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Abstract. We show that there exist astheno-Kähler structures on Calabi–Eckmann
manifolds.

1. Introduction. A Hermitian metric g on a complex manifold M of
complex dimension m is called astheno-Kähler if its Kähler form Ω satis-
fies ∂∂Ωm−2 = 0 (cf. [4], [5], [9]), where ∂ and ∂ are the complex exte-
rior differentials. It is known that every holomorphic 1-form on a compact
astheno-Kähler manifold is closed. We note that the condition ∂∂Ωm−2 = 0
is automatically satisfied for m = 2.

The author [7] showed that there exist non-trivial examples of com-
pact astheno-Kähler manifolds. Namely, let Mi be a 3-dimensional com-
pact Sasakian manifold with the structure tensor fields (φi, ξi, ηi, gi) for each
i = 1, 2. On the product manifold M = M1 ×M2, the Riemannian product
metric g = g1 + g2 is compatible with A. Morimoto’s complex structure [8]
defined by

(1.1) J = φ1 − η2 ⊗ ξ1 + φ2 + η1 ⊗ ξ2.
Then the Kähler form Ω satisfies ddcΩ = 0, which is equivalent to ∂∂Ω = 0,
that is, the metric g is astheno-Kähler. Moreover, it was also shown in [7]
that there exists a similar astheno-Kähler structure on the product manifold
of a 3-dimensional compact Sasakian manifold and a compact cosymplectic
manifold of dimension ≥ 3. In these examples, the dimensions of Sasakian
manifolds are restricted to 3. For instance, the Calabi–Eckmann manifold
S3 × S3 is one of these astheno-Kähler manifolds.

In [10], K. Tsukada introduced a family of complex structures on the
Calabi–Eckmann manifold S2m1+1×S2m2+1 containing Morimoto’s complex
structure (1.1) and defined Hermitian metrics compatible with the complex
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structures. In this paper, we show that there exist astheno-Kähler structures
among Tsukada’s Hermitian structures on Calabi–Eckmann manifolds.

2. Preliminaries. Let (M,J, g) be a Hermitian manifold of complex
dimension m ≥ 3 with complex structure J and Hermitian metric g. The
Kähler form Ω on M is defined by Ω(X,Y ) = g(X, JY ) for all vector fields
X,Y on M . Extend the complex structure J to p-forms ϕ on M as follows:

Jϕ = ϕ for p = 0,
(Jϕ)(X1, . . . , Xp) = (−1)pϕ(JX1, . . . , JXp) for p > 0,

where X1, · · · , Xp are vector fields on M . The real differential operator dc

(cf. [1]) is then defined by

dcϕ = −J−1dJϕ = (−1)pJdJϕ for any p-form ϕ on M .

Since it is well-known that ddc = 2
√
−1 ∂∂, an astheno-Kähler manifold

(M,J, g) may be defined by the condition ddcΩm−2 = 0.

3. Hermitian structures on Calabi–Eckmann manifolds

3.1. Almost contact metric structures. Let N be a differentiable mani-
fold of dimension 2n+1. An almost contact structure on N is a triple (φ, ξ, η),
where φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form
on N satisfying the following conditions (cf. [2]):

η(ξ) = 1,(3.1)

φ2 = −I + η ⊗ ξ,(3.2)

where I denotes the identity transformation on each tangent space of N .
Endowed with (φ, ξ, η), N is called an almost contact manifold. Then we
also have the following equalities:

φξ = 0,(3.3)
η ◦ φ = 0.(3.4)

Moreover, if there is a Riemannian metric g on an almost contact mani-
fold N satisfying

(3.5) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X,Y on N , then N is said to have an almost contact
metric structure (φ, ξ, η, g) and N endowed with this structure is called an
almost contact metric manifold. Then, from (3.1)–(3.5), we immediately get

η(X) = g(X, ξ) and g(X,φY ) = −g(Y, φX)

for any vector fields X,Y on N . The 2-form Φ defined by Φ(X,Y ) =
g(X,φY ) is called the fundamental 2-form on the almost contact metric
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manifold N . We have η ∧Φn 6= 0. If Φ = dη, then N is, by definition, a con-
tact manifold. Such an almost contact metric structure is called a contact
metric structure.

An almost contact structure (φ, ξ, η) is said to be normal if

[φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] denotes the Nijenhuis tensor field of φ defined by

[φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ]− φ[X,φY ]− φ[φX, Y ]

for all vector fields X,Y on N . A normal contact metric structure is called
a Sasakian structure. It is well-known (cf. [2], [10]) that there is a standard
Sasakian structure on the unit sphere S2n+1 in Cn+1.

On the other hand, an almost contact metric structure (φ, ξ, η, g) satisfy-
ing dΦ = 0 and dη = 0 is called an almost cosymplectic structure. A normal
almost cosymplectic structure is called a cosymplectic structure. The product
of a unit circle and a compact Kähler manifold is the trivial example of com-
pact cosymplectic manifolds. Non-trivial examples of compact cosymplectic
manifolds are found in [3] and [6].

3.2. Tsukada’s Hermitian structures on the product of two Sasakian
manifolds. Let Mi be a (2mi + 1)-dimensional Sasakian manifold with the
structure tensor fields (φi, ξi, ηi, gi) for each i = 1, 2. On the product mani-
fold M = M1 ×M2, K. Tsukada [10] introduced an almost complex struc-
ture J defined by

(3.6) J = φ1 −
(
a

b
η1 +

a2 + b2

b
η2

)
⊗ ξ1 + φ2 +

(
1
b
η1 +

a

b
η2

)
⊗ ξ2,

where a, b ∈ R and b 6= 0. In the case of a = 0 and b = 1, this almost complex
structure coincides with A. Morimoto’s complex structure (1.1). Since each
almost contact structure is normal, we can prove, by the same method as
A. Morimoto [8], that this almost complex structure J is integrable. Thus
M endowed with J is a complex manifold of complex dimension m = m1 +
m2 + 1.

K. Tsukada also introduced the following Hermitian metric g on the
complex manifold (M,J):

(3.7) g = g1 + g2 + a (η1 ⊗ η2 + η2 ⊗ η1) + (a2 + b2 − 1) η2 ⊗ η2.

Then the Kähler form Ω on the Hermitian manifold (M,J, g) is given by

(3.8) Ω = Φ1 + Φ2 − 2b η1 ∧ η2,

where Φi denotes the fundamental 2-form on Mi for each i = 1, 2. In particu-
lar, we can define this Hermitian structure on the Calabi–Eckmann manifold
S2m1+1 × S2m2+1.
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4. Astheno-Kähler structures on Calabi–Eckmann manifolds.
In this section, we show that there exist astheno-Kähler structures among
the Hermitian structures defined by (3.6) and (3.7) on the Calabi–Eckmann
manifold M = S2m1+1×S2m2+1, or more generally, on the product manifold
M = M1 ×M2 of two Sasakian manifolds.

Since Mi is Sasakian, i.e., Φi = dηi for each i = 1, 2, we have

(4.1) dΩ = −2b(Φ1 ∧ η2 − η1 ∧ Φ2).

We now show that Φ1 is J-invariant, i.e., JΦ1 = Φ1. For any vector fields
X,Y on M ,

(JΦ1)(X,Y ) = Φ1(JX, JY ) = g1(JX, φ1JY ) = g1(JX, φ2
1Y1)

= g1(φ1X1, φ
2
1Y1) = g1(X1, φ1Y1) = Φ1(X1, Y1) = Φ1(X,Y ).

Of course, Φ2 is also J-invariant. Similarly, we can show that η1 and η2

satisfy

Jη1 =
a

b
η1 +

a2 + b2

b
η2, Jη2 = −1

b
η1 −

a

b
η2.

Since, from (4.1), dcΩ = JdJΩ = JdΩ = −2b(JΦ1 ∧ Jη2 − Jη1 ∧ JΦ2), we
obtain

(4.2) dcΩ = 2[Φ1 ∧ (η1 + aη2) + (aη1 + (a2 + b2)η2) ∧ Φ2].

By taking the exterior differential of this equation, we get

(4.3) ddcΩ = 2[Φ2
1 + 2aΦ1 ∧ Φ2 + (a2 + b2)Φ2

2].

From (4.1)and (4.2) we also obtain

(4.4) dΩ ∧ dcΩ = 4b[Φ2
1 + 2aΦ1 ∧ Φ2 + (a2 + b2)Φ2

2] ∧ η1 ∧ η2.

We now assume that the complex dimension m of M is greater than 3.
Then

ddcΩm−2 = d(dcΩm−2) = d(JdJΩm−2) = d(JdΩm−2)

= (m− 2)d[J(dΩ ∧Ωm−3)] = (m− 2)d[(JdΩ) ∧ (JΩm−3)]

= (m− 2)d[dcΩ ∧Ωm−3]

= (m− 2)[ddcΩ ∧Ωm−3 − dcΩ ∧ dΩm−3

= (m− 2)[ddcΩ ∧Ωm−3 − (m− 3)dcΩ ∧ dΩ ∧Ωm−4]

= (m− 2)[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ] ∧Ωm−4.

On the other hand, from (3.8) and (4.1)–(4.4) we have

ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ

= 2[Φ2
1 + 2aΦ1 ∧ Φ2 + (a2 + b2)Φ2

2] ∧ [Φ1 + Φ2 + 2(m− 4)bη1 ∧ η2].
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By the binomial theorem, we also have

Ωm−4 = (Φ1 + Φ2 − 2bη1 ∧ η2)m−4

=
m−4∑
i=0

(
m− 4
i

)
(Φ1 + Φ2)(m−4)−i ∧ (−2bη1 ∧ η2)i

= (Φ1 + Φ2)m−4 − 2(m− 4)b(Φ1 + Φ2)m−5 ∧ η1 ∧ η2

= [Φ1 + Φ2 − 2(m− 4)bη1 ∧ η2] ∧ (Φ1 + Φ2)m−5.

Since [Φ1 +Φ2 +2(m−4)bη1∧η2]∧ [Φ1 +Φ2−2(m−4)bη1∧η2] = (Φ1 +Φ2)2,
we get

[ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ] ∧Ωm−4

= 2[Φ2
1 + 2aΦ1 ∧ Φ2 + (a2 + b2)Φ2

2] ∧ (Φ1 + Φ2)m−3.

Hence

ddcΩm−2 = 2(m− 2)[Φ2
1 + 2aΦ1 ∧ Φ2 + (a2 + b2)Φ2

2] ∧ (Φ1 + Φ2)m−3

= 2(m− 2)
m−3∑
k=0

(
m− 3
k

)
[Φ(m−1)−k

1 ∧ Φk
2

+ 2aΦ(m−2)−k
1 ∧ Φk+1

2 + (a2 + b2)Φ(m−3)−k
1 ∧ Φk+2

2 ]

= 2(m− 2)
m−1∑
k=0

C(m, k)Φ(m−1)−k
1 ∧ Φk

2,

where C(m, k) are given as follows:

C(m, 0) = 1, C(m, 1) = m− 3 + 2a,

C(m,m− 2) = 2a+ (m− 3)(a2 + b2), C(m,m− 1) = a2 + b2,

C(m, k)=
(
m− 3
k

)
+ 2
(
m− 3
k − 1

)
a+

(
m− 3
k − 2

)
(a2+ b2) for 2 ≤ k ≤ m−3.

If p > mi, then Φp
i = 0 on Mi. Therefore, if 0 ≤ k < m2, then Φ

(m−1)−k
1

= 0 on M1, and if m2 < k ≤ m− 1, then Φk
2 = 0 on M2. Thus

Φ
(m−1)−k
1 ∧ Φk

2 = 0 on M if k 6= m2,

and hence
ddcΩm−2 = 2(m− 2)C(m,m2)Φm1

1 ∧ Φm2
2 .

Moreover, C(m,m2) = 0 is a necessary and sufficient condition for the Her-
mitian structure defined by (3.6) and (3.7) on M to be astheno-Kähler. The
condition

C(m,m2) =
(
m− 3
m2

)
+ 2
(
m− 3
m2 − 1

)
a+

(
m− 3
m2 − 2

)
(a2 + b2) = 0
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implies
m1(m1 − 1) + 2m1m2a+m2(m2 − 1)(a2 + b2) = 0.

We deduce the following.

Theorem 4.1. Let Mi be a (2mi + 1)-dimensional Sasakian manifold
with the structure tensor fields (φi, ξi, ηi, gi) for each i = 1, 2, and m =
m1 + m2 + 1 > 3. Then the Hermitian structure defined by (3.6) and (3.7)
on the product manifold of M = M1 ×M2 is astheno-Kähler if and only if
the constants a and b satisfy

m1(m1 − 1) + 2m1m2a+m2(m2 − 1)(a2 + b2) = 0.

We note that, in the case ofm = 3, i.e.,m1 = m2 = 1, the astheno-Kähler
condition ddcΩm−2 = ddcΩ = 0 is equivalent to a = 0 because of (4.3). That
is, the conclusion of Theorem 4.1 is also valid in the case of m = 3.

By the last theorem, the Calabi–Eckmann manifold S2m1+1 × S2m2+1

can be an example of a compact astheno-Kähler manifold.

Remark 4.1. LetM1 be a (2m1+1)-dimensional Sasakian manifold with
the structure tensor fields (φ1, ξ1, η1, g1), and M2 a (2m2 + 1)-dimensional
cosymplectic manifold with the structure tensor fields (φ2, ξ2, η2, g2). On
M = M1 ×M2, we can then consider Tsukada’s Hermitian structure (3.6)–
(3.7). Since Φ1 = dη1 and dΦ2 = 0, dη2 = 0, we get

dΩ = −2bΦ1 ∧ η2, dcΩ = 2Φ1 ∧ (η1 + aη2), ddcΩ = 2Φ2
1.

Therefore

ddcΩ ∧Ω + (m− 3)dΩ ∧ dcΩ = 2Φ2
1 ∧ [Φ1 + Φ2 + 2(m− 4)bη1 ∧ η2],

and hence we obtain

ddcΩm−2 = 2(m− 2)Φ2
1 ∧ (Φ1 + Φ2)m−3

= 2(m− 2)
m−3∑
k=0

(
m− 3
k

)
Φ

(m−1)−k
1 ∧ Φk

2.

If m1 = 1, then Φ2
1 = 0 on M1, that is, each of Tsukada’s Hermitian

structures on M is astheno-Kähler.
If m1 > 1, then m−3 ≥ m2. Therefore, if 0 ≤ k < m2, then Φ(m−1)−k

1 = 0
on M1, and if m2 < k ≤ m− 3, then Φk

2 = 0 on M2. Thus

Φ
(m−1)−k
1 ∧ Φk

2 = 0 on M if k 6= m2,

and hence

ddcΩm−2 = 2(m− 2)
(
m− 3
m2

)
Φm1

1 ∧ Φm2
2 6= 0 on M.
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