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RINGEL–HALL ALGEBRAS OF HEREDITARY PURE
SEMISIMPLE COALGEBRAS

BY

JUSTYNA KOSAKOWSKA (Toruń)

Abstract. We define and investigate Ringel–Hall algebras of coalgebras (usually
infinite-dimensional). We extend Ringel’s results [Banach Center Publ. 26 (1990) and Adv.
Math. 84 (1990)] from finite-dimensional algebras to infinite-dimensional coalgebras.

1. Introduction. Let K be a finite field, C be the field of complex
numbers, and let C be a K-coalgebra. Denote by C-comod the category of all
finite-dimensional left C-comodules. For X, Y , Z in C-comod, we denote by
FXZ,Y = FXZ,Y (C) the number of all C-subcomodules U of X such that U ' Y
and X/U ' Z. Analogously to [16], we define the Ringel–Hall algebra H(C)
to be the C-vector space with basis {uM}[M ] indexed by all isomorphism
classes of finite-dimensional left C-modules and with multiplication given
by the formula

u[M ]u[N ] =
∑
[X]

FXM,Nu[X],

where the sum runs over all isomorphism classes of finite-dimensional left
C-comodules.

In this paper we investigate the Ringel–Hall algebras H(C) and extend
results given in [16]–[18] for finite-dimensional algebras to a class of coalge-
bras. In particular, we prove the existence of Hall polynomials for hereditary
pure semisimple coalgebras and describe the corresponding Lie algebras.

The motivation for the study of Ringel–Hall algebras is their connection
with generic extensions, Lie algebras and quantum groups (see [14]–[19]).
Connections of Ringel–Hall algebras with Lie algebras are also studied in
Section 5 of this paper.

The paper is organised as follows. In Section 2 we recall basic definitions
and notation concerning algebras and coalgebras.

In Section 3 we recall the definition of the Ringel–Hall algebra H(A) of
a finite-dimensional algebra A, give the definition of the Ringel–Hall algebra
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H(C) of a coalgebra C and prove the basic properties of the Ringel–Hall
algebras of coalgebras.

In Section 4 we collect the basic facts on species and (co)tensor (co)alge-
bras that we need in Section 5.

Section 5 contains the main results of this paper. In Proposition 5.8,
we prove the existence of Hall polynomials for hereditary pure semisimple
coalgebras. Moreover, we define the Ringel–Hall algebra H(Q,d), its spe-
cialisation H(Q,d)1, and the Lie subalgebra K(Q,d)1 of H(Q,d)1, for any
valued quiver (Q,d) from Table 1.2. Theorem 5.9 contains basic properties
of the Lie algebra K(Q,d)1 and the C-algebra H(Q,d)1 for each of the pure
semisimple valued Dynkin quivers in Tables 1.1 and 1.2. In particular, we
describe K(Q,d)1 by generators and relations and show that H(Q,d)1 is the
universal enveloping algebra of K(Q,d)1. Moreover, we prove that K(Q,d)1

is isomorphic to the positive part n+ of the infinite rank affine Lie algebra
g associated with (Q,d) if (Q,d) is any of the valued quivers in Table 1.2
(see [10, 7.11]).

In this paper we are mainly interested in coalgebras that are infinite-
dimensional. We should mention that for finite-dimensional coalgebras the
results of this paper follow from Ringel’s papers [15]–[19]. However, we
present all facts for arbitrary coalgebras, not only infinite-dimensional.

2. Preliminaries on coalgebras and finite-dimensional algebras.
In this section we collect basic information on algebras and coalgebras. For
coalgebra representations we use the notation and terminology of [11], [24]
and [26]. The reader is referred to [1], [2], [9], [23], [29], and [30] for the
terminology and notation of representation theory, and to [12] and [31] for
background on coalgebras and comodules.

We fix an arbitrary field K. Let A be a finite-dimensional K-algebra. Let
C be a K-coalgebra (usually infinite-dimensional), with comultiplication ∆
and counity ε. We recall that a left C-comodule is a K-vector space X
together with a K-linear map δX : X → C ⊗X such that (∆ ⊗ idX)δX =
(idC ⊗ δX)δX and (ε ⊗ idX)δX is the canonical isomorphism X ∼= K ⊗ X,
where ⊗ = ⊗K . A K-linear map f : X → Y between left C-comodules is a
C-comodule homomorphism if δY f = (idC ⊗ f)δX .

We denote by C-Comod (resp. Mod(A)) the category of all left C-
comodules (resp. right A-modules), and by C-comod (resp. mod(A)) the
full subcategory of C-Comod (resp. Mod(A)) formed by C-comodules (resp.
A-modules) of finite K-dimension. Unless stated otherwise, all modules and
comodules considered are assumed to be finite-dimensional.

Given a coalgebra C, let C∗ be the associated algebra, that is, C∗ =
HomK(C,K), where the multiplication in C∗ is given by the convolution
product
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C∗ ⊗ C∗ → (C ⊗ C)∗ ∆∗−−→ C∗

and ε∗ : K → C∗ is the identity element of C∗ (see [12] and [31]).
Let X be a left C-comodule. The composite K-linear map

X ⊗ C∗ δX⊗id−−−−→ C ⊗X ⊗ C∗ id⊗τ−−−→ C ⊗ C∗ ⊗X ev⊗ε−−−→ K ⊗X ∼= X

defines a right C∗-module structure on X, where τ : X ⊗ C∗ → C∗ ⊗ X
is the twist isomorphism and ev : C ⊗ C∗ → K is the evaluation map
c ⊗ ϕ 7→ ϕ(c). If C is a finite-dimensional coalgebra, this correspondence
gives an equivalence of categories (see [31])

(2.1) C-comod ∼= mod(C∗).

A finite-dimensional algebra A is called basic if

(2.2) A =
⊕
j∈IA

P (j),

where {P (j); j ∈ IA} is a complete set of pairwise non-isomorphic projective
right A-modules (see [1] and [2]). We call C basic if there is a decomposition

(2.3) soc CC =
⊕
j∈IC

S(j)

of the left socle soc CC of C, such that {S(j); j ∈ IC} is a complete set of
pairwise non-isomorphic simple left C-comodules (see [3], [4], [22], [24]).

In the present paper, all algebras and coalgebras are assumed to be basic.
Recall (see [1] and [2]) that a finite-dimensional algebra A is of finite

representation type if there are only finitely many isomorphism classes of
finite-dimensional indecomposable A-modules. We recall (see [20], [21] and
[24]) that a K-coalgebra is said to be left pure semisimple if every left
C-comodule is a direct sum of finite-dimensional C-comodules, or equiv-
alently, if every infinite sequence N1

f1−→ N2
f2−→ · · · of monomorphisms be-

tween finite-dimensional indecomposable left C-comodules terminates, that
is, there exists m0 ≥ 1 such that fj is bijective for all j ≥ m0. A coalge-
bra C (resp. algebra A) is called hereditary if the category C-Comod (resp.
Mod(A)) is hereditary, i.e. Ext2

C(X,Y ) = 0 for all C-comodules X, Y (resp.
Ext2

A(X,Y ) = 0 for all A-modules X, Y ).
We recall the notion of a valued quiver. By a quiver we mean an oriented

graph Q = (Q0, Q1), where Q0 is the set of vertices and Q1 the set of
arrows. A valued quiver is a pair (Q,d), where Q is a quiver such that each

α ∈ Q1 is a valued arrow α : i
(d′α,d

′′
α)−−−−→ j, where d′α, d

′′
α are positive integers.

If d′α = d′′α = 1, then we simply write i→ j instead of i
(d′α,d

′′
α)−−−−→ j. A valued

subquiver (Q,d) of (Q,d) is said to be convex if for any vertices i, j of Q,
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there exists a valued arrow i
(d′α,d

′′
α)−−−−→ j in Q1 if and only if there exists

a valued arrow i
(d′α,d

′′
α)−−−−→ j in Q1.

The left (Gabriel) valued quiver of C is the valued quiver (CQ, Cd),
where CQ0 = IC and, given i, j ∈ CQ0, there exists a unique valued ar-

row i
(Cd
′
ij ,Cd

′′
ij)−−−−−−−→ j from i to j in CQ1 if and only if Ext1

C(S(i), S(j)) 6= 0
and

Cd
′
ij = dimFj Ext1

C(S(i), S(j)), Cd
′′
ij = dim Ext1

C(S(i), S(j))Fi ,

where Fi = EndCS(i) (see [11, Definition 4.3]).
For every X in C-comod, let

lgthX = (x(j))j∈IC ∈ Z(IC)

be the composition length vector, where x(j) is the number of simple com-
position factors of X isomorphic to S(j) (see [24, (6.2)]).

With any hereditary Ext-finite K-coalgebra C (i.e. Ext1
C(S′, S′′) is finite-

dimensional for all simple C-comodules S′, S′′, see [25]), with a fixed de-
composition (2.3), we associate the Euler quadratic form

(2.4) qC : Z(IC) → Z

by the formula

(2.5) qC(v) =
∑
i∈IC

s0
i v

2
i −

∑
i,j∈IC

s1
ijvivj ,

where v ∈ Zn, s0
i = dimK EndCS(i) and s1

ij = dimK Ext1
C(S(i), S(j)) and

Z(IC) is the direct sum of IC copies of the free abelian group Z (see [24], [25]
and [28]).

If an indecomposable coalgebra C is hereditary and left pure semisimple,
then (CQ, Cd) is one of the valued quivers in Tables 1.1 and 1.2 below (see
[7], [11, Theorem 4.14], [13]). Moreover, in this case the map

lgth : C-comod→ Z(IC)

defines a bijection between the set of isomorphism classes of finite-dimen-
sion̄al indecomposable left C-comodules and the set

R+
C = {v ∈ N(Q0); qC(v) = s0

i for some i}
of positive roots of the Euler quadratic form qC .

The underlying valued graphs obtained from the valued quivers A(s)
∞ ,

∞A(s)
∞ , B(s)

∞ , C(s)
∞ and D(s)

∞ of Table 1.2 by forgetting their orientation are
denoted by A∞, ∞A∞, B∞, C∞ and D∞, respectively.

In the last part of this section we investigate classes of (co)algebra ho-
momorphisms, which play an important role in this paper.
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Table 1.1. Valued Dynkin quivers

An : 1−−−2−−− · · ·−−−n− 1−−−n (n vertices, n ≥ 1);

Bn : 1
(1,2)

−−−2−−−3−−− · · ·−−− n− 1−−−n (n vertices, n ≥ 2);

Cn : 1
(2,1)

−−−2−−−3−−− · · ·−−− n− 1−−−n (n vertices, n ≥ 2);

Dn :

n

|
1−−−2 −−−3 −−− · · · −−− n− 2 −−− n− 1 (n vertices, n ≥ 4);

E6 :

6

|
1−−−2 −−−3 −−−4 −−−5 ;

E7 :

7

|
1−−−2 −−−3 −−−4 −−−5 −−−6 ;

E8 :

8

|
1−−−2 −−−3 −−−4 −−−5 −−−6 −−−7 ;

F4 : 1−−−2
(2,1)

−−− 3−−−4 ;

G2 : 1
(3,1)

−−− 2 ,

where t−−− r means t← r or t→ r.

Table 1.2. Infinite pure semisimple locally Dynkin valued quivers

A(s)
∞ : 0−−−1−−−2−−− · · ·−−−s− 1 ←− s −→ s + 1 −→ · · ·

∞A(s)
∞ : · · · ←− −2 ←− −1 ←− 0−−−1−−−2−−− · · ·−−−s− 1 ←− s −→ s + 1 −→ · · ·

B(s)
∞ : 0

(1,2)

−−−1−−−2−−− · · ·−−− s− 1 ←− s −→ s + 1 −→ · · ·

C(s)
∞ : 0

(2,1)

−−−1−−−2−−− · · ·−−− s− 1 ←− s −→ s + 1 −→ · · ·

D(s)
∞ :

−1

|
0 −−−1−−− 2−−− · · · −−− s− 1 ←− s −→ s + 1 −→ · · ·

where 0 ≤ s <∞ and t−−− r means t ←− r or t −→ r.

Let A, B be finite-dimensional K-algebras and let f : A → B be a sur-
jective homomorphism of algebras. The homomorphism f induces a functor

Φf : mod(B)→ mod(A),

given by M 7→M and g 7→ g for all B-modules M and B-module homomor-
phisms g, where any B-module MB has the A-module structure MA given
by ma = mf(a) for a ∈ A and m ∈ M . It is easy to see that Φf is full,
faithful and exact. We identify mod(B) with the subcategory Φf (mod(B)) of
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mod(A). We say that a surjective homomorphism f : A→ B has idempotent
kernel if (Ker f)2 = Ker f .

Let C, D be K-coalgebras and let f : D → C be an injective homomor-
phism of coalgebras. The homomorphism f induces a functor

Ψf : D-comod→ C-comod,

given by M 7→ M and g 7→ g for all D-comodules M and D-comodule
homomorphisms g, where a D-comodule DM = (M, δM ) is a C-comodule
CM via

M
δM−−→ D ⊗M f⊗id−−−→ C ⊗M.

It is easy to see that Ψf is full, faithful and exact. We identify the category
D-comod with the subcategory Ψf (D-comod) of C-comod. We call an inclu-
sion f : D ↪→ C of coidempotent type if D = ∆−1(C ⊗D + D ⊗ C), where
∆ defines the coalgebra structure on C.

Example 2.6. We give a family of examples of surjective algebra homo-
morphisms with idempotent kernel and injective coalgebra homomorphisms
of coidempotent type. These types of (co)algebra homomorphisms are es-
sential in this paper.

Let Q be a finite quiver which is a tree (i.e., an acyclic quiver without
multiple edges). Let A = KQ and C = KQ be the path algebra and path
coalgebra of Q, respectively (see [1], [24], [25]). Let Q be a convex subquiver
of Q, and let B = KQ and D = KQ be the path algebra and path coalgebra
of Q, respectively.

Note that there exist:

• a surjective K-algebra homomorphism f : A→ B induced by f(α) =
α for any α ∈ Q0∪Q1, and f(α) = 0 for any α ∈ (Q0∪Q1)\(Q0∪Q1),
• an inclusion g : D ↪→ C of K-coalgebras induced by g(α) = α for any
α ∈ Q0 ∪Q1.

It is straightforward to prove (using convexity of Q and definitions of path
(co)algebras) that f has idempotent kernel and g is of coidempotent type.

Lemma 2.7. (a) Let A, B be finite-dimensional K-algebras and let
f : A → B be a surjective homomorphism with idempotent kernel. Then
the subcategory Φf (mod(B)) of mod(A) is closed under extensions.

(b) Let C, D be K-coalgebras and let f : D ↪→ C be an inclusion of
coidempotent type. Then the subcategory Ψf (D-comod) of C-comod is closed
under extensions. If , in addition, C has finite dimension over K, then the
K-algebra surjection f∗ : C∗ → D∗ has idempotent kernel.

Proof. (a) Let Ker f = I = I2. Let X,Y be B-modules. The remarks
above show that X,Y may be viewed as A-modules. Consider an exact
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sequence of A-modules

0 −→ X
i−→ Z

p−→ Y −→ 0.

We claim that Z is a B-module. Indeed, it is enough to prove that Z is
annihilated by the ideal I of A. Since p(I · Z) = I · p(Z) = I · Y and Y is
a B-module, we have p(I · Z) = I · Y = 0. Then I · Z ⊆ Ker p = Im i. Let
X ′ ⊆ X be such that i(X ′) = I · Z. We have I · i(X ′) = 0, because X is
a B-module. Therefore I · Z = I2 · Z = I · (I · Z) = I · i(X ′) = 0, because f
has idempotent kernel.

(b) Let X, Y be D-comodules, which we consider as C-comodules. Let

0 −→ X ↪→ Z
p−→ Y −→ 0

be an exact sequence of C-comodules. We claim that Z is a D-comodule.
Indeed, it is enough to prove that δ(Z) ⊆ D ⊗ Z, where δ gives the C-
comodule structure on Z. We choose a K-basis {xi, yj}i∈I, j∈J of Z such
that {xi}i∈I is a K-basis of X. Let z ∈ Z and consider

δ(z) =
∑

ci ⊗ xi +
∑

ci ⊗ yi.

Since (Z, δ) is a C-comodule, we have (∆⊗ id)δ = (id⊗ δ)δ. Therefore∑
∆(ci)⊗ xi +

∑
∆(ci)⊗ yi =

∑
ci ⊗ δ(xi) +

∑
ci ⊗ δ(yi).

Note that δ(xi) ∈ D ⊗X for all i ∈ I, because X is a D-comodule. On the
other hand, (id⊗ p)δ = δY p : Z → D⊗ Y , because (Y, δY ) is a C-comodule,
Im δY ⊆ D ⊗ Y and p is a homomorphosim of C-comodules. Therefore

(id⊗ p)δ(z) = (id⊗ p)
(∑

ci ⊗ xi +
∑

ci ⊗ yi
)

=
∑

ci ⊗ p(yi) ∈ D ⊗ Y,

because xi ∈ Ker p for all i ∈ I. Then

(∆⊗ id)δ(z) =
∑

ci ⊗ δ(xi) +
∑

ci ⊗ δ(yi) ∈ C ⊗D ⊗X +D ⊗ C ⊗ Z
⊆ (C ⊗D +D ⊗ C)⊗ Z.

Finally, δ(z) ∈ D ⊗ Z, because D = ∆−1(C ⊗ D + D ⊗ C). Therefore
Ψf (D-comod) is closed under extensions.

Assume that C is finite-dimensional. Note that

Ker f∗ = {h ∈ C∗; h ◦ f = 0} = {h ∈ C∗; h(c) = 0 for all c ∈ D} = D⊥

and (D⊥)⊥ = D, where for any subset X of C∗, X⊥ = {c ∈ C; h(c) = 0 for
all h ∈ X} (see [31]). On the other hand,

D = ∆−1(C ⊗D +D ⊗ C) = D ∧D = (D⊥D⊥)⊥,

where ∧ is the wedge product (see [31, Proposition 9.0.0]). By [31, p. 181], we
have D⊥ = (D ∧D)⊥ = D⊥D⊥, because C has finite dimension. Therefore

Ker f∗ = D⊥ = D⊥D⊥ = (Ker f∗)2.
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Remark 2.8. Note that for an arbitrary surjective homomorphism f :
A→ B of algebras (resp. injective homomorphism f : D → C of coalgebras)
the subcategory Φf (mod(B)) (resp. Ψf (D-comod)) is not necessairly closed
under extensions. Indeed, consider the quiver

Q : 1 α−→ 2

and its path algebra A = KQ and path coalgebra C = KQ (see [1],
[24], [25]). Put B = A/JA, where JA is the Jacobson radical of A, and
D = C0, where C0 is the socle of C. In this case B is the path algebra, and
D is the path coalgebra of the quiver

Q : 1 2,

which is not connected. It is easy to see that (JA)2 = 0 6= JA and ∆−1(C ⊗
D +D ⊗ C) = C 6= D. Moreover, Φf (mod(B)) (resp. Ψf (D-comod)) is not
closed under extensions.

In Sections 4 and 5 we will see that convex valued subquivers of Gabriel
valued quivers of algebras and coalgebras induce surjective homomorphisms
of algebras with idempotent kernel and inclusions of coalgebras of coidem-
potent type, respectively.

3. Ringel–Hall algebras of coalgebras and finite-dimensional al-
gebras. Let K be a finite field, C be a basic K-coalgebra, A a basic finite di-
mensionalK-algebra, and letX, Y , Z be finite-dimensional left C-comodules
(resp. finite-dimensional right A-modules). We define F YZ,X = F YZ,X(C) (resp.
F YZ,X = F YZ,X(A)) to be the number of subcomodules (resp. submodules)
U ⊆ Y such that U ' X and Y/U ' Z.

Analogously to [16], we define H(C) (resp. H(A)) to be the C-vector
space with basis {u[M ]}[M ] indexed by the set of all isomorphism classes of
finite-dimensional left C-comodules (resp. finite-dimensional right A-modu-
les) and the multiplication

(3.1) u[N ]u[M ] =
∑
[X]

FXN,Mu[X],

where the sum runs over all isomorphism classes of left C-comodules (resp.
A-modules). Note that the sum is finite, because the field K is finite and
the comodules (resp. modules) N , M , X are finite-dimensional.

It is easy to check that H(C) (resp. H(A)) is an associative C-algebra
with the identity element u0, called the Ringel–Hall algebra of C (resp. of A)
(see [16, Proposition 1]).

Below we assume that a surjective homomorphism f : A → B of alge-
bras has idempotent kernel (resp. an injective homomorphism f : D → C
of coalgebras is of coidempotent type). Note that it is enough to assume
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instead that the subcategory Φf (mod(B)) of mod(A) (resp. Ψf (D-comod)
of C-comod) is closed under extensions.

Lemma 3.2. Let K be a finite field.

(a) Let A, B be finite dimensional K-algebras and let f : A → B be
a surjective homomorphism with idempotent kernel. The homomorphism f
induces an injective algebra homomorphism

f̂ : H(B)→ H(A)

given by u[MB ] 7→ u[MA] for all isomorphism classes [MB] of finite-dimen-
sional B-modules, where any B-module MB has the A-module structure MA

induced by f .
(b) Let C, D be K-coalgebras and let f : D ↪→ C be an inclusion of

coidempotent type. The inclusion f induces an injective algebra homomor-
phism

f̂ : H(D)→ H(C)

given by u[DM ] 7→ u[CM ] for all isomorphism classes [DM ] of finite-dimen-
sional D-comodules, where any D-comodule DM has the C-comodule struc-
ture CM induced by f .

(c) Let C be a finite-dimensional K-coalgebra and let X,Y, Z be left C-
comodules. Then F YZ,X(C) = F YZ,X(C∗), under the identification C-comod ∼=
mod(C∗) (see (2.1)).

Proof. (a) Let X,Y, Z be B-modules. It is straightforward to prove the
following:

• If U ⊆ YA is a submodule of the A-module YA such that U ∼= XA and
YA/U ∼= ZA, then U is a submodule of the B-module YB such that
U ∼= XB and YB/U ∼= ZB.
• If U ⊆ YB is a submodule such that U ∼= XB and YB/U ∼= ZB, then
U is a submodule of YA such that U ∼= XA and YA/U ∼= ZA.

Therefore F YZ,X(A) = F YZ,X(B) and the map f̂ : H(B) → H(A) is an in-
jective algebra homomorphism, because (by Lemma 2.7) the subcategory
Φf (mod(B)) is closed under extensions.

(b) Let X,Y, Z be D-comodules. It is straightforward to prove the fol-
lowing.

• If U ⊆ CY is a subcomodule such that U ∼= CX and CY/U ∼= CZ,
then U is a subcomodule of DY such that U ∼= DX and DY/U ∼= DZ.
• If U ⊆ DY is a subcomodule such that U ∼= DX and DY/U ∼= DZ,

then U is a subcomodule of CY such that U ∼= CX and CY/U ∼= CZ.

Therefore F YZ,X(D) = F YZ,X(C) and the map f̂ : H(D) → H(C) is an injec-
tive homomorphism of algebras, because (by Lemma 2.7) the subcategory
Ψf (D-comod) is closed under extensions.
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(c) follows easily, because the functor C-comod ∼= mod(C∗), given in
(2.1), is exact.

Let A, B be finite-dimensional algebras and f : A → B be a surjective
homomorphism with idempotent kernel. By Lemma 3.2(a), we identify the
algebra H(B) with the subalgebra f̂(H(B)) of H(A). Similarly, if C, D are
coalgebras and f : D → C is an inclusion of coidempotent type, we identify
H(D) with f̂(H(D)).

Lemma 3.3. If C is a finite-dimensional K-coalgebra, then the equiva-
lence (2.1) induces an algebra isomorphism H(C) ' H(C∗).

Proof. Let M be a finite-dimensional C-comodule and f be a homo-
morphism of C-comodules. By (2.1), the mappings M 7→ M , f 7→ f give
an equivalence of categories C-comod ∼= mod(C∗). Applying Lemma 3.2(c),
it is straightforward to check that u[M ] 7→ u[M ] gives an isomorphismH(C) '
H(C∗).

Lemma 3.4. Let C(0) ⊆ C(1) ⊆ · · · be an infinite chain of finite-di-
mensional K-subcoalgebras of C such that , for any i ≥ 0, the inclusion
C(i) ↪→ C(i+1) is of coidempotent type. If

C =
⋃
C(i),

then the induced chain H(C(0)) ⊆ H(C(1)) ⊆ · · · induces an algebra isomor-
phism H(C) =

⋃
H(C(i)).

Proof. By Lemma 3.2, the inclusions

H(C(0)) ⊆ H(C(1)) ⊆ · · ·
are given by u[M ] 7→ u[M ] for all isomorphism classes of finite-dimensional
C(i)-comodules. Moreover, H(C(i)) ⊆ H(C) for any i = 0, 1, . . . . Therefore,⋃
H(C(i)) ⊆ H(C).
To prove the opposite inclusion, let M be a finite-dimensional C-co-

module and u[M ] ∈ H(C). By [24, Theorem 4.3(c)], there exists a finite-
dimensional subcoalgebra D of C such that M lies in D-comod ⊆ C-comod.
Note that there exists i such that D ⊆ C(i), because C =

⋃
C(i). Therefore

the D-comodule M has the induced C(i)-comodule structure, u[M ] ∈ H(C(i))
and our claim follows.

4. Species and cotensor coalgebras. Following Gabriel [8], we define
a species to be a system

M = (Fi, iMj)i,j∈IM ,

where Fi is a division ring for each i ∈ IM, and iMj is an Fi-Fj-bimodule
for any i, j ∈ IM. A speciesM = (Fi, iMj)i,j∈IM is called a K-species (resp.
locally finite-dimensional K-species) if
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• for each i ∈ IM, Fi is a division K-algebra (resp. a finite-dimensional
division K-algebra),

• for any i, j ∈ IM, the Fi-Fj-bimodule iMj is a K-vector space (resp.
a finite-dimensional K-vector space),

• K acts centrally on each Fi and on each iMj .

Following [27], a species M is said to be locally finite if every Fi-Fj-
bimodule iMj is a directed union of finite-dimensional Fi-Fj-bimodules.

Following [6], with any speciesM = (Fi, iMj)i,j∈IM we associate a valued
quiver (QM,dM) as follows. The vertices of QM are the elements of IM and,
for any i, j ∈ IM such that iMj 6= 0, there exists a unique valued arrow

i
(d′ij ,d

′′
ij)−−−−−→ j

in (QM,dM), where d′ij = dim (iMj)Fj and d′′ij = dim Fi(iMj).
Let M = (Fi, iMj)i,j∈IM be a K-species. A right linear representation

of M is a system X = (Xi, ϕij)i,j∈IM , where Xi is an Fi-vector space,
ϕij : Xi ⊗ iMj → Xj is an Fj-linear map for any i, j in IM such that
iMj 6= 0, and Xi ⊗ iMj means Xi ⊗Fi iMj .

A morphism f : X → X ′ of representations of M is a system f =
(fi)i∈IM of Fi-linear maps fi : Xi → X ′i, i ∈ IM, such that ϕ′ij(fi ⊗ id) =
fjϕij for all i, j ∈ IM.

A representation X of M is said to be of finite length if X has a fi-
nite composition series (see [2], [11] and [23, Chapter 14]). We denote by
Rep(M) the Grothendieck category of all linear representations of M, and
by rep(M) ⊇ rep`f (M) the full subcategories of Rep(M) formed by finitely
generated objects and by finitely generated representations of finite length,
respectively. Moreover, we denote by Rep`f (M) the full Grothendieck sub-
category of Rep(M) formed by locally finite-dimensional representations,
that is, directed unions of representations of finite length.

Given X = (Xi, ϕij)i,j∈IM and i0, . . . , in ∈ IM, we denote by

ϕi0...im : Xi0 ⊗ i0Mi1 ⊗ · · · ⊗ im−1Mim → Xim

the composed K-linear map

Xi0⊗ i0Mi1⊗· · ·⊗ im−1Mim

ϕi0i1⊗id
−−−−−→ Xi1⊗ i1Mi2⊗· · ·⊗ im−1Mim

ϕi1i2⊗id
−−−−−→ . . .

· · ·
ϕim−2im−1

⊗id
−−−−−−−−−→ Xim−1 ⊗ im−1Mim

ϕim−1im
⊗id

−−−−−−−−→ Xim ,

where −⊗ iMj = −⊗Fi iMj .
A representation X ofM is said to be nilpotent if there exists an integer

m ≥ 1 such that ϕi0...im = 0 for any path i0 → i1 → · · · → im in QM of
length m.

Following [11], a representation X of M is said to be locally nilpotent
if, for each i0 ∈ IM and each x0 ∈ Xi0 , there exists an integer m ≥ 1 such
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that ϕi0...im vanishes on the Fim-subspace x0Fi0 ⊗ i0Mi1 ⊗ . . .⊗ im−1Mim of
Xi0 ⊗ i0Mi1 ⊗ . . .⊗ im−1Mim for any path i0 → i1 → · · · → im in QM.

We denote by nilrep`f (M) the full subcategory of rep`f (M) formed by
all nilpotent representations of finite length, and by Rep`n`f (M) the full
subcategory of Rep`f (M) formed by all locally nilpotent representations.

Let K be any field and C be a basic K-coalgebra with a fixed decompo-
sition (2.3). Following [11, Definition 4.3], we define the left Ext-species of
C to be the K-species

CExt = (Fj , iEj)i,j∈IC ,

where Fj = EndCS(j) and iEj = Ext1
C(S(j), S(i)), viewed as an Fi-Fj-

bimodule in the obvious way.
Denote by CExt# the #-dual to CExt, i.e.

CExt# = (Fj , jE
#
i )i,j∈IC ,

where jE
#
i = HomFj (iEj , Fj) is viewed as an Fj-Fi-bimodule in the obvious

way.
LetM = (Fi, iMj)i,j∈IM be a K-species. Put F =

⊕
i∈IM Fi (direct sum

of division rings, viewed as a ring with local units), and letM =
⊕

i,j∈IM iMj

be viewed as a unitary F -F -bimodule in the obvious way. Denote by

T (M) = F ⊕M ⊕M⊗2 ⊕M⊗3 ⊕ · · · ⊕M⊗m ⊕ · · ·
the tensor K-algebra of M, where M⊗

m
= M ⊗F · · · ⊗F M (m times).

We recall that the cotensor coalgebra of M is the positively graded K-
vector space

T�(M) =
∞⊕
n=0

M�n = F ⊕M ⊕M �M ⊕ · · · ⊕M�n ⊕ · · · ,

where M�0
= F , M�1

= M and M�n = M � · · · � M (n times) for n ≥ 2,
equipped with the K-coalgebra structure ε : T�(M) → K, ∆ : T�(M) →
T�(M)⊗ T�(M) defined as follows. Given a local unit ea ∈ F at a, we put
∆(ea) = ea ⊗ ea and ε(ea) = 1. For s ≥ 1 and any element amb ∈ M�s of
the form

amb = amj1 ⊗ j1mj2 ⊗ · · · ⊗ js−1mb ∈ aMj1 ⊗ j1Mj2 ⊗ . . .⊗ js−1Mb,

we set

∆(amb) = ea ⊗ amb + amb ⊗ eb +
s−1∑
r=1

(amjr)⊗ (jrmb) and ε(amb) = 0,

where amjr = amj1 ⊗ · · · ⊗ jr−1mjr and jrmb = jrmjr+1 ⊗ · · · ⊗ js−1mb (see
[3], [27, (5.4)]).
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Lemma 4.1. Let M = (Fi, iMj)i,j∈IM be a K-species, IM(x) ⊆ IM,
and let M(x) = (Fi, iMj)i,j∈IM(x)

be a subspecies of M such that the val-

ued quiver (QM
(x)
,d(x)) is a convex valued subquiver of (QM,d). Then the

full subcategories Rep(M(x)) and rep(M(x)) of Rep(M) are closed under
extensions.

Proof. Let X,Y be representations in Rep(M(x)) (resp. in rep(M(x)))
and let Z be an extension of X by Y in Rep(M). Since (QM

(x)
,d(x)) is

a convex valued subquiver of (QM,d), it is easy to see that Z belongs to
Rep(M(x)) (resp. to rep(M(x))). Therefore the subcategories Rep(M(x))
and rep(M(x)) of Rep(M) are closed under extensions.

The following theorem collects basic facts which connect representations
of species and comodules.

Theorem 4.2. Let K be an arbitrary field and let C be a basic indecom-
posable hereditary K-coalgebra whose left Gabriel valued quiver (CQ, Cd) is
a valued tree and contains no infinite path of the form

• ←− • ←− · · · ←− • ←− • ←− · · · .

(a) There exists an equivalence of K-categories

C-Comod ∼= Rep`n`f (M) ∼= T�(M)-Comod,

C-comod ∼= nilrep`f (M) ∼= T�(M)-comod,

where M = CExt#. If , in addition, the valued quiver (CQ, Cd) is finite,
then nilrep`f (M) = rep(M) and C-comod ∼= rep(M).

(b) The valued quiver (CQ, Cd) coincides with (QM,dM).
(c) If in addition the species M is locally finite, then there is a coalgebra

isomorphism C ∼= T�(M).

Proof. For the proof of (a) the reader is referred to [11, Proposition 4.16].
The proof of (b) can be found in [11, Proposition 4.10] and [27, Proposi-
tion 5.8]. Finally, (c) is proved in [27, Theorem 5.15].

Remark 4.3. Let C be a K-coalgebra satisfying the conditions of The-
orem 4.2. If M = (Fi, iMj)i,j∈IM = CExt# is locally finite, then by Theo-
rem 4.2(c), C ∼= T�(M). Let IM(x) ⊆ IM be a finite subset. Consider the
subcoalgebra C(x) = T�(M(x)) of C, where M(x) = (Fi, iMj)i,j∈IM(x)

is

a subspecies of M. Assume that the valued quiver (QM
(x)
,dM

(x)
) is a con-

vex valued subquiver of (QM,dM). It is straightforward to check that the
inclusion C(x) ⊆ C is of coidempotent type. If (QM

(x)
,dM

(x)
) is not a con-

vex valued subquiver of (QM,dM), then the inclusion C(x) ⊆ C is not of
coidempotent type in general (cf. Example 2.6 and Remark 2.8).
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5. Ringel–Hall algebras of hereditary pure semisimple coalge-
bras. Let K be a finite field and let C be a K-coalgebra. Set ui = u[S(i)] ∈
H(C) for all simple C-comodules S(i).

Lemma 5.1. Let K be a finite field and C be a basic indecomposable
hereditary pure semisimple K-coalgebra.

(a) There exists a family of finite-dimensional hereditary coalgebras C(x)

of finite representation type such that H(C) =
⋃
H(C(x)) is a directed union

of algebras.
(b) H(C) is generated (as an algebra) by the set {ui; i ∈ IC}.

Proof. It follows from [6], [7], [11, Theorem 4.14] and [13] that (CQ, Cd)
is one of the valued quivers in Tables 1.1 and 1.2. Therefore (CQ, Cd) is
locally finite and CQ does not contain infinite chains of the form • ←
• ← · · · ← • ← • ← · · · . Hence, by Theorem 4.2, there is a coalgebra
isomorphism C ∼= T�(M), where M = CExt#. Moreover, [27, Proposi-
tion 5.8] shows that the coalgebra T�(M) is a directed union of the finite-
dimensional subcoalgebras C(x) = T�(M(x)), where M(x) runs through fi-
nite K-subspecies of M. We may choose the species M(x) in such a way
that (QM

(x)
,dM

(x)
) is a finite convex valued subquiver of (QM,dM). By

Lemma 4.1, in this case the subcategory C(x)-comod ∼= rep(M(x)) of
C-comod ∼= nilrep`f (M) is closed under extensions. Since M(x) is finite
and (QM

(x)
,dM

(x)
) = (C(x)Q, C(x)d) is a finite convex valued subquiver

of (CQ, Cd), it follows that (C(x)Q, C(x)d) is one of the valued quivers in
Table 1.1. Moreover, [27, Lemma 5.5] shows that T�(M(x)) is a finite-dimen-
sional coalgebra and (T�(M(x)))∗ ∼= T (M(x)). It is easy to see that T (M(x))
is a basic indecomposable finite-dimensional algebra. By [6], T (M(x)) is
hereditary and of finite representation type. Therefore C =

⋃
C(x), where

C(x) are finite-dimensional hereditary K-coalgebras and (C(x))∗ ∼= T (M(x))
are finite-dimensional hereditary K-algebras of finite representation type.
By Remark 4.3, C(x) ↪→ C is of coidempotent type. Then, by Lemmata 3.3,
3.4 and 4.1, we have

H(C) =
⋃
H(C(x)) =

⋃
H((C(x))∗),

and (a) is proved. Moreover, it follows from [17, Proposition 6] that the
algebra H((C(x))∗) is generated by {ui; i ∈ IC(x)}. Hence the lemma follows,
because IC =

⋃
x IC(x) .

To investigate Ringel–Hall algebras and Lie algebras of hereditary pure
semisimple coalgebras, we first associate a Ringel–Hall algebra with a valued
quiver.

With any triple (Q,d, f), where (Q,d) is an acyclic valued quiver and
f = (fi) are positive integers satisfying
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(5.2) d′ijfj = d′′ijfi,

we associate an integral quadratic form q(Q,d,f) : Z(Q0) → Z defined by

(5.3) q(Q,d,f)(x) =
∑
i

fix
2
i −

∑
i,j

d′ijfjxixj

(see [6, p. 7]). Denote by

R+
(Q,d,f) = {v ∈ N(Q0); q(Q,d,f)(v) = fi for some i}

the set of all positive roots of q(Q,d,f).

Lemma 5.4. Let (Q,d) be a connected acyclic valued quiver and f = (fi),
g = (gi) be integers satisfying (5.2). Then

R+
(Q,d,f) = R+

(Q,d,g).

Proof. Let s, t ∈ Q0 be such that there exists a valued arrow i
(d′st,d

′′
st)−−−−−→ j.

Note that d′stft = d′′stfs and d′stgt = d′′stgs. Therefore,

gt = gs ·
d′′st
d′st

= gs ·
ft
fs

= ft ·
gs
fs

and

gs = gt ·
d′st
d′′st

= gt ·
fs
ft

= fs ·
gt
ft
.

Fix s ∈ Q0. We claim that gj = fj · gsfs for all j ∈ Q0. Indeed, for any
j ∈ Q0, there exists an unoriented path s = j0, j1, . . . , jm = j, because Q is
connected. We prove our claim by induction on m. For m = 0 we obviously
have gs = fs · gsfs . By the above remarks, gm = fm · gm−1

fm−1
and by induction

gm = fm · fm−1 ·
gs
fs
· 1
fm−1

= fm ·
gs
fs
,

proving the claim. Therefore q(Q,d,g)(x) = gs
fs
· q(Q,d,f)(x) and it is easy to

see that q(Q,d,f)(v) = fi if and only if q(Q,d,g)(v) = gs
fs
· fi = gi. This finishes

the proof.

By Lemma 5.4, with any acyclic valued quiver (Q,d) we associate the
set

(5.5) R+
(Q,d)

of positive roots of any quadratic form q(Q,d,f). Let (Q,d) be a convex valued
subquiver of (Q,d). Note that any x ∈ R+

(Q,d)
may be viewed as an element

of R+
(Q,d). Indeed, it is enough to extend x by zeros. Below we develop this

observation and we view R+
(Q,d)

as a subset of R+
(Q,d).
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Let C be an Ext-finite hereditary coalgebra with a fixed decomposition
(2.3). Denote by

R+
C = {v ∈ N(Q0); qC(v) = s0

i = dimK Fi for some i}
the set of all positive roots of qC .

Let (Q,d) be any of the valued quivers in Tables 1.1 and 1.2. Note that
there exist positive integers fi satisfying (5.2).

Lemma 5.6. Let C be a hereditary coalgebra such that (CQ, Cd) is one
of the valued quivers in Tables 1.1 and 1.2. Then R+

C = R(CQ,Cd).

Proof. Set fi = dimK Fi and note that

dimK Ext1
C(S(i), S(j)) = dimFj Ext1

C(S(i), S(j)) · dimK Fi = Cd
′
ij · fj .

Therefore qC = q(CQ,Cd,f) and the lemma easily follows.

Let C be a basic pure semisimple hereditary K-coalgebra. The map

lgth : C-comod→ Z(IC)

defines a bijection between the set of isomorphism classes of indecomposable
left C-comodules and the set R+

C of positive roots of qC , that is, vectors
v ∈ Z(IC) such that qC(v) = dimK EndCS(i) = s0

i for some i ∈ IC (see
[6] and [11, Theorem 4.14]). Let (Q,d) be any of the valued quivers in
Tables 1.1 and 1.2. Let C be a hereditary K-coalgebra with left Gabriel
valued quiver (Q,d). Note that s0

i = s0
j for all i, j ≥ 3 and denote by sC

the greatest common divisor of the integers {s0
i ; i ∈ IC}. As in the algebra

case, we call sC the symmetrisation index of the K-coalgebra C. For any
x ∈ R+

(Q,d) = R+
C , we fix an indecomposable C-comodule

M(C, x)

such that lgthM(C, x) = x. Denote by B(Q,d) the set of all functions a :
R+

(Q,d) → N which have finite support, i.e. a(x) 6= 0 for only finitely many
x ∈ R+

(Q,d). With any a ∈ B(Q,d), we associate the C-comodule

M(C, a) =
⊕

x∈R+
(Q,d)

M(C, x)a(x).

This establishes a bijection between B(Q,d) and the set of all isomorphism
classes of finite-dimensional left C-comodules. If we identify any element
x ∈ R+

(Q,d) with the characteristic function x : R+
(Q,d) → N, we get R+

(Q,d) ⊆
B(Q,d).

We can do the same kind of construction for any finite-dimensional hered-
itary K-algebra of finite representation type. By [5], any such algebra A is
Morita equivalent to the tensor algebra T (M) of a K-species such that
(QM,dM) is one of the valued quivers in Table 1.1. Moreover, lgth gives
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a bijection between the set of isomorphism classes of finite-dimensional inde-
composable right A-modules and the set R+

(Q,d) (see [6] and [7]). We use the
same notation M(A, x) and M(A, a) for A-modules, where x ∈ R+

(Q,d) and
a ∈ B(Q,d) (see [16]). Moreover, we recall that there exists an equivalence of
categories mod(A) ∼= rep(M) (see [6] and [7]).

Lemma 5.7. Let M be a K-species such that (QM,dM) is one of the
valued quivers in Table 1.1. If x ∈ R+

(QM,dM)
, then M(T (M), x) ∼=

M(T�(M), x) (in the category rep(M)).

Proof. Apply the previous discussion and Theorem 4.2.

Proposition 5.8. Let (Q,d) be any of the valued quivers in Tables 1.1
and 1.2 and let R+

(Q,d) be the set (5.5). For any functions a, b, c : R+
(Q,d) → N

from the set B(Q,d) there exists a polynomial ϕbca ∈ Z[T ] such that for any
finite field K and for any hereditary K-coalgebra C with (CQ, Cd) = (Q,d)
and symmetrisation index sC , we have

ϕbca(|K|sC ) = F
M(C,b)
M(C,c),M(C,a),

where |X| denotes the cardinality of a finite set X.

Proof. Let a, b, c : R+
(Q,d) → N be functions from B(Q,d). It is easy to see

that there exists a finite convex valued subquiver (Q,d) ⊆ (Q,d) such that
the supports of a, b, c are contained in (Q,d). We may assume that i ∈ Q0

for all i ≤ 3.
By [16, Theorem 1], there exists a polynomial ϕbca ∈ Z[T ] such that for

any finite field K and for any finite-dimensional hereditary K-algebra A
with valued (Gabriel) quiver (Q,d) and symmetrisation index sA, we have

ϕbca(|K|sA) = F
M(A,b)
M(A,c),M(A,a).

Let K be a finite field and let C be a hereditary K-coalgebra such
that (CQ, Cd) = (Q,d). By Theorem 4.2, there is a coalgebra isomorphism
C ∼= T�(M), whereM = CExt#. LetM(x) = (Fi, iMj)i,j∈Q0

be a finite sub-
species of M and let C(x) = T�(M(x)). By Theorem 4.2, Lemma 4.1 and
Remark 4.3, there is an injective homomorphism (of coidempotent type) of
C(x) into C such that the subcategory C(x)-comod of C-comod is closed
under extensions, because (Q,d) is a convex valued subquiver of (Q,d).
Moreover, sC = sC(x) . It follows that (C(x)Q, C(x)d) = (Q,d) is one of the
valued quivers in Tables 1.1 and (T�(M(x)))∗ ∼= T (M(x)). The algebra
T (M(x)) is of finite representation type, the valued quiver (QM,dM) asso-
ciated with T (M(x)) equals (Q,d) (see [6, p. 5]) and there exists a bijection
between R+

(Q,d)
and the set of all isomorphism classes of indecomposable

right finite-dimensional T (M(x))-modules (see [6]). For A(x) = T (M(x)) we
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have ϕbca(|K|s) = F
M(A(x),b)

M(A(x),c),M(A(x),a)
, where s = sA(x) . The equivalence (2.1)

gives s = sA(x) = sC(x) . Finally, by Lemma 3.2, Lemma 5.7 and the remarks
above, we get

ϕbca(|K|sC ) = ϕbca(|K|s) = F
M(C(x),b)

M(C(x),c),M(C(x),a)
= F

M(C,b)
M(C,c),M(C,a).

Following an idea given in [16], we define a generic Ringel–Hall algebra
as follows. Let (Q,d) be any of the valued quivers in Tables 1.1 and 1.2. Let
H((Q,d),Z[T ]) be the free Z[T ]-module with basis {ua}a∈B(Q,d)

. We define
a multiplication by

ucua =
∑
b

ϕbcaub.

The sum in this formula is finite, because ϕbca = 0 unless

lgthM(C, b) = lgthM(C, a) + lgthM(C, c),

where C is any hereditary coalgebra with left Gabriel valued quiver (Q,d).
The arguments in [16, Proposition 4] show that H((Q,d),Z[T ]) is an asso-
ciative ring with the identity element u0.

Moreover, we consider the degeneration of H((Q,d),Z[T ]) given by the
specialisation of T to 1, and tensor this degeneration by C over Z. More
precisely, let H(Q,d)1 be the C-vector space with basis {ua}a∈B(Q,d)

and
multiplication

ucua =
∑
b

ϕbca(1)ub.

Denote by K(Q,d)1 the C-subspace of H(Q,d)1 with basis {ua}a∈R+
(Q,d)

.

Theorem 5.9. Let (Q,d) be any of the valued quivers in Tables 1.1
and 1.2.

(a) H(Q,d)1 is an associative C-algebra with the identity element u0.
(b) There exists a family of finite convex valued subquivers (Q(x),d(x)) of

(Q,d) with H(Q,d)1 =
⋃
H(Q(x),d(x))1 and K(Q,d)1 =

⋃
K(Q(x),d(x))1,

where
⋃

means the directed union of algebras and vector spaces, respectively.
(c) K(Q,d)1 is a Lie subalgebra of H(Q,d)1 (with the Lie bracket [a, b] =

ab−ba) and K(Q,d)1 =
⋃
K(Q(x),d(x))1, where

⋃
means the directed union

of Lie algebras.
(d) H(Q,d)1 is the universal enveloping algebra of K(Q,d)1.
(e) The Lie algebra K(Q,d)1 is isomorphic to the positive part n+ of

the simple Lie algebra g associated with (Q,d) if (Q,d) is one of the valued
quivers in Table 1.1, or to the positive part n+ of the infinite rank affine
Lie algebra g associated with (Q,d) if (Q,d) is one of the valued quivers in
Table 1.2 (see [10, 7.11]).
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Proof. Let (Q,d) be any of the valued quivers in Tables 1.1 and 1.2.
Note that

H(Q,d)1
∼= (H((Q,d),Z[T ])/((T − 1)u0))⊗Z C,

where ((T − 1)u0) is the ideal of H((Q,d),Z[T ]) generated by (T − 1)u0.
Therefore (a) follows.

(b) For any integer x ≥ 1, we define (Q(x),d(x)) to be the convex val-
ued subquiver of (Q,d) such that Q

(x)
0 = {i ∈ Q0; i ≤ x}. It is clear

that (Q(x),d(x)) is finite for any x. It is easy to see that R+
(Q(x),d(x))

⊆
R+

(Q,d) for any x, and R+
(Q,d) =

⋃
x≥1R

+
(Q(x),d(x))

. Therefore H(Q,d)1 =⋃
H(Q(x),d(x))1 and K(Q,d)1 =

⋃
K(Q(x),d(x))1, where

⋃
means the di-

rected union of algebras and vector spaces, respectively.
(c) Let x, y ∈ R+

(Q,d) and let (Q(x),d(x)) be a finite convex valued sub-
quiver of (Q,d) such that x, y ∈ R+

(Q(x),d(x))
. By [16, Theorem 2], we have

ϕaxy(1) = ϕayx(1) for all a ∈ B(Q(x),d(x))\R
+
(Q(x),d(x))

. Finally, K(Q(x),d(x))1 is

a Lie subalgebra of H(Q(x),d(x))1 and K(Q,d)1 =
⋃
K(Q(x),d(x))1 is a Lie

subalgebra of H(Q,d)1.
(d) It follows from [16, Proposition 5] that H(Q(x),d(x))1 is the uni-

versal enveloping algebra of K(Q(x),d(x))1 for any finite valued subquiver
(Q(x),d(x)) of (Q,d). ThereforeH(Q,d)1 =

⋃
H(Q(x),d(x))1 is the universal

enveloping algebra of K(Q,d)1 =
⋃
K(Q(x),d(x))1.

For valued quivers from Table 1.1 the statement (e) is proved in [18,
Corollary 3]. Let (Q,d) be any of the valued quivers in Table 1.2. Let g be
the infinite rank affine Lie algebra associated with (Q,d) and let n+ be the
positive part of g (see [10, 7.11]). By [10], the Lie algebra n+ is isomorphic
to the quotient Lie algebra

LieC〈xi; i ∈ Q0〉/I,
where I is the ideal generated by the relations

(adxi)1+d′ijxj = 0 for all i, j ∈ Q0.

By [17, Proposition 2], these relations are satisfied in K(Q(x),d(x))1, hence
also in K(Q,d)1. Note that K(Q,d)1 =

⊕
x∈R+

(Q,d)
Cux is the direct sum of

one-dimensional vector spaces. By [10], so is n+ =
⊕

α∈Q+ Cα. Moreover,
by [10] and [11], we have R+

(Q,d) = Q+ and there exists an epimorphism of
graded Lie algebras

n+ → K(Q,d)1.

Therefore g ∼= K(Q,d)1.

The following corollary is an easy consequence of Theorem 5.9.
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Corollary 5.10. Let (Q,d) be any of the valued quivers in Tables 1.1
and 1.2.

(a) There is an isomorphism of Lie algebras

K(Q,d)1
∼= LieC〈xi; i ∈ Q0〉/I,

where I is the ideal generated by the relations

(adxi)1+d′ijxj = 0 for all i, j ∈ Q0.

(b) There is an isomorphism of algebras

H(Q,d)1
∼= 〈xi; i ∈ Q0〉/I,

where 〈xi ; i ∈ Q0〉 is the free C-algebra generated by the set {xi; i ∈ Q0}
and I is the ideal generated by the relations

(adxi)1+d′ijxj = 0 for all i, j ∈ Q0.

Acknowledgments. The author is indebted to Professor Daniel Sim-
son for his careful reading of the text and helpful remarks.
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Cahiers Topologie Géom. Différentielle 23 (1982), 397–406.

[23] —, Linear Representations of Partially Ordered Sets and Vector Space Categories,
Algebra Logic Appl. 4, Gordon & Breach, 1992.

[24] —, Coalgebras, comodules, pseudocompact algebras and tame comodule type, Colloq.
Math. 90 (2001), 101–150.

[25] —, Path coalgebras of quivers with relations and a tame-wild dichotomy problem for
coalgebras, in: Lecture Notes in Pure Appl. Math. 236, Dekker, New York, 2004,
465–492.

[26] —, On coalgebras of tame comodule type, in: Representations of Algebras (Beijing,
2000), Vol. II, D. Happel and Y. B. Zhang (eds.), Beijing Normal Univ. Press, 2002,
450–486.

[27] —, Path coalgebras of profinite bound quivers, cotensor coalgebras of bound species
and locally nilpotent representations, Colloq. Math. 109 (2007), 307–343.

[28] —, Hom-computable coalgebras, a composition factors matrix and the Euler bilinear
form of an Euler coalgebra, J. Algebra 315 (2007), 42–75.
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