure J to p-forms φ on M as follows:

$$J\varphi = \varphi \qquad \text{for } p = 0,$$

$$(J\varphi)(X_1, \dots, X_p) = (-1)^p \varphi(JX_1, \dots, JX_p) \qquad \text{for } p > 0,$$

where X_1, \dots, X_p are vector fields on M. The real differential operator d^c (cf. [1]) is then defined by

$$d^c \varphi = -J^{-1} dJ \varphi = (-1)^p J dJ \varphi$$
 for any *p*-form φ on *M*.

Since it is well-known that $dd^c = 2\sqrt{-1}\partial\overline{\partial}$, an astheno-Kähler manifold (M, J, g) may be defined by the condition $dd^c \Omega^{m-2} = 0$.

3. Hermitian structures on Calabi–Eckmann manifolds

3.1. Almost contact metric structures. Let N be a differentiable manifold of dimension 2n+1. An almost contact structure on N is a triple (ϕ, ξ, η) , where ϕ is a tensor field of type $(1, 1), \xi$ is a vector field, and η is a 1-form on N satisfying the following conditions (cf. [2]):

(3.1)
$$\eta(\xi) = 1,$$

(3.2)
$$\phi^2 = -I + \eta \otimes \xi,$$

where I denotes the identity transformation on each tangent space of N. Endowed with (ϕ, ξ, η) , N is called an *almost contact* manifold. Then we also have the following equalities:

$$(3.3) \qquad \qquad \phi\xi = 0$$

(3.4)
$$\eta \circ \phi = 0$$

Moreover, if there is a Riemannian metric g on an almost contact manifold N satisfying

(3.5)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any vector fields X, Y on N, then N is said to have an *almost contact* metric structure (ϕ, ξ, η, g) and N endowed with this structure is called an almost contact metric manifold. Then, from (3.1)–(3.5), we immediately get

$$\eta(X) = g(X,\xi)$$
 and $g(X,\phi Y) = -g(Y,\phi X)$

for any vector fields X, Y on N. The 2-form Φ defined by $\Phi(X, Y) = g(X, \phi Y)$ is called the *fundamental 2-form* on the almost contact metric

manifold N. We have $\eta \wedge \Phi^n \neq 0$. If $\Phi = d\eta$, then N is, by definition, a contact manifold. Such an almost contact metric structure is called a *contact* metric structure.

An almost contact structure (ϕ, ξ, η) is said to be *normal* if

$$[\phi,\phi] + 2d\eta \otimes \xi = 0,$$

where $[\phi, \phi]$ denotes the Nijenhuis tensor field of ϕ defined by

$$[\phi, \phi](X, Y) = [\phi X, \phi Y] + \phi^2[X, Y] - \phi[X, \phi Y] - \phi[\phi X, Y]$$

for all vector fields X, Y on N. A normal contact metric structure is called a *Sasakian structure*. It is well-known (cf. [2], [10]) that there is a standard Sasakian structure on the unit sphere S^{2n+1} in \mathbb{C}^{n+1} .

On the other hand, an almost contact metric structure (ϕ, ξ, η, g) satisfying $d\Phi = 0$ and $d\eta = 0$ is called an *almost cosymplectic structure*. A normal almost cosymplectic structure is called a *cosymplectic structure*. The product of a unit circle and a compact Kähler manifold is the trivial example of compact cosymplectic manifolds. Non-trivial examples of compact cosymplectic manifolds are found in [3] and [6].

3.2. Tsukada's Hermitian structures on the product of two Sasakian manifolds. Let M_i be a $(2m_i + 1)$ -dimensional Sasakian manifold with the structure tensor fields $(\phi_i, \xi_i, \eta_i, g_i)$ for each i = 1, 2. On the product manifold $M = M_1 \times M_2$, K. Tsukada [10] introduced an almost complex structure J defined by

(3.6)
$$J = \phi_1 - \left(\frac{a}{b}\eta_1 + \frac{a^2 + b^2}{b}\eta_2\right) \otimes \xi_1 + \phi_2 + \left(\frac{1}{b}\eta_1 + \frac{a}{b}\eta_2\right) \otimes \xi_2,$$

where $a, b \in \mathbb{R}$ and $b \neq 0$. In the case of a = 0 and b = 1, this almost complex structure coincides with A. Morimoto's complex structure (1.1). Since each almost contact structure is normal, we can prove, by the same method as A. Morimoto [8], that this almost complex structure J is integrable. Thus M endowed with J is a complex manifold of complex dimension $m = m_1 + m_2 + 1$.

K. Tsukada also introduced the following Hermitian metric g on the complex manifold (M, J):

(3.7)
$$g = g_1 + g_2 + a \left(\eta_1 \otimes \eta_2 + \eta_2 \otimes \eta_1\right) + \left(a^2 + b^2 - 1\right) \eta_2 \otimes \eta_2.$$

Then the Kähler form Ω on the Hermitian manifold (M, J, g) is given by

(3.8)
$$\Omega = \Phi_1 + \Phi_2 - 2b\,\eta_1 \wedge \eta_2,$$

where Φ_i denotes the fundamental 2-form on M_i for each i = 1, 2. In particular, we can define this Hermitian structure on the Calabi–Eckmann manifold $S^{2m_1+1} \times S^{2m_2+1}$.

4. Astheno-Kähler structures on Calabi–Eckmann manifolds. In this section, we show that there exist astheno-Kähler structures among the Hermitian structures defined by (3.6) and (3.7) on the Calabi–Eckmann manifold $M = S^{2m_1+1} \times S^{2m_2+1}$, or more generally, on the product manifold $M = M_1 \times M_2$ of two Sasakian manifolds.

Since M_i is Sasakian, i.e., $\Phi_i = d\eta_i$ for each i = 1, 2, we have

(4.1)
$$d\Omega = -2b(\Phi_1 \wedge \eta_2 - \eta_1 \wedge \Phi_2).$$

We now show that Φ_1 is *J*-invariant, i.e., $J\Phi_1 = \Phi_1$. For any vector fields X, Y on M,

$$(J\Phi_1)(X,Y) = \Phi_1(JX,JY) = g_1(JX,\phi_1JY) = g_1(JX,\phi_1^2Y_1)$$

= $g_1(\phi_1X_1,\phi_1^2Y_1) = g_1(X_1,\phi_1Y_1) = \Phi_1(X_1,Y_1) = \Phi_1(X,Y).$

Of course, Φ_2 is also J-invariant. Similarly, we can show that η_1 and η_2 satisfy

$$J\eta_1 = \frac{a}{b}\eta_1 + \frac{a^2 + b^2}{b}\eta_2, \quad J\eta_2 = -\frac{1}{b}\eta_1 - \frac{a}{b}\eta_2$$

Since, from (4.1), $d^c \Omega = J dJ \Omega = J d\Omega = -2b(J \Phi_1 \wedge J \eta_2 - J \eta_1 \wedge J \Phi_2)$, we obtain

(4.2)
$$d^{c}\Omega = 2[\Phi_{1} \wedge (\eta_{1} + a\eta_{2}) + (a\eta_{1} + (a^{2} + b^{2})\eta_{2}) \wedge \Phi_{2}].$$

By taking the exterior differential of this equation, we get

(4.3)
$$dd^{c}\Omega = 2[\Phi_{1}^{2} + 2a\Phi_{1} \wedge \Phi_{2} + (a^{2} + b^{2})\Phi_{2}^{2}]$$

From (4.1) and (4.2) we also obtain

(4.4)
$$d\Omega \wedge d^c \Omega = 4b[\Phi_1^2 + 2a\Phi_1 \wedge \Phi_2 + (a^2 + b^2)\Phi_2^2] \wedge \eta_1 \wedge \eta_2.$$

We now assume that the complex dimension m of M is greater than 3. Then

$$\begin{aligned} dd^{c} \Omega^{m-2} &= d(d^{c} \Omega^{m-2}) = d(JdJ\Omega^{m-2}) = d(Jd\Omega^{m-2}) \\ &= (m-2)d[J(d\Omega \wedge \Omega^{m-3})] = (m-2)d[(Jd\Omega) \wedge (J\Omega^{m-3})] \\ &= (m-2)d[d^{c} \Omega \wedge \Omega^{m-3}] \\ &= (m-2)[dd^{c} \Omega \wedge \Omega^{m-3} - d^{c} \Omega \wedge d\Omega^{m-3}] \\ &= (m-2)[dd^{c} \Omega \wedge \Omega^{m-3} - (m-3)d^{c} \Omega \wedge d\Omega \wedge \Omega^{m-4}] \\ &= (m-2)[dd^{c} \Omega \wedge \Omega + (m-3)d\Omega \wedge d^{c} \Omega] \wedge \Omega^{m-4}. \end{aligned}$$

On the other hand, from (3.8) and (4.1)-(4.4) we have

$$dd^{c}\Omega \wedge \Omega + (m-3)d\Omega \wedge d^{c}\Omega$$

= 2[\Phi_{1}^{2} + 2a\Phi_{1} \wedge \Phi_{2} + (a^{2}+b^{2})\Phi_{2}^{2}] \wedge [\Phi_{1}+\Phi_{2}+2(m-4)b\eta_{1} \wedge \eta_{2}].

By the binomial theorem, we also have

$$\Omega^{m-4} = (\Phi_1 + \Phi_2 - 2b\eta_1 \wedge \eta_2)^{m-4} \\
= \sum_{i=0}^{m-4} \binom{m-4}{i} (\Phi_1 + \Phi_2)^{(m-4)-i} \wedge (-2b\eta_1 \wedge \eta_2)^i \\
= (\Phi_1 + \Phi_2)^{m-4} - 2(m-4)b(\Phi_1 + \Phi_2)^{m-5} \wedge \eta_1 \wedge \eta_2 \\
= [\Phi_1 + \Phi_2 - 2(m-4)b\eta_1 \wedge \eta_2] \wedge (\Phi_1 + \Phi_2)^{m-5}.$$

Since $[\Phi_1 + \Phi_2 + 2(m-4)b\eta_1 \wedge \eta_2] \wedge [\Phi_1 + \Phi_2 - 2(m-4)b\eta_1 \wedge \eta_2] = (\Phi_1 + \Phi_2)^2$, we get

$$\begin{aligned} [dd^c \Omega \wedge \Omega + (m-3)d\Omega \wedge d^c \Omega] \wedge \Omega^{m-4} \\ &= 2[\Phi_1^2 + 2a\Phi_1 \wedge \Phi_2 + (a^2 + b^2)\Phi_2^2] \wedge (\Phi_1 + \Phi_2)^{m-3}. \end{aligned}$$

Hence

$$\begin{split} dd^{c} \Omega^{m-2} &= 2(m-2) [\varPhi_{1}^{2} + 2a\varPhi_{1} \wedge \varPhi_{2} + (a^{2} + b^{2})\varPhi_{2}^{2}] \wedge (\varPhi_{1} + \varPhi_{2})^{m-3} \\ &= 2(m-2) \sum_{k=0}^{m-3} \binom{m-3}{k} [\varPhi_{1}^{(m-1)-k} \wedge \varPhi_{2}^{k} \\ &+ 2a\varPhi_{1}^{(m-2)-k} \wedge \varPhi_{2}^{k+1} + (a^{2} + b^{2})\varPhi_{1}^{(m-3)-k} \wedge \varPhi_{2}^{k+2}] \\ &= 2(m-2) \sum_{k=0}^{m-1} C(m,k)\varPhi_{1}^{(m-1)-k} \wedge \varPhi_{2}^{k}, \end{split}$$

where C(m, k) are given as follows:

$$C(m,0) = 1, \quad C(m,1) = m - 3 + 2a,$$

$$C(m,m-2) = 2a + (m-3)(a^2 + b^2), \quad C(m,m-1) = a^2 + b^2,$$

$$C(m,k) = \binom{m-3}{k} + 2\binom{m-3}{k-1}a + \binom{m-3}{k-2}(a^2 + b^2) \quad \text{for } 2 \le k \le m - 3.$$

If $p > m_i$, then $\Phi_i^p = 0$ on M_i . Therefore, if $0 \le k < m_2$, then $\Phi_1^{(m-1)-k} = 0$ on M_1 , and if $m_2 < k \le m-1$, then $\Phi_2^k = 0$ on M_2 . Thus

$$\Phi_1^{(m-1)-k} \wedge \Phi_2^k = 0 \quad \text{on } M \quad \text{if } k \neq m_2,$$

and hence

$$dd^{c} \Omega^{m-2} = 2(m-2)C(m,m_2)\Phi_1^{m_1} \wedge \Phi_2^{m_2}$$

Moreover, $C(m, m_2) = 0$ is a necessary and sufficient condition for the Hermitian structure defined by (3.6) and (3.7) on M to be astheno-Kähler. The condition

$$C(m, m_2) = \binom{m-3}{m_2} + 2\binom{m-3}{m_2-1}a + \binom{m-3}{m_2-2}(a^2+b^2) = 0$$

implies

$$m_1(m_1 - 1) + 2m_1m_2a + m_2(m_2 - 1)(a^2 + b^2) = 0.$$

We deduce the following.

THEOREM 4.1. Let M_i be a $(2m_i + 1)$ -dimensional Sasakian manifold with the structure tensor fields $(\phi_i, \xi_i, \eta_i, g_i)$ for each i = 1, 2, and $m = m_1 + m_2 + 1 > 3$. Then the Hermitian structure defined by (3.6) and (3.7) on the product manifold of $M = M_1 \times M_2$ is astheno-Kähler if and only if the constants a and b satisfy

$$m_1(m_1 - 1) + 2m_1m_2a + m_2(m_2 - 1)(a^2 + b^2) = 0.$$

We note that, in the case of m = 3, i.e., $m_1 = m_2 = 1$, the astheno-Kähler condition $dd^c \Omega^{m-2} = dd^c \Omega = 0$ is equivalent to a = 0 because of (4.3). That is, the conclusion of Theorem 4.1 is also valid in the case of m = 3.

By the last theorem, the Calabi–Eckmann manifold $S^{2m_1+1} \times S^{2m_2+1}$ can be an example of a compact astheno-Kähler manifold.

REMARK 4.1. Let M_1 be a $(2m_1+1)$ -dimensional Sasakian manifold with the structure tensor fields $(\phi_1, \xi_1, \eta_1, g_1)$, and M_2 a $(2m_2 + 1)$ -dimensional cosymplectic manifold with the structure tensor fields $(\phi_2, \xi_2, \eta_2, g_2)$. On $M = M_1 \times M_2$, we can then consider Tsukada's Hermitian structure (3.6)– (3.7). Since $\Phi_1 = d\eta_1$ and $d\Phi_2 = 0, d\eta_2 = 0$, we get

$$d\Omega = -2b\Phi_1 \wedge \eta_2, \quad d^c\Omega = 2\Phi_1 \wedge (\eta_1 + a\eta_2), \quad dd^c\Omega = 2\Phi_1^2.$$

Therefore

 $dd^c \Omega \wedge \Omega + (m-3)d\Omega \wedge d^c \Omega = 2\Phi_1^2 \wedge [\Phi_1 + \Phi_2 + 2(m-4)b\eta_1 \wedge \eta_2],$ and hence we obtain

$$dd^{c} \Omega^{m-2} = 2(m-2)\Phi_{1}^{2} \wedge (\Phi_{1} + \Phi_{2})^{m-3}$$
$$= 2(m-2)\sum_{k=0}^{m-3} {m-3 \choose k} \Phi_{1}^{(m-1)-k} \wedge \Phi_{2}^{k}.$$

If $m_1 = 1$, then $\Phi_1^2 = 0$ on M_1 , that is, each of Tsukada's Hermitian structures on M is astheno-Kähler.

If $m_1 > 1$, then $m-3 \ge m_2$. Therefore, if $0 \le k < m_2$, then $\Phi_1^{(m-1)-k} = 0$ on M_1 , and if $m_2 < k \le m-3$, then $\Phi_2^k = 0$ on M_2 . Thus

$$\Phi_1^{(m-1)-k} \wedge \Phi_2^k = 0 \quad \text{on } M \quad \text{if } k \neq m_2,$$

and hence

$$dd^{c} \Omega^{m-2} = 2(m-2) \binom{m-3}{m_{2}} \Phi_{1}^{m_{1}} \wedge \Phi_{2}^{m_{2}} \neq 0 \quad \text{on } M.$$

Acknowledgements. The author would like to thank the referee for his kind advice and useful suggestions.

REFERENCES

- [1] A. L. Besse, *Einstein Manifolds*, Springer, Berlin, 1987.
- [2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
- [3] A. Fujimoto and H. Mutō, On cosymplectic manifolds, Tensor (N.S.) 28 (1974), 43–52.
- [4] J. Jost and S.-T. Yau, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993), 221–254; Correction, ibid. 173 (1994), 307.
- [5] J. Li, S.-T. Yau and F. Zheng, On projectively flat hermitian manifolds, Comm. Anal. Geom. 2 (1994), 103–109.
- J. C. Marrero and E. Padron, New examples of compact cosymplectic solvmanifolds, Arch. Math. (Brno) 34 (1998), 337–345.
- [7] K. Matsuo, On compact astheno-Kähler manifolds, Colloq. Math. 89 (2001), 213– 221.
- [8] A. Morimoto, On normal almost contact structures, J. Math. Soc. Japan 15 (1963), 420–436.
- [9] R. Schoen and S.-T. Yau, *Lectures on Differential Geometry*, Conf. Proc. Lecture Notes Geom. Topology 1, Int. Press, Cambridge, MA, 1994.
- [10] K. Tsukada, Eigenvalues of the Laplacian on Calabi-Eckmann manifolds, J. Math. Soc. Japan 33 (1981), 673–691.

Department of Mathematics Ichinoseki National College of Technology Ichinoseki 021-8511, Japan E-mail: matsuo@ichinoseki.ac.jp

Received 25 May 2008

(5055)