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WHEN ℵ1 MANY SETS ARE CONTAINED IN A
COUNTABLY GENERATED σ-FIELD

BY

R. DRABIŃSKI and E. GRZEGOREK (Gdańsk)

Abstract. We discuss the problem when ℵ1 sets are contained in a σ-generated σ-
field on some set X. This is related to a problem raised by K. P. S. Bhaskara Rao and
Rae Michael Shortt [Dissertationes Math. 372 (1998)] which we answer. We also briefly
discuss generating the family of all subsets from rectangles.

Introduction. We first make some remarks about notation and recall
some basic facts.

MA and CH stand for Martin’s Axiom and Continuum Hypothesis re-
spectively. f [A] denotes the image of A under a function f . If G ⊆ P(X),
then σ(G) denotes the smallest σ-field on X containing G, commonly called
the σ-field generated by G (then G is a generator of σ(G)). If G is countable,
then σ(G) is countably generated or σ-generated. Let A be a σ-field on X. If a
nonempty A ∈ A has the property that A ⊆ B or A∩B = ∅ for every B ∈ A,
then A is called an atom of A. If the atoms of A form a partition of X, then
A is called atomic. If for any x, y ∈ X, x 6= y, there exists A ∈ A such that
x ∈ A and y /∈ A, then we say that A separates points of X. We will need
the following two easy propositions. Every σ-generated σ-field is atomic and
of cardinality ≤ c. Any atomic σ-field separates points iff its atoms are sin-
gletons. These facts and most others we are using can be found in [2] and [8].

Let A, B be σ-fields on X, Y respectively. Then R(A,B) = {A × B :
A ∈ A ∧ B ∈ B}) will be called a family of rectangles. We write A ⊗σ B
for σ(R(A,B)). If h :A→B is such that h(

⋃
F) =

⋃
h[F ] and h(X \ A) =

Y \ h(A) for every countable F ⊆ A and A ∈ A, then we say that h is
a homomorphism. If, in addition, h is a bijection, then we will call it an
isomorphism. If h : A → B is a homomorphism and G ⊆ A, then h[σ(G)] =
σ(h[G]). For example, if f : X → Y then F : P(Y ) → P(X) defined by
F (B) = f−1[B] for B ⊆ Y is a homomorphism, and if f is a bijection, then
F is an isomorphism.
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1. Families of cardinality ℵ1

Definition 1.1. For any set A, we define ∗(A) to be the following state-
ment: “For any F ⊂ P(A) of cardinality ≤ ℵ1, there exists a countable
F0 ⊂ P(A) such that F ⊂ σ(F0)”.

Of course, ∗(X)⇒ ∗(Y ) for any two sets X and Y such that |X| ≥ |Y |,
so only cardinality is really important here. We now recall some important
facts.

It is known that P(ω1) ⊗σ P(ω1) = P(ω1 × ω1), and that MA implies
P(c) ⊗σ P(c) = P(c × c). Both results can be found in [5] and [7]. From
this, one can easily prove ∗(ω1), and MA ⇒ ∗(c) ([2, 3, 6]). The following
theorem gives us a condition for larger sets.

Theorem 1.2. Suppose that 2ℵ1 ≤ c and ∗(c). Then ∗(X) for any X.

Proof. Let F be a family of subsets of X such that |F| ≤ ℵ1. We can
assume that |X| ≥ c and F 6= ∅. For any x ∈ X, let Ax =

⋂
A∈F A

χA(x),
where Z1 = Z and Z0 = X \ Z for Z ⊆ X. There are no more than
2|F| ≤ 2ℵ1 ≤ c such sets.

Note that if Ax 6= Ay, then Ax ∩ Ay = ∅, because for at least one set
in F , this set is in one of the families that we intersect to obtain Ax and Ay,
and the complement of this set is in the other one. One can also easily see
that x ∈ Ax for every x ∈ X, and if x ∈ F ∈ F then Ax ⊆ F . So the family
A = {Ax : x ∈ X} is in fact a partition of X such that every F ∈ F is equal
to

⋃
x∈F Ax.

Let U be the family {
⋃
A′ : A′ ⊆ A}. It is evident that U is a σ-field,

and we know that F ⊆ U . Hence σ(F) ⊆ U . Let S be a selector from A.
For A,B ∈ U , if A 6= B, then A ∩ S 6= B ∩ S because A and B are different
unions of sets from the partition A of X.

We define h : U → P(S) by h(U) = U ∩S for U ∈ U . This function is an
isomorphism between U and P(S). Then h[F ] is a family of cardinality ℵ1 on
S of cardinality ≤ c. Now, from ∗(c) we know that there exists a countable
family G ⊆ P(S) such that h[F ] ⊆ σ(G). Hence, F = h−1[h[F ]] ⊆ σ(h−1[G]),
and h−1[G] is a countable family.

Note that one cannot weaken the set-theoretic conditions in this theorem.
It is obvious that the conclusion is not true when ∗(c) is false. The following
example will show us the importance of the assumption 2ℵ1 ≤ c.

Proposition 1.3. Suppose that 2ℵ1 > c and |Z| ≥ 2ℵ1. Then ∗(Z) is
false.

Proof. Define C1 = 2ω1 . Let H = {Hα : α < ω1}, where Hα = {x ∈ C1 :
x(α) = 1} for α < ω1. Note that H separates points in C1. Every σ-field
on C1 that contains H has to separate points in C1. If A is a countably
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generated σ-field on C1, then it is atomic and of cardinality ≤ c (see [2,
pp. 8, 14]), so the atoms of A form a partition of C1 into ≤ c pieces. As
|C1| = 2ℵ1 and 2ℵ1 > c, there exists an atom of A which is not a singleton.
This means that A does not separate points of C1, so it does not contain H.

Since |Z| ≥ 2ℵ1 , there is a function f : C1
1-1−→ Z. If F : P(Z) → P(C1)

is defined by F (B) = f−1[B], then F is a homomorphism. There is no
countable family G ⊂ P(Z) such that {f [H] : H ∈ H} ⊆ σ(G): if there were,
then σ(F [G]) would contain H.

2. Minimal generators of P(κ). In this section we give an application
of property ∗.

Definition 2.1. Let A = σ(H) be a σ-field on X. Then H is a minimal
generator of A if σ(G) 6= A for any G ( H.

First examples of σ-fields without minimal generators were given in [1].
We recall a simple lemma from [8].

Lemma 2.2. Let A be a σ-field on X that satisfies the following condi-
tions:

(i) A is not countably generated.
(ii) For any family F ⊆ A of cardinality ω1, there exists a countably

generated σ-field A0 ⊆ A such that F ⊆ A0.

Then A does not have a minimal generator.

We now focus on σ-fields P(κ) (κ a cardinal). MA implies that P(κ) has
a minimal generator for every κ < c, and CH implies that P(ω1) does not
have a minimal generator. These facts can be found in [8] along with the
following two problems.

[PP17] Is it provable in ZFC that there exists a cardinal κ > ω1

such that P(κ) does not have a minimal generator?

[PP18] Is it provable in ZFC that there exists a cardinal κ > ω1

such that P(κ) has a minimal generator?

The lemma cannot be used to give a positive answer to PP17, because it
is consistent that P(κ) satisfies (ii) for no κ > ω1. This follows easily from
Proposition 1.3 if we assume CH + ℵ2 = 2c. Thus, we still do not know
the exact answer to PP17. However, we know that the answer to PP18 is
negative.

Theorem 2.3. Suppose that 2ℵ1 ≤ c, ∗(c) holds and c = ℵ2. Then P(κ)
does not have a minimal generator for κ > ω1.

Proof. Let κ > ω1 be a fixed cardinal. We will show that P(κ) satisfies
the hypotheses of the lemma.
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First, we know that κ ≥ ℵ2 = c. Thus |P(κ)| > c, and hence P(κ)
is not countably generated. Second, if F ⊆ P(κ) has cardinality ℵ1, then
Theorem 1.2 implies that F is contained in a countably generated sub-σ-field
of P(κ).

Corollary 2.4. It is consistent that for κ > ω1, P(κ) does not have a
minimal generator.

Namely, it is known that MA + ℵ2 = c is relatively consistent with ZFC
and that it implies the assumption of Theorem 2.3 ([9] or [7], and [5]).

3. Generalizations. First, we generalize property ∗.
Definition 3.1. Let A be any set, and let κ be a cardinal. Then ∗κ(A)

stands for the statement: “For every F ⊆ P(A) of cardinality κ there exists
a countably generated σ-field B ⊆ P(A) such that F ⊆ B”.

Note that ∗(·) is equivalent ∗ω1(·). We can now generalize Theorem 1.2.

Theorem 3.2. Suppose that ∗κ(c) holds and 2κ ≤ c. Then ∗κ(Z) is true
for every set Z.

The proof is similar to the proof of Theorem 1.2. We can also generalize
Proposition 1.3 with ease.

Proposition 3.3. Suppose that 2κ > c. If |Z| ≥ 2κ, then ∗κ(Z) is false.

The next theorem shows a similar relation between P(κ) ⊗σ P(c) and
P(κ)⊗σ P(J), where J is any set.

Theorem 3.4. Suppose that 2κ ≤ c. Let J be any set. If P(κ)⊗σP(c) =
P(κ× c), then P(κ)⊗σ P(J) = P(κ× J).

Proof. Let Z ∈ P(κ× J). We will show that Z is in σ(R(P(κ),P(J))).
Note that Z =

⋃
α<κ{α}×Zα, where Zα ∈ P(J) for all α < κ. Let us take

a closer look at F = {Zα : α < κ}. As in the proof of Theorem 1.2 we can
obtain A, U and S with the same properties and |A| = |S| ≤ 2|F| ≤ 2κ ≤ c.

We can see that U1 = {
⋃
α<κ{α} × Uα : ∀α<κ Uα ∈ U} is a σ-field and

κ×S is a selector from A1 = {{α}×A : α < κ∧A ∈ A}. Every set in U1 is
a union of some sets from A1. The family U has the property that Zα ∈ U
for all α < κ. Thus, Z is in U1.

Without loss of generality we may assume that S ⊆ c. We define an
isomorphism h : U1 → P(κ× S) by setting h(U) = U ∩ (κ× S) for U ∈ U1.

Note that if P(κ) ⊗σ P(c) = P(κ × c) then P(κ) ⊗σ P(S) = P(κ × S)
because S ⊆ c. Since h(Z) ∈ P(κ×S), we deduce that h(Z) ∈ P(κ)⊗σP(S).
Hence Z = h−1[h(Z)] ∈ h−1[σ(R(P(κ),P(S)))]. One can easily see that h−1

maps rectangles to rectangles, and since h is an isomorphism,

Z ∈ σ(h−1[R(P(κ),P(S))]) ⊆ σ(R(P(κ),P(J))).
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If we assume MA, then Theorem 3.2 is a corollary of Theorem 12 in [4]
(Theorem FHJ).

It is not clear to us, however, if ∗κ(c) + 2κ ≤ c is equivalent to the
conditions in that theorem, all of which are satisfied only if 2κ ≤ c. This
problem is known as the CE problem on D. H. Fremlin’s problem list. Note
that the conclusion in Theorem 3.4 is exactly condition (iii) in Theorem FHJ
so we can add the following condition there: 2κ ≤ c and P(κ) ⊗σ P(c) =
P(κ× c).
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