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Abstract. A hit-and-miss topology (τHM) is defined for the hyperspaces 2X , Cn(X)
and Fn(X) of a continuum X. We study the relationship between τHM and the Vietoris
topology and we find conditions on X for which these topologies are equivalent.

1. Introduction. A continuum is a compact connected Hausdorff space
and a metric continuum is a compact connected metric space; the spaces
considered in this paper are continua unless we mention specifically that X
is a metric continuum. Let X be a nondegenerate continuum, and n ∈ N.
Consider the following sets:

(1) 2X = {A ⊆ X : A is nonempty and compact}.
(2) C(X) = {A ∈ 2X : A is connected}.
(3) Cn(X) = {A ∈ 2X : A has at most n components}. If n = 1, then

C1(X) = C(X).
(4) Fn(X) = {A ∈ 2X : 1 ≤ |A| ≤ n}.

In continuum theory it is customary to endow these sets with the Vietoris
topology τV; in this paper we define a hit-and-miss topology τHM on these
spaces and we find conditions for which τV = τHM. The hit-and-miss topol-
ogy considered in this paper differs from the ones already existing in the
literature, because the family of sets to be missed is considerably smaller,
for it consists of compact connected subsets of X (subcontinua of X); it
follows that τHM is smaller than the Vietoris topology.

We divide this paper into two main parts. In the first part we study the
topology τHM on 2X and on Cn(X). It is worth noticing that in view of 1.4
below one might think that τHM will coincide with the Vietoris topology if
X is semi-locally connected; this, however, is not true as Example 2.3(2)
shows. In the second part we study the topology τHM on Fn(X). In the last
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section we consider the case when X is indecomposable, and we also consider
a natural generalization of τHM.

Notation. If X is a topological space and M ⊆ X, then intX(M) denotes
the interior of M in X; |M | denotes the cardinality of M , Cl(M) denotes
the closure of M ; and Bd(M) denotes the boundary of M .

If X is a space endowed with a metric d, then for p ∈ X and ε > 0, Bε(p)
denotes the set {x ∈ X : d(x, p) < ε}.

1.1. Definition. Let X be a continuum. For any U ⊆ X, we define the
following subsets of 2X :

〈U〉 = {A ∈ 2X : A ⊆ U}, 〈U,X〉 = {A ∈ 2X : A ∩ U 6= ∅}.
Then the collection

SV = {〈U〉 : U is open} ∪ {〈U,X〉 : U is open}
is a subbase of a topology in 2X called the Vietoris topology (see [2]). Fur-
thermore, let U1, . . . , Uk be subsets of X and define

〈U1, . . . , Uk〉 =
{
A ∈ 2X : A ⊆

k⋃
i=1

Ui and A ∩ Ui 6= ∅ for each i
}
.

It is known (see [2]) that the collection

B = {〈U1, . . . , Uk〉 : Ui is open for each i and k < ω}
is a base for τV.

The space (2X , τV) is called the hyperspace of compact subsets of X,
(C(X), τV) the hyperspace of subcontinua of X, (Cn(X), τV) the n-fold hy-
perspace of X, and (Fn(X), τV) the n-fold symmetric product of X.

1.2. Definition. As in 1.1, the collection

SHM = {〈U〉 : X \ U is a continuum} ∪ {〈U,X〉 : U is open}
is a subbase of a topology in 2X which we will denote by τHM.

1.3. Definition. Let U1, . . . , Uk be subsets of X and let V be a subset
of X such that X\V has finitely many components. We define

(U1, . . . , Uk;V ) = {A ∈ 2X : A ⊆ V and A ∩ Ui 6= ∅ for each i}.
1.4. Theorem. The collection

B = {(U1, . . . , Uk;V ) : k < ω, Ui is open for each i,
and V is an open set such that X\V has finitely many components}

is a base for τHM.

Proof. Note that if an open set and X\V has finitely many components,
then there exist open sets V1, . . . , Vk such that each X\Vi is connected and
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V =
⋂k
i=1 Vi. Hence,

〈V 〉 =
〈 k⋂
i=1

Vi

〉
=

k⋂
i=1

〈Vi〉.

So if (U1, . . . , Un;V ) is an element of B, then

(U1, . . . , Un;V ) =
( n⋂
i=1

〈Ui, X〉
)
∩

k⋂
i=i

〈Vi〉.

Hence, every element of B can be written as a finite intersection of elements
of SHM.

On the other hand, if V1 and V2 are open sets such that X \V1 and
X \V2 are connected, then X \(V1 ∩ V2) has finitely many components, for
X\(V1 ∩ V2) = (X\V1) ∪ (X\V2). Hence,

〈V1〉 ∩ 〈V2〉 = (X;V1 ∩ V2).

Now, for any two open sets U1 and U2 we have

〈U1, X〉 ∩ 〈U2, X〉 = (U1, U2;X).

Furthermore, if V is an open set and X \ V has finitely many components,
then

〈U1, X〉 ∩ 〈V 〉 = (U1;V ).

Hence, any finite intersection of elements of SHM lies in B. Finally, note
that B is closed under finite intersections.

2. The spaces (2X , τHM) and (Cn(X), τHM). In this section we show
that τHM = τV on 2X and on Cn(X) if and only if the continuum X is locally
connected. First, note that

(2.1) τHM ⊆ τV,
for if (U1, . . . , Uk;V ) is a τHM basic open set, and A ∈ (U1, . . . , Uk;V ), then
A ∈ 〈U1 ∩ V, . . . , Uk ∩ V, V 〉 ⊆ (U1, . . . , Uk;V ).

2.1. Theorem. Let X be a continuum. Then (2X , τHM) is T1.

Proof. Let A,B ∈ 2X be such that A 6= B. Assume, without loss of
generality, that there is p ∈ B \A.

Let U be an open set such that p ∈ U and U ∩A = ∅. Then U = (U ;X)
is an open set such that B ∈ U and A 6∈ U .

Now, let V = X \ {p}. Then V is an open set whose complement is
connected and A ⊆ V . Also B 6⊆ V since p ∈ B. Therefore, if V = (X;V ),
then A ∈ V and B 6∈ V. This shows that 2X is T1.

Since being T1 is a hereditary property, we have the following corollary.

2.2. Corollary. (Cn(X), τHM), and (Fn(X), τHM) are T1 for all n.
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2.3. Examples.

(1) Let X be the sin(1/x) continuum, that is, X is the closure in the
plane of the set {(x, sin(1/x)) : 0 < x ≤ 2/π} (see Figure 1). For this
continuum, (C(X), τHM) (and so (2X , τHM )) is not T2. To see this, let
U = (U1, . . . , Uk;V ) be a basic open set containing the subcontinuum B =
{0} × [0, 1] (see Figure 1) and let O = (O1, . . . , Om;W ) be a basic open set
containing the limit bar A = {0}× [−1, 1]. It is easy to see that there exists
a subcontinuum C of {(s, sin(1/s)) ∈ R2 : 0 < s ≤ t} such that C intersects
each Ui and each Oi. This implies that C ∈ U ∩ O. Hence (C(X), τHM) is
not T2.

Fig. 1. The sin(1/x) continuum

(2) Let L0 = [0, 1] × {0}, D0 = {0} × [0, 1], D1 = {1} × [0, 1], C =
[0, 1/4] × {0}, and for each n ∈ N let Ln = [0, 1] × {1/n}. The continuum
X = (

⋃
n∈N Ln) ∪ L0 ∪ D0 ∪ D1 (see Figure 2) is semi-locally connected

(see 2.5), yet (C(X), τHM) is not T2. This can be shown in a similar way
to Example (1). In fact, the subcontinua A = D0 ∪ D1 ∪ L2 and B =
D0 ∪D1 ∪ L2 ∪ C cannot be separated by disjoint open sets.

Fig. 2

For the remainder of the paper the symbol H(X) will denote any of the
hyperspaces defined in the previous section.

2.4. Proposition. (H(X), τHM) is T2 if and only if (H(X), τHM) =
(H(X), τV).
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Proof. Since (H(X), τHM) ⊆ (H(X), τV), the identity map i : (H(X), τV)
→ (H(X), τHM) is continuous. It is well known that (H(X), τV) is compact
(see [2, Chapter 1]); and by hypothesis (H(X), τHM) is T2, so i is a homeo-
morphism.

The sufficiency follows easily.

Following the terminology of [5], we use the following definitions.

2.5. Definition. Given a continuum X and a subset A of X, we say
that X is semi-locally connected (resp. ω-semi-locally connected) in A if
for every open subset U of X such that A ⊂ U there exists an open set
V such that A ⊂ V ⊂ U and X \ V has finitely many (resp. at most
countably many) components. If A = {p}, then we just say that X is semi-
locally connected (resp. ω-semi-locally connected) at p. If X is semi-locally
connected (resp. ω-semi-locally connected) at p for each p ∈ X, then we say
that X is semi-locally connected (resp. ω-semi-locally connected).

Also, we extend this definition in the following way.

2.6. Definition. Given a continuum X and a hyperspace H(X), we say
that X is semi-locally connected (resp. ω-semi-locally connected) in H(X)
if for each A ∈ H(X), X is semi-locally connected (resp. ω-semi-locally
connected) in A.

2.7. Remark. Notice that if X is semi-locally connected (resp. ω-semi-
locally connected) in 2X , then X is semi-locally connected (resp. ω-semi-
locally connected) in any other hyperspace H(X).

2.8. Proposition. If a continuum X is locally connected , then it is
semi-locally connected in 2X .

Proof. Let A ∈ 2X , and let U be an open set in X such that A ⊆ U .
Since X is locally connected and Bd(U) is compact, we can find a finite
collection {W1, . . . ,Wr} of open connected sets such that

Bd(U) ⊆
r⋃
i=1

Wi, Cl(Wi) ∩A = ∅ for all i = 1, . . . , r.

Hence K = (X \ U) ∪
⋃r
i=1 Cl(Wi) is closed and since every component of

X \ U intersects Bd(U) (Boundary Bumping Theorem, see 5.4 of [7]), K
has a finite number of components. Therefore the set V = X \K is open,
A ⊆ V ⊆ U , and X \ V has finitely many components.

2.9. Definition. Let X be a compactum. Define T : C(X) → C(X)
by

T (A) = {x ∈ X : W ∩A 6= ∅ for each W ∈ C(X) with x ∈ intX(W )}.
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2.10. Proposition. If a continuum X is semi-locally connected in
C(X), then it is locally connected.

Proof. Let K ∈ C(X) and x /∈ K. By the normality of X, there exists
an open set U in X such that K ⊆ U and x /∈ Cl(U). Since X is semi-locally
connected in C(X), there exists an open set V in X such that K ⊆ V ⊆ U
and X \V has finitely many components. Let A be the component of X \V
that contains x. Then x ∈ intX(A) ⊆ A ∈ C(X) and A ∩K = ∅. Therefore,
x /∈ T (K) for every x ∈ X \ K; hence, T (K) = K. By (17.8) of [5], X is
locally connected.

2.11. Proposition. If a continuum X is semi-locally connected in 2X ,
then it is locally connected.

2.12. Proposition. If X is semi-locally connected in H(X), then
(H(X), τHM) = (H(X), τV).

Proof. By (2.1), τHM ⊆ τV. So it suffices to show that for any basic open
set U of τV there is a basic open set of τHM contained in U .

Let U = 〈U1, . . . , Un〉 be a basic open set of τV, and let A ∈ U . Then, by
definition of U , A ⊆ U =

⋃n
i=1 Ui. Therefore, by hypothesis, there exists V

such that A ⊆ V ⊆ U and X \ V has finitely many components.
Next we show that the set V = (U1, . . . , Un;V ) is contained in U ; indeed,

if B ∈ V, then B∩Ui 6= ∅ for all i, and B ⊆ V ⊆ U =
⋃n
i=1 Ui, which implies

that B ∈ U . Therefore τV ⊆ τHM.

2.13. Proposition. X is semi-locally connected in 2X if and only if
(2X , τHM ) = (2X , τV).

Proof. If X is semi-locally connected in 2X , then by 2.12 the topologies
are the same.

Now assume (2X , τHM) = (2X , τV). Let A ∈ 2X , and let U ⊆ X be
an open set such that A ⊆ U . We will construct an open set V such that
A ⊆ V ⊆ U and X \ V has finitely many components. Let U = 〈U〉.
Hence A ∈ U and, by hypothesis, there exists V = (U1, . . . , Un;V ) such that
A ∈ V ⊆ U . Then A ⊆ V and X \V has finitely many components; to finish
the proof we only need to show V ⊆ U . Let x ∈ V . Then A ∪ {x} ∈ 2X .
Clearly, A∪{x} ⊆ V , and since A∩Ui 6= ∅ for all i, we have (A∪{x})∩Ui 6= ∅
for all i. Therefore, A∪ {x} ∈ V and A∪ {x} ∈ U = 〈U〉, implying x ∈ U .

2.14. Lemma. If (C(X), τHM) = (C(X), τV), then X is semi-locally con-
nected.

Proof. Let p ∈ X and let U be an open set in X such that p ∈ U . If
U = 〈U〉, then {p} ∈ U . Now, because (C(X), τHM) = (C(X), τV), there
exists V = (U1, . . . , Un;V ) such that

(2.2) {p} ∈ V ⊆ U .
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Let W be an open set such that

(2.3) p ∈W ⊆ Cl(W ) ⊆ U ∩ V ∩ U1 ∩ · · · ∩ Un.
Let C be a component of X \W . We prove that

(2.4) if C ∩ (X \ U) 6= ∅, then C ∩ (X \ V ) 6= ∅.
To see this, first note that C ∩ Cl(W ) 6= ∅. Hence, from (2.3), C ∩ Ui 6= ∅
for all i. Therefore, if C ⊆ V , then C ∈ V. This, together with (2.2), implies
C ∈ U , that is, C ⊆ U . This shows that (2.4) holds.

Let F = Cl[(X \V )∪
⋃
{C : C is a component of X \W and C ∩ (X \U)

6= ∅}]. From (2.4) and the fact that X \ V has finitely many components,

(2.5) F has finitely many components.

Let O = X \ F ; by construction O is open and p ∈ O. From (2.5),
the complement of O has a finite number of components. So, to show X is
semi-locally connected at p it suffices to show O ⊆ U .

Let x ∈ X \ U . Then since W ⊆ U , x 6∈ W . Let C be the component of
X \W that contains x. Since x 6∈ U , we have C ∩ (X \ U) 6= ∅. Therefore,
from the definition of F , C ⊆ F . Hence, x ∈ F , implying x 6∈ O. This shows
that O ⊆ U , and the lemma is proved.

2.15. Definition. Let X be a topological space, and let p ∈ X. Then
X is connected im kleinen (cik) at p provided that p has a neighborhood
base of connected neighborhoods (that is, connected sets that contain p in
their interiors in X).

It is obvious that if X is locally connected at p, then X is cik at p.
However, the converse is false even for continua (see Figure 22 of [2]). Nev-
ertheless, it is well known that if a topological space is cik at every point,
then it is locally connected at every point.

2.16. Proposition. If (C(X), τHM) = (C(X), τV), then X is locally
connected.

Proof. From 2.14 we know that X is semi-locally connected.
Suppose X is not locally connected. Then there is p ∈ X such that X is

not cik at p. Consider the following set of natural numbers:

M = {n ∈ N : p has a local base B such that
∀V ∈ B, X \ V has n components}.

We consider two cases.

Case 1: M 6= ∅. Let m = min M . Because X is not cik at p and by the
definition of M there exists an open set V ∈ B with the following properties:

(2.6) X \ V has m components;
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(2.7) if W is open and W ⊆ V, then X \W has at least m components;
(2.8) V has infinitely many components.

Denote by D1, . . . , Dm the components of X \ V , let {Cα : α ∈ Λ} be
the components of V , and denote by Cp the component containing p.

By the Boundary Bumping Theorem, for each α, Cl(Cα) intersects at
least one Di. Furthermore,

(2.9) if Cl(Cα) ∩Di 6= ∅, then Cl(Cα) ∩Dj = ∅ for all j 6= i.

Otherwise, if there is an α such that Cl(Cα) intersects at least two com-
ponents of X \ V , then W = V \ Cl(Cα) would be an open set such that
W ⊆ V and X \W has at most m− 1 components, contradicting (2.7).

Case 2: M = ∅. Let m0 be a fixed natural number. There exists an
open set V such that

for every open set W ⊆ V, X \W has more than m0 components.

Furthermore, we can choose V that satisfies (2.9) as follows. Assume X \ V
has n components with n > m0. If (2.9) is not satisfied, then there exists Ck
such that Cl(Ck) intersects at least two components Di and Dj of X \ V .
Then W ′ = V \ Cl(Ck) is an open set such that W ′ ⊆ V and X\W ′ has at
most n−1 components. We repeat this process until we obtain the required
set.

For any of the two cases, the argument continues as follows:
Since X is not cik at p, there exists a subset {Ck : k ∈ N} of {Cα : α ∈ Λ}

such that

for all ε > 0 there is N ∈ N such that Bε(p) ∩ Ck 6= ∅ for all k ≥ N.
Since the set of components of X \V is finite, there is one that intersects

infinitely many Cl(Ck). Assume, without loss of generality, thatD1 intersects
Cl(Ck) for all k. From (2.9) we see that

(2.10) Cl(Ck) ∩Di = ∅ for all i 6= 1 and all k.

We may assume that Cl(Ck) converges to C with p ∈ C. Then C\D1 6= ∅.
Let A = D1 and B = D1 ∪ Cl(C). Then A,B ∈ C(X) and A 6= B. We

will show that any two open sets in τHM containing A and B, respectively,
intersect.

Let U = (U1, . . . , Uu;T ) and O = (O1, . . . , Os;Z) be basic open sets such
that A ∈ U and B ∈ O.

Since A ⊆ T and Cl(Ck) ∩A 6= ∅ for all k, we have Ck ∩ T 6= ∅ for all k.

Claim. Let

Ξ = {k ∈ N : Ck ∩ (X \ T ) 6= ∅}, Υ = {k ∈ N : Ck ∩ (X \ Z) 6= ∅}.
Then |Ξ| and |Υ | are finite.



HIT-AND-MISS TOPOLOGY 55

Proof. Let k, s ∈ Ξ, k 6= s, and let Ek and Es be components of X \ T
such that Ck ∩ Ek 6= ∅ and Cs ∩ Es 6= ∅. We will show, by contradiction,
that Ek ∩ Es = ∅. So, suppose Ek ∩ Es 6= ∅; then Ek = Es.

Since X \ T ⊆ V ∪ D2 ∪ · · · ∪ Dn, we obtain Ek ⊆ V ∪ D2 ∪ · · · ∪ Dn.
Since Ek is connected, if Ek ∩Di 6= ∅, then Ek ⊆ V ∪Di. This implies that
Ck ∩Di 6= ∅, contrary to (2.10).

Thus, Ek ⊆ V , which implies that Ck and Cs are the same component
of V , so k = s, which is a contradiction. Therefore Ek∩Es = ∅, and thus for
every k ∈ Ξ there exists a component Ek of X \ T such that Ck ∩ Ek 6= ∅.
Since X \ T has finitely many components, Ξ is finite.

With a similar argument we prove that Υ is finite. This proves the Claim.

Hence, there is N1 ∈ N such that

(2.11) Ck ⊆ T for all k ≥ N1,

and there exists N2 ∈ N such that

(2.12) Ck ⊆ Z for all k ≥ N2.

Also, there exists N3 ∈ N such that

(2.13) if C ∩Oj 6= ∅, then Ck ∩Oj 6= ∅ for all k ≥ N3.

Now, let t ∈ N, with t ≥ max{N1, N2, N3}, and let E = D1 ∪ Ct. Since
A = D1, E intersects all the Ui’s, and from (2.11), E ⊆ T . Hence,

E ∈ U .
Since B = D1 ∪ C, and from (2.13), we see that E intersects all the Oi’s,
and from (2.12), E ⊆ Z. Hence,

E ∈ O.
Therefore U∩O 6= ∅, implying that (C(X), τHM) is not T2, a contradiction to
the hypothesis since (C(X), τV) is T2. Thus X must be locally connected.

The following theorem follows immediately from 2.14 and 2.16.

2.17. Theorem. If (Cn(X), τHM) = (Cn(X), τV), then X is semi-locally
connected and locally connected.

We summarize the previous results in the following theorem.

2.18. Theorem. Let X be a continuum and n ∈ N. The following are
equivalent.

(a) X is locally connected.
(b) X is semi-locally connected in Cn(X).
(c) X is semi-locally connected in 2X .
(d) (Cn(X), τHM) = (Cn(X), τV).
(e) (2X , τHM) = (2X , τV).
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(f) (Cn(X), τHM) is T2.
(g) (2X , τHM) is T2.

Proof. (b)⇒(d) and (c)⇒(e) are given by 2.12, (a)⇒(b) and (a)⇒(c) are
given by 2.8, (c)⇒(a) is given by 2.10, (e)⇒(c) is given by 2.13, (d)⇒(a) is
given by 2.16, and (d)⇔(f) and (e)⇔(g) are given by 2.4.

2.19. Remark. Let (X, τ) be a Hausdorff compact space. In [8],
Z. M. Rakowski defined τ∗ as the topology generated by the closed sub-
base B = {A ⊂ X : A is a subcontinuum of X} and proved that if (X, τ)
is a hereditary unicoherent continuum, then τ = τ∗ is equivalent to (X, τ)
being locally connected. So conditions (a)–(g) in 2.18 are equivalent to (h)
τ = τ∗.

3. The space (Fn(X), τHM). In this section we focus on aposyndetic
continua.

3.1. Definition. A continuum X is said to be aposyndetic at p if for
every q ∈ X, q 6= p, there exists a subcontinuum M of X such that p ∈
intX(M) and q 6∈ M . If X is aposyndetic at every point, then X is said to
be aposyndetic.

A continuum X is finitely aposyndetic if for every p ∈ X and every
nonempty finite subset F of X such that p 6∈ F there exists a subcontinuum
M of X such that p ∈ intX(M) and M ∩ F = ∅.

A continuum X is n-aposyndetic if for every p ∈ X and every nonempty
subset F of X such that p 6∈ F and |F | ≤ n there exists a subcontinuum M
of X such that p ∈ intX(M) and M ∩ F = ∅.

Burton Jones proved that every semi-locally connected continuum is
aposyndetic (see Theorem 3 of [3]).

Fig. 3. Book continuum

Some results from the previous section do not hold true for the hyper-
space Fn(X). In particular, 2.10 is false when C(X) is replaced with Fn(X).
To see this, let X be the Cartesian product of the unit interval and the har-
monic fan (the cone over the set {0}∪{1/n : n ∈ N}) (see Figure 3). Clearly
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Fig. 4. Book with n binding points

X is not locally connected. Given any A ∈ Fn(X) and an open set U of X
such that A ⊆ U , we can find an ε > 0 such that V =

⋃
x∈ABε(x) ⊆ U and

X \V has finitely many components. On the other hand, let Y be a “book”
continuum whose binding consists of a fixed number of points {p1, . . . , pn}
(see Figure 4). Then for A = {p1, . . . , pn} ∈ Fn(X) and any open set U con-
taining A there is no open set V such that A ⊆ V ⊆ U and X \V has finitely
many components. Note that X is finitely aposyndetic while Y is not.

3.2. Theorem. Let X be a continuum. The following are equivalent.

(a) X is n-aposyndetic.
(b) X is semi-locally connected in Fn(X).
(c) (Fn+1(X), τHM) = (Fn+1(X), τV).
(d) (Fn+1(X), τHM) is T2.

Proof. (a)⇒(c). To prove this implication we show that (Fn+1(X), τHM)
is T2; then 2.4 implies (c). Let A,B ∈ Fn+1(X) be two different points. We
divide the proof into three cases.

Case 1: |A|= |B|=n+1. Let A={a1, . . . , an+1} and B={b1, . . . , bn+1}.
Since A 6= B and they have the same number of elements there exist a ∈
A \B and b ∈ B \A, say a = a1 and b = b1.

Since A and B are finite sets, we can find for each i open sets Ui and Vi
with the following properties:

Ui ∩ (A ∪B) = {ai} and Vi ∩ (A ∪B) = {bi};(3.1)
if i 6= j, then Ui ∩ Uj = ∅ and Vi ∩ Vj = ∅;(3.2)
if ai 6= bj then Ui ∩ Vj = ∅.(3.3)

Let U = (U1, . . . , Un+1;X \ {b1}) and V = (V1, . . . , Vn+1;X \ {a1}). By
construction U ∩ V = ∅, A ∈ U and B ∈ V.

Case 2: |A| = n + 1 and |B| ≤ n. Let A = {a1, . . . , an+1} and B =
{b1, . . . , bs}. Assume that a1 6∈ B.

Since X is n-aposyndetic and |B| ≤ n there exists a subcontinuum M
of X such that a1 ∈ intX(M) and M ∩ B = ∅. As in Case 1, we construct
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open sets Ui and Vi satisfying (3.1)–(3.3), and we can choose U1 such that
U1 ⊆ intX(M).

Let U = (U1, . . . , Un+1;X) and V = (V1, . . . , Vs;X \M). Then A ∈ U ,
B ∈ V, and U ∩ V = ∅.

Case 3: |A| ≤ n and |B| ≤ n. Assume, without loss of generality, that
|A| ≥ |B|. Then we proceed as in Case 1 or 2 depending on whether |A| = |B|
or |A| > |B|.

(c)⇒(b). Let A ∈ Fn(X) and let U be an open set in X such that A ⊆ U .
Let U = 〈U〉. Since A ∈ Fn(X) ⊆ Fn+1(X), there exists V = (U1, . . . , Us;V )
such that A ∈ V ⊆ U and X \ V has finitely many components. We show
that V ⊆ U . Indeed, let x ∈ V . Then A ∪ {x} ∈ Fn+1 since |A| ≤ n. Now,
because A ∈ V, (A∪{x})∩Ui 6= ∅ and A∪{x} ⊆ V . Hence A∪{x} ∈ V ⊆ U .
Therefore A ∪ {x} ⊆ U , implying x ∈ U . This shows that V ⊆ U .

(b)⇒(a). Let p ∈ X and let F be a nonempty subset of X such that
p 6∈ F and |F | ≤ n.

There exist two open sets O and U such that p ∈ O, F ⊆ U and Cl(O)∩
Cl(U) = ∅.

Let V ⊆ U be an open set such that F ⊆ V and X \V has finitely
many components. Then the component M of X \V that contains p is a
subcontinuum of X such that p ∈ intX(M) and M ∩ F = ∅. Thus X is
n-aposyndetic.

(c)⇔(d). These implications follow from 2.4.

4. Observations. In this section we analyze the case when X is an
indecomposable continuum. We also define a new topology τω which gener-
alizes τHM and we prove, for this new topology, similar results to the ones
given in the previous section.

Indecomposable case

4.1. Definition. A continuum is called decomposable if it can be writ-
ten as the union of two nonempty nondegenerate proper subcontinua. A
continuum is called indecomposable if it is not decomposable (for more on
indecomposable continua see [7]).

4.2. Theorem. Let X be a continuum. The following are equivalent :

(a) X is indecomposable.
(b) X ∈ Cl(U) for all nonempty open sets U of (2X , τHM) (or of Cn(X)

for all n).
(c) U ∩V 6= ∅ for all nonempty open sets U ,V of (2X , τHM) (or of Cn(X)

for all n).
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Proof. (a)⇒(b). Let U = (U1, . . . , Uu;W ) be a basic open set. Assume
X 6∈ U , otherwise we are done.

Let V = (V1, . . . , Vr;O) be a basic open set such that X ∈ V. We will
show that V intersects U , thus showing that X ∈ Cl(U).

By the definition of U , X\W has finitely many components {C1, . . . , Ck}.
Since X 6∈ U , each Ci is a proper subcontinuum of X. Hence, because X is
indecomposable, each Ci is contained in a composant Ki (see [7]).

Now, let R be a composant different from each Ki; such an R exists (and
is dense in X) because X is indecomposable. By the density of R, we can
find a proper subcontinuum A of X such that

(1) A ⊆ R,
(2) A intersects each Ui and each Vj .

Notice, from our choice of R, that R ⊆ W . Therefore A ⊆ W ; this and
(2) imply A ∈ U . Also A ∈ V from (2) and since A ⊆ X ⊆ O. This proves
(a)⇒(b).

(b)⇒(a). Suppose X is decomposable, hence X = S1∪S2, where S1 and
S2 are proper subcontinua of X.

Let U = X \ S1, and let U = (X;U). Note that U = 〈U〉. We will
construct an open set V containing X such that V ∩ U = ∅, thus showing
that X /∈ Cl(U).

Since X\S2 is open and U ⊆ S2, there is a nonempty open set V ⊆ X\S2

such that

(4.1) V ∩ U = ∅.

Let V = (V ;X). By construction X ∈ V. Now, V ∩ U = (V ;U), hence by
definition A ∈ (V ;U) if and only if A ∩ V 6= ∅ and A ⊆ U . Then from (4.1)
we have (V ;U) = ∅.

(a)⇒(c). Let U = (U1, . . . , Un;W ) and V = (V1, . . . , Vk;O) be two basic
open sets. We can assume, from (a)⇒(b), that X 6∈ U and X 6∈ V.

By definition, X \W = {C1, . . . , Cm} and X \O = {D1, . . . , Dr} where
Ci and Dj are continua for all i and j.

Let A ∈ U and B ∈ V be two subcontinua of X. As in (a)⇒(b), take A
and B in a composant R different from the ones containing the Cis and Djs.
Let a ∈ A and b ∈ B. Since a, b ∈ R, there exists a proper subcontinuum E of
X such that a, b ∈ E. It follows that A∪B∪E ⊆ R is a proper subcontinuum
of X that intersects each Ui and each Vj . Hence A ∪B ∪ E ∈ U ∩ V.

(c)⇒(b). This implication follows easily.

We finish this section with some generalizations.
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The τω topology. In 2X , consider the topology generated by the following
subbase:

SHM = {〈U〉 : U is open and X\U has at most countably many
components} ∪ {〈U,X〉 : U is open}.

We will denote this topology by τω. It is easy to see, using similar arguments
to those in 1.4, that the collection

B = {(U1, . . . , Uk;V ) : k < ω, Ui is open for each i, and V is an open set
such that X \ V has at most countably many components}

is a base for τω.

4.3. Remark. From the definition of τω, we see that τHM ⊆ τω ⊆ τV.
It follows that 2.1, 2.2, and 2.4 hold with τHM replaced by τω. However, for
any of the spaces in 2.3 the space (C(X), τω) is T2 and hence (C(X), τω) =
(C(X), τV), so that 2.14 and 2.16 do not hold for τω. Also note that 4.2
holds with τHM replaced by τω.

4.4. Remark. Using the same arguments and replacing τHM with τω
and “semi-locally connected” with “ω-semi-locally connected” we find that
2.12 and 2.13 can be generalized as well. Notice that the spaces in 2.3 are ω-
semi-locally connected in 2X but none of them is locally connected, therefore
2.10 does not hold when “semi-locally connected” is replaced with “ω-semi-
locally connected”.

We recall the definition of Suslinian space.

4.5. Definition. A compact space X is called Suslinian provided that
every collection of mutually disjoint nondegenerate subcontinua of X is
countable.

4.6. Remark. Mimicking the proof of 2.14 we get the following gener-
alization of 2.14.

4.7. Proposition. If (H(X), τω)=(H(X), τV), then X is ω-semi-locally
connected.

The above observations can be summarized as follows.

4.8. Theorem. Let X be a continuum and n ∈ N. Consider the follow-
ing statements:

(a) X is Suslinian.
(b) X is ω-semi-locally connected in Cn(X).
(c) X is ω-semi-locally connected in 2X .
(d) (Cn(X), τω) = (Cn(X), τV).
(e) (2X , τω) = (2X , τV).
(f) (Cn(X), τω) is T2.
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(g) (2X , τω) is T2.
(h) X is ω-semi-locally connected.
(i) For all x ∈ X and for every open set U with x ∈ U there exists a

closed neighborhood N of x such that N ⊆ U and N has at most
countably many components.

Then

(1) (b)⇒(d), (d)⇒(h), (e)⇒(h), (c)⇔(e), (i)⇒(b), (i)⇒(c), (d)⇔(f),
and (e)⇔(g).

(2) (a);(b), (a);(c), (a);(h). Thus, from (1), (a);(d),(e),(g),(f).
(3) If X is a hereditarily unicoherent metric continuum, then (c)⇒(a)

and (d)⇒(a).

Proof. (1) (d)⇔(f) and (e)⇔(g) follow from 4.3; (b)⇒(d) and (c)⇔(e)
follow from 4.4; (d)⇒(h) and (e)⇒(h) follow from 4.7.

The proofs of (i)⇒(b) and (i)⇒(c) are similar to the proof of 2.8: just re-
place “X is locally connected” with (i), “open connected sets” with “closed
neighborhoods with at most countably many components”, and “finite num-
ber of components” with “at most countably many components”.

(2) The dendroid constructed in §3, p. 135, of [4] is a Suslinian contin-
uum which does not satisfy (b), (c), nor (h) since the complement of every
arbitrarily small neighborhood of r has uncountably many components.

(3) To prove (3), we first need to prove some lemmas.

4.9. Lemma. Let X be a hereditarily unicoherent metric continuum. If
X is not Suslinian, then there exists an open set U in X with uncountably
many components.

Proof. Since X is not Suslinian, there exists an uncountable family C =
{Cλ : λ ∈ Λ} of pairwise disjoint nondegenerate subcontinua of X. Since Λ
is uncountable and Cλ nondegenerate for all λ, there exists ε > 0 such that
the set B = {Cλ ∈ C : diam(Cλ) ≥ ε} is uncountable.

The open cover {Bε/4(x) : x ∈ X} of X has a finite subcover {Bε/4(xi) :
i ≤ m}. Hence, there exists j ∈ {1, . . . ,m} such that Bε/4(xj) intersects
uncountably many Cλ’s from B.

If Bε/4(xj) has uncountably many components, then we are done. So,
suppose otherwise.

Let D = {Cλ ∈ B : Cλ∩Bε/4(xj) 6= ∅}. Since Bε/4(xj) does not have un-
countably many components, there exists a subcontinuum C of Cl(Bε/4(xj))
that intersects uncountably many members of D; for simplicity, suppose it
intersects all of them. Since diam(Cλ) ≥ ε, there exists k 6= j such that
Bε/4(xk) intersects uncountably many elements of D; denote by D′ this set.
Let U = Bε/4(xk) \ Cl(Bε/3(xj)). We will show that U has uncountably
many components.
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Indeed, otherwise there exists a subcontinuum E of Cl(U) that intersects
all but countably many elements of D′. Then there exist two elements Cλ
and Cγ of D′ such that C and E intersect both Cλ and Cγ . Because X is
a dendroid, C ∪ E ∪ Cλ ∪ Cγ is a dendroid. Since Cλ and Cγ are disjoint,
and C and E are disjoint, it follows that C ∪E ∪Cλ ∪Cγ contains a simple
closed curve, which contradicts C ∪ E ∪ Cλ ∪ Cγ being a dendroid.

4.10. Lemma. Let X be a continuum and let U be an open subset of X.
If U has uncountably many components, then there is p ∈ U such that for
each open set V with p ∈ V ⊂ U , V intersects uncountably many components
of U .

Proof. Assume, to the contrary, that for each p ∈ U there is an open
set Vp with p ∈ Vp ⊂ U and Vp intersects countably many components. The
collection V = {Vp : p ∈ U} is an open cover of U . Since U is Lindelöf, there
is a sequence {pi}i∈N such that U =

⋃
i∈N Vpi . Since, for each i ∈ N, Vpi

intersects countably many components, U has countably many components,
which is a contradiction.

We now prove (3) of 4.8.

Proof. Let X be a hereditarily unicoherent metric continuum.
(c)⇒(a). Suppose X is not Suslinian. Then by 4.9 there is an open set

U with uncountably many components. Let p ∈ U be the point from 4.10
and let A = X \ U .

Let W be an open set such that A ⊆W and p 6∈ Cl(W ). By construction,
if V is an open set such that A ⊆ V ⊆ W , then X \ V has uncountably
many components. Hence, X is not ω-semi-locally connected in 2X .

(d)⇒(a). We prove this implication by contradiction: we will construct
two subcontinua A and B of X and we will show that any two open sets con-
taining A and B intersect, thus showing that (C(X), τω) is not T2, contrary
to hypothesis.

So, suppose that X is not Suslinian. From 4.9 there is an open set U with
uncountably many components. Let p ∈ U be the point from 4.10. From 4.7,
X is ω-semi-locally connected, so we can find an open neighborhood V of p
such that V has uncountably many components {Cλ : λ ∈ Λ}, and X \V has
at most countably many components {Di : i ∈ N}. Thus, there is Dj such
that Dj ∩Cl(Cλ) 6= ∅ for uncountably many Cλ’s. Without loss of generality
assume j = 1.

Now, let Cλ and Cγ be two different components such that Cl(Cλ) ∩
D1 6= ∅ and Cl(Cγ) ∩D1 6= ∅. If Cl(Cλ) ∩Dk 6= ∅ for k 6= 1, then Cl(Cγ) ∩
Dk = ∅; otherwise the continuum Cl(Cλ)∪Cl(Cγ)∪D1∪Dk would contain a
simple closed curve, contrary to the fact that X is a hereditarily unicoherent
continuum.
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The previous argument shows that there is an uncountable collection ξ
of Cλ’s such that Cl(Cλ)∩D1 6= ∅, and Cl(Cλ)∩Di = ∅ for all i 6= 1. Using
a similar argument to the one in 4.10, we can find a point q in V such that
every open set W with q ∈ W ⊆ V intersects uncountably many elements
of E .

Let Cq be the component of V that contains q. Since q is in the closure
of E and C(X) is compact, it follows that Cl(Cq) ∩ D1 6= ∅. Let A = D1

and B = Cl(Cq) ∪D1, and let U = (U1, . . . , Un;T ) and O = (O1, . . . , Os;Z)
be two basic open sets such that A ∈ U and B ∈ O. A modification of
the Claim in the proof of 2.16, for the countable case, shows that U and O
intersect, thus implying that (C(X), τω) is not T2, which is a contradiction.
Therefore X must be Suslinian.

4.11. Question. Which implications in 4.8 can be reversed, and which
cannot?

The τω topology in Fn(X). For the spaces (Fn(X), τω) we have the fol-
lowing theorem.

4.12. Theorem. Let X be a continuum. Then

(a) X is countably aposyndetic (1)

implies the following :

(b) X is ω-semi-locally connected in Fn(X) for all n ∈ N.
(c) (Fn(X), τω) = (Fn(X), τV) for all n ≥ 2.
(d) (Fn(X), τω) is T2 for all n ≥ 2.

Furthermore, (b), (c), and (d) are equivalent.

Proof. (a)⇒(c). Assume X is countably aposyndetic. Then, in partic-
ular, X is n-aposyndetic for every n ∈ N. Therefore, from (a)⇒(c) of 3.2,
(Fn(X), τHM) = (Fn(X), τV) for all n ≥ 2; this and the fact that τHM ⊆
τω ⊆ τV imply (c).

(b)⇒(c). This implication follows from the appropriate generalization
of 2.12 (see 4.4).

(c)⇒(b). The proof of (c)⇒(b) is the same as the proof of (c)⇒(b) of 3.2
with “has finitely many components” replaced by “has at most countably
many components”.

(c)⇔(d). These implications follow from the corresponding generaliza-
tion of 2.4 (see 4.3).

4.13. Example. Let X be the harmonic fan, i.e. the cone over {0} ∪
{1/n : n ∈ N}. Observe that (b), (c), and (d) (in the previous theorem) are

(1) A continuum X is countably aposyndetic if for every p ∈ X and every nonempty
countable closed subset F of X such that p 6∈ F there exists a subcontinuum M of X such
that p ∈ intX(M) and M ∩ F = ∅.
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satisfied for X. However, X is not aposyndetic, so (a) is not satisfied. This
shows that neither of (b), (c), nor (d) imply (a).
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