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AN INCONSISTENCY EQUATION INVOLVING MEANS

BY

ROMAN GER and TOMASZ KOCHANEK (Katowice)

Abstract. We show that any quasi-arithmetic mean Aϕ and any non-quasi-arith-
metic mean M (reasonably regular) are inconsistent in the sense that the only solutions
f of both equations

f(M(x, y)) = Aϕ(f(x), f(y))

and

f(Aϕ(x, y)) = M(f(x), f(y))

are the constant ones.

1. Background. The classical Jensen functional equation

f

(
x+ y

2

)
=
f(x) + f(y)

2

(see, e.g., M. Kuczma [6], J. Aczél [1], J. Aczél & J. Dhombres [2]) involves
looking for mappings preserving the arithmetic mean. Recall that given an
interval I ⊂ R every strictly monotonic and continuous function ϕ : I → R
generates the so-called quasi-arithmetic mean Aϕ : I× I → I by the formula

Aϕ(x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)
, x, y ∈ I.

It is easily seen that functions f transforming a quasi-arithmetic mean Aϕ
of arguments x, y into a quasi-arithmetic mean Aψ of f(x), f(y) have to be
of the form ψ−1 ◦ g ◦ ϕ, where g is a Jensen function. Therefore, more inte-
resting is the question of finding solutions of a generalized Jensen functional
equation

(∗) f(M(x, y)) = N(f(x), f(y)),

where M , N stand for abstract means (see, e.g., Z. Daróczy & Zs. Páles [3])
and at least one of them is not quasi-arithmetic. In particular, the functional
equations

f(L(x, y)) = L(f(x), f(y))
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and

f(L(x, y)) =
f(x) + f(y)

2
with the logarithmic mean

L(x, y) =
{

(x− y)(log x− log y)−1 provided x 6= y,
x otherwise.

were studied by J. Matkowski [7] and P. Kahlig and J. Matkowski in [5],
respectively. The main results of these papers state that if f is continuous
at least at one point, then f is either constant or linear in the case of the
first equation, whereas the latter equation admits no nonconstant solutions.
It is worth emphasizing that non-constant solutions do exist only in the
case where the means in question are of the same type (both non-quasi-
arithmetic). The simultaneous occurrence of non-quasi-arithmetic (logarith-
mic) and quasi-arithmetic (actually arithmetic) means in the equation con-
sidered forces the unknown function to be constant.

The main aim of the present paper is to show that this phenomenon is
not accidental. With no regularity assumptions whatsoever we shall show
that equation (∗), where one of the means M,N is quasi-arithmetic and the
other is not, admits no non-constant solutions. We think that this justifies
the term inconsistency equation in the title of this article.

In the case where the non-quasi-arithmetic mean considered is the cele-
brated arithmetic-geometric Gauss mean, a result in that spirit was estab-
lished in the paper of Z. Daróczy, Gy. Maksa and Zs. Páles [4, Corollary 2.2].

2. Preliminary results. For a two-place function M we will denote
by Ma and aM the sections M(a, ·) and M(·, a), respectively. The function
M is called a mean if min{x, y} ≤ M(x, y) ≤ max{x, y} for all x, y from
its domain; M is called a strict mean if the above inequalities are strict
for x 6= y. Let us recall here a well-known fact, which we will use several
times without explicit mention: any separately monotonic and separately
continuous two-place function is jointly continuous.

Proposition 1. Let K ⊂ R be a compact interval. Let M : K×K → K
be a mean with continuous and strictly increasing sections. For every d ∈ K
define

S(d) = {t ∈ K : d ∈Mt(K)},
T (d) = {(u, v, s) ∈ K3 : M(u, v) ∈ S(d), s ∈ S(M−1

M(u,v)(d))}.

Then:

(i) S(d) = {d} implies that d ∈ ∂K;
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(ii) there exist continuous increasing functions λ, µ : K → K such that

S(d) = [λ(d), µ(d)], d ∈ K;

(iii) if d ∈ intK, then λ(d) < d < µ(d);
(iv) for every d ∈ K the function S(d) 3 x 7→M−1

x (d) is continuous;
(v) for every d ∈ K the set T (d) is connected.

Proof. (i) Observe first that we always have d ∈ S(d). Assume that no
other point belongs to S(d) and suppose on the contrary that d lies in the
interior of K. Choose any points ξ1 < d < ξ2 in K. Since Md(d) = d and
the sections are strictly increasing, Md(ξ1) < d < Md(ξ2). By the continu-
ity of M , we may therefore find an open interval U whose points ξ satisfy
M(ξ, ξ1) < d < M(ξ, ξ2). Now, by the Darboux property of Mξ, we have
d ∈ Mξ(K), which implies that ξ ∈ S(d). This yields U ⊂ S(d); a contra-
diction.

(ii) The set S(d) is non-empty (recall d ∈ S(d)) and closed. Indeed, if
(tn)n∈N is a sequence of points of S(d) which converges to t0, we have

M(tn, un) = d, n ∈ N,
for suitable un ∈ K, n ∈ N. Then, choosing a subsequence (unk

)k∈N which
converges to some u0, and passing to the limit, we obtain

M(t0, u0) = d.

Hence d ∈Mt0(K), which means that t0 ∈ S(d).
To show that S(d) is an interval suppose that x ≤ y ≤ z and x, z ∈ S(d).

Then there are some x′, z′ ∈ K such that

M(x, x′) = d = M(z, z′).

In view of the inequalities

My(x′) = M(y, x′) ≥M(x, x′) = d,

My(z′) = M(y, z′) ≤M(z, z′) = d,

and the continuity of My, we conclude that the function My attains the
value d, which means that y ∈ S(d).

Consequently, for every d ∈ K we may write S(d) = [λ(d), µ(d)]. To
prove monotonicity of λ and µ, assume that d1, d2 ∈ K, d1 < d2, and fix
any t ∈ K with t < λ(d1). If such a t does not exist then the inequality

(2.1) λ(d1) ≤ λ(d2)

holds trivially; otherwise t < λ(d1) ≤ d1 and

Mt(d1) = M(t, d1) < d1.

Since the section Mt does not attain the value d1 (recall that t 6∈ S(d1)),
we must have Mt(x) < d1 for all x ∈ K, whence Mt(x) < d2 for all x ∈ K,
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which guarantees that t 6∈ S(d2). We have just shown that any number less
than λ(d1) fails to fall into the interval [λ(d2), µ(d2)], which proves (2.1).

To show that µ is increasing assume again that d1, d2 ∈ K, d1 < d2, and
fix any t ∈ K with t > µ(d2). If such a t does not exist then we trivially
have

(2.2) µ(d1) ≤ µ(d2).

In the other case d2 ≤ µ(d2) < t and

Mt(d2) = M(t, d2) > d2,

hence Mt(x) > d1 for all x ∈ K, and t 6∈ S(d1). Since any number greater
than µ(d2) fails to fall into the interval [λ(d1), µ(d1)], inequality (2.2) holds
true.

Now we are going to show that µ is a left-continuous function. Suppose
the contrary: there is an increasing sequence (dn)n∈N of numbers from K
which converges to d0 ∈ K and

(2.3) S(dn) ⊂ [λ(dn), γ], n ∈ N,

for some γ ∈ K with γ < µ(d0). Let us distinguish two possible cases.
If λ(d0) = µ(d0) = d0 then, in the light of assertion (i), d0 has to be

the right end-point of the interval K. Since M(d0, d0) = d0, there exist
ξ ∈ (γ, d0) and n ∈ N such that M(ξ, d0) = dn. This means that ξ ∈ S(dn)
and contradicts (2.3).

If λ(d0) < µ(d0) we may choose

ξ ∈ (max{γ, λ(d0)}, µ(d0)).

Since ξ ∈ S(d0) and ξ 6∈ S(dn) for n ∈ N, the section Mξ attains the
value d0, whereas it fails to attain any of the values dn (n ∈ N). This forces
the function Mξ to be constantly greater than or equal to d0. Because Mξ is
increasing and d0 ∈ Mξ(K), it follows that Mξ(inf K) = d0. We have thus
shown that infKM(ξ) = d0 for every ξ from a non-degenerate interval, which
contradicts the fact that the section infKM is strictly increasing.

For the right continuity of the function µ suppose that there exists a
decreasing sequence (dn)n∈N of numbers from K convergent to d0 ∈ K such
that

[λ(dn), γ] ⊂ S(dn), n ∈ N,

for some γ ∈ K with γ > µ(d0). Since S(dn) = {dn} is possible exclusively
when dn ∈ ∂K (see (i)), without loss of generality we may assume that
λ(d1) < γ and hence λ(dn) < γ for all n ∈ N (recall that (λ(dn))n∈N is
decreasing). Choose

ξ ∈ (max{λ(d1), µ(d0)}, γ).
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Then obviously ξ ∈ S(dn) for all n ∈ N and the section Mξ attains all of
the values {dn : n ∈ N}. The compactness of K implies that Mξ attains the
value d0 as well. This, however, contradicts the fact that ξ 6∈ S(d0).

The continuity of the function λ may be obtained in an analogous way.
(iii) Assume that d ∈ intK. In order to prove that λ(d) < d it is enough

to show that there exists u ∈ S(d) such that u < d.
If for every v ∈ K with v > d the section vM were everywhere strictly

greater than d, then we would have vM(inf K) = M(inf K, v) > d. Letting
v → d+ we obtain M(inf K, d) ≥ d, which leads to a contradiction:

d = M(d, d) > M(inf K, d) ≥ d.
We have thus proved that there exist v ∈ K with v > d and w ∈ K

such that M(w, v) ≤ d. On the other hand, M(d, v) > d; hence we can find
u ∈ K ∩ [w, d) satisfying M(u, v) = d. This means exactly that u ∈ S(d).

The inequality d < µ(d) may be proved analogously.
(iv) Fix a sequence (xn)n∈N of elements from S(d) which converges to

x0 ∈ S(d). Let y0 ∈ K be the point for which M(x0, y0) = d. For every
n ∈ N there exists (exactly one) yn ∈ I such that M(xn, yn) = d. Our aim
is to prove that yn → y0 as n→∞.

Choose a subsequence (ynk
)k∈N which converges to some y ∈ K. Letting

k →∞ in the equation
M(xnk

, ynk
) = d

we obtain M(x0, y) = d, which yields y = y0.
(v) Fix (u′, v′, s′), (u′′, v′′, s′′) ∈ T (d). If (u′, v′) = (u′′, v′′), then

S(M−1
M(u′,v′)(d)) = S(M−1

M(u′′,v′′)(d))

and since the latter set is an interval, the points (u′, v′, s′) and (u′′, v′′, s′′)
may be connected in T (d) simply by a vertical segment. From now on, we
assume that (u′, v′) 6= (u′′, v′′).

Assume, without loss of generality, that M(u′, v′) ≤ M(u′′, v′′); then
either u′ ≤ u′′ or v′ ≤ v′′. Suppose that the first inequality holds true
(the other case may be treated analogously). Now, we shall consider two
possibilities.

First, assume v′ > v′′. Since v′M(u′) ≤ M(u′′, v′′) and v′M(u′′) >
M(u′′, v′′), there exists t0 ∈ [u′, u′′] such that

(2.4) M(t0, v′) = M(u′′, v′′).

Put
γ(t) = (t, v′) for t ∈ [u′, t0].

One sees immediately that M ◦ γ is increasing in [u′, t0] and

M(γ(t0)) = M(u′′, v′′), M(γ(u′)) = M(u′, v′).
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For an arbitrary t ∈ (t0, u′′] (if any exists) consider the section Mt|[v′′,v′].
Since

Mt(v′′) ≤M(u′′, v′′) and Mt(v′) = M(t, v′) > M(t0, v′) = M(u′′, v′′),

there exists ξt ∈ [v′′, v′] such that

Mt(ξt) = M(u′′, v′′), i.e. ξt = M−1
t (M(u′′, v′′)).

Define
γ(t) = ξt for t ∈ (t0, u′′].

We have thus defined a function γ : [u′, u′′]→ K2. The inclusion (t0, u′′]
⊂ S(M(u′′, v′′)) jointly with (iv) gives the continuity of γ in (t0, u′′]. Its
continuity in [u′, t0) is obvious, whereas the continuity at t0 may be checked
directly. Indeed, equation (2.4) implies that t0 ∈ S(M(u′′, v′′)) and

M−1
t0

(M(u′′, v′′)) = v′.

Hence, once again making use of (iii), we infer that

lim
t→t0+

γ(t) = (t0, v′).

Obviously,
lim
t→t0−

γ(t) = (t0, v′).

The function M◦γ : [u′, u′′]→ K is continuous. Further, since it is increa-
sing in [u′, t0] (as mentioned before) and constantly equal to M(u′′, v′′) in
[t0, u′′] (which follows directly from the definition), we infer that it increases
on [u′, u′′].

If we recall that M(u′, v′) ≤ M(u′′, v′′) and we are working under the
assumption v′ > v′′, we see that necessarily u′ < u′′. Consider any increasing
homeomorphism ϕ : [0, 1]→ [u′, u′′] and define a function γ̃ : [0, 1]→ K2 as

γ̃ = γ ◦ ϕ.
This is a continuous curve in K2 such that

γ̃(0) = γ(u′) = (u′, v′),(2.5)
γ̃(1) = γ(u′′) = (u′′, v′′).(2.6)

Moreover, since M ◦ γ is increasing, the function

M ◦ γ̃ = (M ◦ γ) ◦ ϕ
is increasing as well.

Now, assume that v′ ≤ v′′. This case is much simpler. Indeed, define
γ : [v′, v′′ + u′′ − u′]→ K2 as follows:

γ(t) =
{

(u′, t) if t ∈ [v′, v′′],
(t− v′′ + u′, v′′) if t ∈ (v′′, v′′ + u′′ − u′].
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It is immediately seen that γ is continuous and M ◦ γ is increasing in J :=
[v′, v′′ + u′′ − u′]. Since (u′, v′) 6= (u′′, v′′), as assumed at the very beginning
of the proof, the interval J is non-degenerate and we may consider any
increasing homeomorphism ϕ : [0, 1]→ J . It remains to define γ̃ : [0, 1]→ K2

as γ̃ = γ ◦ ϕ to obtain a continuous curve γ̃ satisfying conditions (2.5) and
(2.6) and such that the function M ◦ γ̃ is increasing.

Thus, in any case we have

M(γ̃(0)) = M(u′, v′) ∈ S(d), M(γ̃(1)) = M(u′′, v′′) ∈ S(d).

As M ◦ γ̃ is increasing and S(d) is an interval, we have

(2.7) M(γ̃(t)) ∈ S(d) for all t ∈ [0, 1],

whence we can define

[0, 1] 3 t 7→ θ(t) = M−1
M(eγ(t))(d).

By (iii), the function θ is continuous. Write

S(θ(t)) = [λ̃(t), µ̃(t)],

where λ̃ := λ ◦ θ and µ̃ := µ ◦ θ with λ and µ as in assertion (ii). By the
same assertion, λ̃ and µ̃ are both continuous, and obviously λ̃ ≤ µ̃. By (2.5)
and (2.6), we have s′ ∈ S(θ(0)) and s′′ ∈ S(θ(1)); in other words,

λ̃(0) ≤ s′ ≤ µ̃(0), λ̃(1) ≤ s′′ ≤ µ̃(1).

This allows one to define a continuous function ψ : [0, 1] → K such that
ψ(0) = s′, ψ(1) = s′′ and λ̃ ≤ ψ ≤ µ̃. Then

ψ(t) ∈ S(M−1
M(eγ(t))(d)) for all t ∈ [0, 1].

This, jointly with condition (2.7), guarantees that the function

[0, 1] 3 t 7→ (γ̃(t), ψ(t))

has values in the set T (d). Moreover, it is a continuous function whose values
at 0 and 1 equal (u′, v′, s′) and (u′′, v′′, s′′), respectively.

Proposition 2. Let I ⊂ R be an interval and let M : I × I → I be
a mean. If for every compact interval K ⊂ I the restriction M |K×K is a
quasi-arithmetic mean, then M is quasi-arithmetic.

Proof. Choose a sequence (Kn)n∈N of compact subintervals of I such that
Kn ⊂ Kn+1 for n ∈ N and

⋃
n∈NKn = I. For every n ∈ N let ϕn : Kn → R

stand for a continuous and strictly increasing generator of the restriction
M |Kn×Kn . We define functions ψn : Kn → R, for n ∈ N, inductively as
follows.

Let ψ1 := ϕ1. Fix n ≥ 2 and assume we have already defined continuous
and strictly increasing generators ψ1 : K1 → R, . . . , ψn−1 : Kn−1 → R of the
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restrictions M |K1×K1 , . . . ,M |Kn−1×Kn−1 , respectively, in such a way that

ψj |Kj−1 = ψj−1 for all j, 2 ≤ j ≤ n− 1.

The function ϕn generates the mean M in the interval Kn−1, as well as
in Kn. Since both ψn−1 and ϕn|Kn−1 are continuous and strictly increasing
generators of M |Kn−1 , there exist a, b ∈ R with a > 0 such that

ψn−1 = aϕn|Kn−1 + b.

On the other hand, the function ψn : Kn → R defined by

ψn = aϕn + b

is a continuous and strictly increasing generator of M |Kn , as is ϕn. This fin-
ishes the inductive process of constructing the sequence (ψn)n∈N of continu-
ous and strictly increasing mappings generating the sequence of restrictions
(M |Kn)n∈N. Furthermore, we have

(2.8) ψn+1|Kn = ψn for all n ∈ N.

It remains to define a mapping ϕ : I → R by putting

ϕ(x) = ψn(x) for x ∈ I,

where n ∈ N is such that x ∈ Kn. It is immediate, in view of (2.8), that
the definition is correct. It is also straightforward that ϕ is a continuous
and strictly increasing mapping which generates the mean M in the whole
interval I.

Proposition 3. Let I ⊂ R be an interval and let M : I × I → I be a
continuous and strict mean. Assume that a set E ⊂ I has the property that
M(c, d) ∈ E whenever c, d ∈ E. If a, b ∈ E, then E is dense in [a, b].

Proof. Suppose the contrary: there exists an open interval (α, β) ⊂ [a, b]
such that E∩(α, β) = ∅. We may assume that (α, β) is maximal in the sense
that its endpoints belong to the closure of E. Thus, there exist sequences
(an)n∈N and (bn)n∈N of elements from E such that an ≤ α, bn ≥ β, n ∈ N,
which converge to α and β, respectively. Plainly, M(an, bn) → M(α, β) ∈
(α, β). Consequently, E 3 M(an, bn) ∈ (α, β) for sufficiently large n ∈ N; a
contradiction.

3. Main results. Now, we are in a position to establish the results
exhibiting the inconsistency of quasi-arithmetic and non-quasi-arithmetic
means.

Theorem 1. Let I, J ⊂ R be intervals, let Aϕ : J × J → J be a quasi-
arithmetic mean and M : I × I → I be a mean with continuous and strictly
increasing sections. If there exists a non-constant solution f : I → J of the
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functional equation

(3.1) f(M(x, y)) = Aϕ(f(x), f(y)), x, y ∈ I,

then M is quasi-arithmetic.

Proof. If (Kn)n∈N is any increasing sequence of compact subintervals of
I such that

⋃
n∈NKn = I, then f |Kn is non-constant for sufficiently large

n ∈ N. Therefore, in the light of Proposition 2, it is enough to prove our
assertion for I being compact.

Equation (3.1) may be rewritten in the form

(ϕ ◦ f)(M(x, y)) =
(ϕ ◦ f)(x) + (ϕ ◦ f)(y)

2
, x, y ∈ I,

which states that the non-constant function g := ϕ ◦ f satisfies

(3.2) g(M(x, y)) =
g(x) + g(y)

2
, x, y ∈ I.

Fix u, v, s, t ∈ I and note that

g(M(M(u, v),M(s, t))) =
g(M(u, v)) + g(M(s, t))

2

=
g(u) + g(v) + g(s) + g(t)

4
.

By symmetry of the right-hand side with respect to v and s, we infer that

(3.3) g(M(M(u, v),M(s, t))) = g(M(M(u, s),M(v, t))).

In what follows, we show that g is philandering (i.e. non-constant on any
non-degenerate interval). If g were constantly equal to some b on (c, d) ⊂ I,
where c < d, then we could choose a maximal interval (C,D) containing
(c, d) and such that g|(C,D) = b. We shall prove that C = inf I andD = sup I.

Suppose that inf I < C. We first prove that

(3.4)
∨

u∈(C,D)

∨
y∈S(u)∩(C,D)

(M−1
y (u) < C).

Suppose the contrary: u ≥ My(C) for any u ∈ (C,D) and y ∈ S(u) ∩
(C,D), which is equivalent to the inequality

(3.5) u ≥M(sup[S(u) ∩ (C,D)], C).

Plainly,

(3.6) sup[S(u) ∩ (C,D)] = min{µ(u), D}.

By Proposition 1(ii), the function µ is continuous, hence the function given
by (3.6) is continuous as well. Since inf I < C we may let u→ C+ in (3.5)
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to obtain

C ≥ lim
u→C+

M(sup[S(u) ∩ (C,D)], C) = lim
u→C+

M(min{µ(u), D}, C)

= M(min{ lim
u→C+

µ(u), D}, C) = M(min{µ(C), D}, C) > C;

a contradiction (in the last inequality we apply Proposition 1(iii) and the
fact that C ∈ int I). Thus, (3.4) has been proved.

Choose any u and y as in (3.4) and put

K = S(u) ∩ (C,D).

Observe that K is an interval. By Proposition 1(iv), the function

K 3 x 7→ ψ(x) := M−1
x (u)

is continuous, so ψ(K) is an interval. Since ψ(u) = u, and hence

ψ(K) ∩ (C,D) 6= ∅,
the set ψ(K) ∪ (C,D) is an interval. Condition (3.4) guarantees that this
interval also strictly contains (C,D). Now, we show that g is constantly b
on this interval. Since g|(C,D) = b, only arguments from ψ(K) need to be
considered. Fix any z ∈ ψ(K), z = M−1

x (u) for some x ∈ K. We have

b = g(u) = g(M(x,M−1
x (u))) = g(M(x, z))

=
g(x) + g(z)

2
=
b+ g(z)

2
,

which implies that g(z) = b. This contradicts the maximality of (C,D).
The proof of D = sup I is analogous. The equality g|int I = b together

with (3.2) easily implies that g is constant, g = b.
Summarizing, any non-constant solution g of equation (3.2) is necessarily

philandering.
Setting, for brevity, u ∗ v = M(u, v) for u, v ∈ I put

H1(u, v, s, t) = (u ∗ v) ∗ (s ∗ t), u, v, s, t ∈ I,
H2(u, v, s, t) = (u ∗ s) ∗ (v ∗ t), u, v, s, t ∈ I.

Fix d ∈ I. A straightforward calculation shows that

H−1
1 ({d}) = {(u, v, s, t) ∈ I4 : (u, v, s) ∈ T (d), t = (M−1

s ◦M−1
u∗v)(d)}.

This means that H−1
1 ({d}) is the graph of the function

T (d) 3 (u, v, s) 7→ (M−1
s ◦M−1

u∗v)(d),

which, in view of Proposition 1(iv), (v), is continuous and defined on a
connected domain. Hence, H−1

1 ({d}) is a connected subset of I4.
If the continuous function H2 attained at least two different values on

the connected set H−1
1 ({d}), then it would attain there all values from some
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non-degenerate interval. Equality (3.3), which states precisely that

g(H1(u, v, s, t)) = g(H2(u, v, s, t)), (u, v, s, t) ∈ I4,

would then imply that g is constant on that interval, which contradicts the
fact that g is philandering. Consequently, there exists a constant v(d) such
that H−1

1 ({d}) ⊂ H−1
2 ({v(d)}). Similarly, there exists a constant w(d) such

that H−1
2 ({v(d)}) ⊂ H−1

1 ({w(d)}). Thus,

H−1
1 ({d}) ⊂ H−1

2 ({v(d)}) ⊂ H−1
1 ({w(d)}),

whence obviously w(d) = d and

H−1
1 ({d}) = H−1

2 ({v(d)}).
However, this means that H2 is a function of H1, that is, H2 = γ ◦H1 with
some γ : I → I.

For every d ∈ I one has

d = (d ∗ d) ∗ (d ∗ d) = H2(d, d, d, d) = γ(H1(d, d, d, d)) = γ((d ∗ d) ∗ (d ∗ d))
= γ(d),

i.e. γ is the identity function. This implies that H1 = H2. In other words,
the operation ∗ = M satisfies the bisymmetry equation. Since (3.2) gives
also the equality

g(u ∗ v) = g(v ∗ u), u, v ∈ I,
a reasoning similar to the one above leads to the symmetry of ∗. This,
jointly with M(u, u) ≡ u and the injectivity of the sections Ma, aM for
a ∈ I, shows that M satisfies all the assumptions of the celebrated theorem
of Aczél (see, e.g., J. Aczél & J. Dhombres [2, p. 287]) which asserts that
M is then quasi-arithmetic.

Theorem 2. Let I, J ⊂ R be intervals, let Aϕ : I × I → I be a quasi-
arithmetic mean and M : J ×J → J be a mean with continuous and strictly
increasing sections. If f : I → J is a non-constant solution of the functional
equation

(3.7) f(Aϕ(x, y)) = M(f(x), f(y)), x, y ∈ I,
then M is quasi-arithmetic on the interval (inf f(I), sup f(I)). In particular ,
if M is not quasi-arithmetic, then there are no surjective solutions of (3.7),
and if for every non-degenerate subinterval P of J the restriction M |P×P is
non-quasi-arithmetic, then the only solutions of (3.7) are the constant ones.

Proof. Let f : I → J be a non-constant solution to (3.7) with α :=
inf f(I) and β := sup f(I). Then α < β and

f ◦ ϕ−1

(
ϕ(x) + ϕ(y)

2

)
= M(f(x), f(y)), x, y ∈ I,
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which implies that g := f ◦ ϕ−1 : ϕ(I)→ J solves the functional equation

(3.8) g

(
u+ v

2

)
= M(g(u), g(v)), u, v ∈ ϕ(I).

Moreover, since ϕ−1 maps ϕ(I) onto I, we get inf g(ϕ(I)) = α < β =
sup g(ϕ(I)). Fix u, v, s, t ∈ ϕ(I) and note that (3.8) yields

g

(
u+ v + s+ t

4

)
= M(M(g(u), g(v)),M(g(s), g(t))).

By symmetry of the left-hand side with respect to v and s, we infer that

M(M(g(u), g(v)),M(g(s), g(t))) = M(M(g(u), g(s)),M(g(v), g(t))).

Therefore, M satisfies the bisymmetry equation

(3.9) M(M(a, b)),M(c, d)) = M(M(a, c)),M(b, d))

for a, b, c, d ∈ g(ϕ(I)).
Let [γ, δ] ⊂ (α, β) be any compact interval. Then there exist u0, v0 ∈ ϕ(I)

such that g(u0) < γ ≤ δ < g(v0). Equation (3.8), jointly with Proposition 3
applied for E := g(ϕ(I)), implies that g(ϕ(I)) is dense in [g(u0), g(v0)]. By
the arbitrariness of [γ, δ], the set g(ϕ(I)) is dense in (α, β). Thus, by virtue
of equation (3.9) and the continuity of M , we infer that M satisfies the
bisymmetry equation on (α, β). Likewise, (3.7) gives the symmetry of M
as well as the identity M(u, u) ≡ u (which also results from the fact that
M is a mean). Thus, it remains to apply Aczél’s theorem quoted above to
conclude the proof.

4. Concluding remarks. The basic result of P. Kahlig and J. Matkow-
ski [5] states that given a non-empty open interval I ⊂ (0,∞), any solution
f : I → R of the equation

f(L(x, y)) =
f(x) + f(y)

2
, x, y,∈ I

continuous at least at one point is necessarily constant. This becomes a
special case of our Theorem 1 (for M = L|I×I and ϕ being the identity
function). Moreover, we need no regularity assumption on f ; in particular,
the requirement of continuity at a point turns out to be unnecessary.

Three of the four possible situations concerning equation (∗), namely:
both M and N are quasi-arithmetic, N is quasi-arithmetic but M is not,
M is quasi-arithmetic but N is not, have thus been examined in detail. The
case where both M and N are non-quasi-arithmetic is the only missing one.

The main result of J. Matkowski’s paper [7, Theorem 2] states that if
M = N = L, I = (0,∞) and f : (0,∞) → (0,∞) is a solution of the
functional equation f(L(x, y)) = L(f(x), f(y)), x, y ∈ I, admitting a point of
continuity, then f is either constant or linear. This shows that the remaining
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situation is qualitatively dissimilar to the previous ones even in the case
where M = N and, at present, the behavior of the corresponding solutions
(even satisfying some regularity conditions) is hardly predictable. Therefore,
we have left that case untouched for the time being.

A slight asymmetry between the assertions of Theorems 1 and 2 results
from the fact that equation (3.7) says nothing about the values of the (poten-
tially) non-quasi-arithmetic mean M off the rectangle [inf f(I), sup f(I)]2.
Therefore, the inconsistency phenomenon occurs if for every subrectangle R
of the domain of M the mean M |R×R fails to be quasi-arithmetic.
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