VOL. 121

2010

NO. 2

TRANSLATIVE PACKING OF A SQUARE WITH SEQUENCES OF SQUARES

 $_{\rm BY}$

JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract. Let S be a square and let S' be a square of unit area with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S whose total area does not exceed $\frac{4}{9}$ can be packed translatively into S'.

1. Introduction. Let C, C_1, C_2, \ldots be convex bodies in the plane. We say that the sequence (C_i) can be *packed translatively* into C if there are translations σ_i such that $\sigma_i C_i$ are subsets of C with mutually disjoint interiors. We say that the sequence (C_i) permits a translative covering of C if there are translations σ_i such that $C \subset \bigcup \sigma_i C_i$. The area of C is denoted by |C|.

Let S be a square. Moon and Moser showed in [5] that any sequence of squares homothetic to S can be packed translatively into S provided the total area of the squares in the sequence does not exceed $\frac{1}{2}|S|$. Additionally, any sequence of homothetic copies of S with total area not smaller than 3|S| permits a translative covering of S. In [4] it is shown that any sequence of homothetic copies of S whose total area is not smaller than 2.5|S'| permits a translative covering of S', where S' is a square with a diagonal parallel to a side of S. The aim of this paper is to give an analog of this result for packing. We show that if S' is a square with a diagonal parallel to a side of S, then any sequence of homothetic copies of S can be packed translatively into S' provided the total area of the copies does not exceed $\frac{4}{9}|S'|$. The bound of $\frac{4}{9}$ cannot be improved upon. The reason is that two homothetic copies of S, each of area greater than $\frac{2}{9}|S'|$, cannot be packed translatively into S' (see Fig. 1, left).

Various results concerning packings and coverings are discussed in [1–3].

2. Packing method. Denote by S' a square whose vertices are (0, -1), (1,0), (0,1), (-1,0). Let S be a square with sides parallel to the coordinate axes, let (S_i) be a sequence of homothetic copies of S and let $a_1 \ge a_2 \ge \cdots$, where a_i denotes the side length of S_i , for $i = 1, 2, \ldots$

²⁰¹⁰ Mathematics Subject Classification: Primary 52C15. Key words and phrases: packing, square.

Fig. 1

We describe a method of translative packing of S_1, S_2, \ldots into S'.

The first square from the sequence is packed into S' as low as possible, i.e.,

$$\sigma_1 S_1 = \left\{ (x, y); \, -\frac{1}{2}a_1 \le x \le \frac{1}{2}a_1, \, -1 + \frac{1}{2}a_1 \le y \le -1 + \frac{3}{2}a_1 \right\}$$

(see Figs. 1 and 2; in Figs. 2–7 each square $\sigma_i S_i$ is denoted by the integer *i*, for short).

We will pack S_2, S_3, \ldots into S' in layers. Let -1 < d < 1 and h > 0. By a *layer* L of height h we mean $\{(x, y); d \leq y \leq d + h\}$; by a *container* we mean the intersection of a layer with S'.

Each container is a polygon. The longest side of this polygon that is parallel to the x-axis is called the *base* of the container. If there are two such sides, then we mean the lower one. The *height* h(K) of a container $K = L \cap S'$ is equal to the height of L. We say that S_i is k-packed into a container K if it is packed translatively into K so that one side of $\sigma_i S_i$ is contained in the base of K and, at the same time, no point of the interior of K lying on the right side of $\sigma_i S_i$ belongs to $\sigma_1 S_1 \cup \cdots \cup \sigma_{i-1} S_{i-1}$.

Let

$$L_2 = \left\{ (x, y); -1 + \frac{3}{2}a_1 \le y \le -1 + \frac{3}{2}a_1 + a_2 \right\}$$

and let $K_2 = L_2 \cap S'$. We declare that this container is *basic* and 2-open. We k-pack the second square from the sequence into K_2 as far to the left as possible (see S_2 in Fig. 2).

For each $i \geq 3$ we proceed as follows. Assume that the translations $\sigma_1, \ldots, \sigma_{i-1}$ have already been provided, that the (i-1)-open containers have been defined and that the basic containers K(j), for some j < i, are defined.

Fig. 2

- 1. If there is an (i-1)-open container K into which S_i can be k-packed and if $a_i \geq \frac{1}{2}h(K)$, then each (i-1)-open container is *i*-open. Denote by K(i) the lowest *i*-open container into which S_i can be k-packed. We k-pack S_i into K(i) as far to the left as possible (see S_4 , S_5 and S_7 in Fig. 2).
- 2. If there is an (i-1)-open container K into which S_i can be k-packed and if $a_i < \frac{1}{2}h(K)$, then let m be an integer such that $2^{-m-1}h(K) < a_i \leq 2^{-m}h(K)$. Each (i-1)-open container is divided into 2^m containers of height $2^{-m}h(K)$. Only the newly created containers of height $2^{-m}h(K)$ are *i*-open. Denote by K(i) the lowest *i*-open container into which S_i can be k-packed. We k-pack S_i into K(i) as far to the left as possible (see S_3 in Fig. 2).
- 3. If there is no (i-1)-open container K into which S_i can be k-packed, then we create a new layer L(i) of height a_i directly above the highest layer. We declare that the container $K(i) = L(i) \cap S'$ is *basic*. Moreover, only K(i) is *i*-open. We k-pack S_i into K(i) as far to the left as possible (see S_6 in Fig. 2).

3. Packing density in basic containers. In this section we show that a large part of each basic container is filled with packed squares.

LEMMA. Assume that K is a basic container, that S_p is the first square from the sequence packed into K, that S_{q+1} is the first square which cannot be packed into K by the method presented in Section 2 and that $q \ge p+1$. Then the total area of the squares packed into K is greater than $\frac{4}{9}|K|$.

Proof. Consider two cases depending on the size of the last square packed into K.

CASE 1: $a_q \geq \frac{1}{2}a_p$. Let R be the set of points of K lying between the right side of $\sigma_p S_p$ and the straight line containing the left side of $\sigma_q S_q$ (see

Fig. 3

Fig. 3). Obviously,

(1)
$$\sum_{i=p+1}^{q-1} |S_i| \ge \frac{1}{2} |R|$$

(if q = p+1, then $R = \emptyset$ and the sum on the left-hand side of this inequality is meant to be zero).

We show that

(2)
$$|S_p| + |S_q| > \frac{4}{9}|K \setminus R|.$$

First consider the case where K is a trapezoid. Since $\left(\frac{3}{2}a_q - a_p\right)^2 \ge 0$ it follows that

$$3a_q a_p - a_p^2 \le \frac{9}{4}a_q^2.$$

As a consequence,

$$|K \setminus R| < 2a_p^2 + (3a_q - a_p)a_p < \frac{9}{4}a_p^2 + \frac{9}{4}a_q^2 = \frac{9}{4}(|S_p| + |S_q|)$$

(see Fig. 3 (left), where $v < 3a_q - a_p$).

Now consider the case where K is a hexagon. Denote by b and c the length of the sides of K parallel to the x-axis and let $t = a_p - \frac{1}{2}|b-c|$ (see Fig. 4).

Fig. 4

If $t \leq a_q$, then we argue as in the case where K is a trapezoid (see Fig. 3, right).

If $t > a_q$, then

$$|K \setminus R| < 2a_p^2 - \left(\frac{t}{\sqrt{2}}\right)^2 + a_p(2a_q + t - a_p) = a_p^2 + 2a_pa_q - \frac{1}{2}t^2 + a_pt$$

(see Fig. 4, where $w < 2a_q + t - a_p$). Consequently,

$$|K \setminus R| < a_p^2 + 2a_p a_q - \frac{1}{2}a_p^2 + a_p^2 = \frac{3}{2}a_p^2 + 2a_p a_q.$$

Since

$$\frac{9}{4}a_p^2 - \frac{3}{2}a_p^2 - 2a_pa_q + \frac{9}{4}a_q^2 > \frac{3}{4}a_p^2 - \frac{3\sqrt{3}}{2}a_pa_q + \frac{9}{4}a_q^2 = \left(\frac{\sqrt{3}}{2}a_p - \frac{3}{2}a_q\right)^2 \ge 0$$

it follows that

$$|K \setminus R| < \frac{9}{4}a_p^2 + \frac{9}{4}a_q^2 = \frac{9}{4}(|S_p| + |S_q|).$$

We conclude from (1) and (2) that

$$\sum_{i=p}^{q} |S_i| > \frac{4}{9} |K|.$$

CASE 2: $a_q < \frac{1}{2}a_p$. Let *m* be an integer such that $2^{-m-1}a_p < a_q \leq 2^{-m}a_p$. Denote by $K_q(1), \ldots, K_q(2^m)$ the *q*-open containers of height $2^{-m}a_p$ obtained by partitioning *K*. For each $i \in \{1, \ldots, 2^m\}$ denote by $s_q(i)$ the maximum value of the *x*-coordinate on $(\sigma_1 S_1 \cup \cdots \cup \sigma_q S_q) \cap \operatorname{Int} K_q(i)$. Let $R_q(i)$ be the set of points of $K_q(i)$ lying between the right side of $\sigma_p S_p$ and the straight line $x = s_q(i)$ and let $R_q = \bigcup_{i=1}^{2^m} R_q(i)$. By the description of the packing method we deduce that

$$\sum_{i=p+1}^{q} |S_i| \ge \frac{1}{2} |R_q|$$

(see Fig. 5). Moreover,

$$|K \setminus R_q| < \frac{3}{2}a_p^2 + 2^m \cdot \frac{3}{2}(2^{-m}a_p)^2 = \frac{3}{2}a_p^2 + \frac{3}{2} \cdot 2^{-m}a_p^2 \le a_p^2\left(\frac{3}{2} + \frac{3}{4}\right) = \frac{9}{4}|S_p|.$$

Fig. 5

Consequently,

$$\sum_{i=p}^q |S_i| > \frac{4}{9}|K|.$$

4. The main result

THEOREM. Assume that S is a square and that S' is a square with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S can be packed translatively into S' provided the total area of the copies does not exceed $\frac{4}{9}|S'|$.

Proof. Due to the affine invariant nature of the problem we can assume that the vertices of S' are (0, -1), (1, 0), (0, 1), (-1, 0). Let (S_i) be a sequence of homothetic copies of S and let $\sum |S_i| \leq \frac{4}{9}|S'|$. Denote by a_i the side length of S_i for $i = 1, 2, \ldots$ Without loss of generality we can assume that $a_1 \geq a_2 \geq \cdots$.

We show that S_1, S_2, \ldots can be packed translatively into S'.

Suppose that it is impossible to pack S_1, S_2, \ldots into S' by the method described in Section 2. Let S_z be the first square which cannot be packed into S'.

Denote by K_1^+ the set of the points of S' with y-coordinate not greater than $-1 + \frac{3}{2}a_1$. All basic containers are denoted by K_2, \ldots, K_{l+1} in such a way that K_i is higher than K_j provided i > j (l = 3 and z = 8 in Fig. 2). Moreover, let K_l^+ be the set of points of S' lying above the base of K_l . Into $K_{l+1} = K(z)$ no square has been packed—this container is z-open, but it is impossible to pack translatively S_z into K_{l+1} .

First we show that $l \ge 2$. Since $|S_1| \le \frac{4}{9}|S'| < \frac{1}{2}|S'|$ it follows that $l \ge 1$ $(|S_1| = \frac{1}{2}|S|$ in Fig. 1, right). If l = 1, then $\frac{3}{2}a_1 + \frac{3}{2}a_2 > 2$ (see Fig. 1 (left), where $\frac{3}{2}a_1 + \frac{3}{2}a_2 = 2$). Consequently,

$$a_1^2 + a_2^2 > a_1^2 + \left(\frac{4}{3} - a_1\right)^2 \ge \frac{8}{9} = \frac{4}{9}|S'|,$$

which is a contradiction.

Obviously,

(3)
$$S' = K_1^+ \cup K_2 \cup \cdots \cup K_{l-1} \cup K_l^+.$$

Observe that

(4)
$$|S_1| \ge \frac{4}{9}|K_1^+|$$

(see Fig. 6, left).

Denote by $\sigma_r S_r$ the first square packed into K_l . We show that

(5)
$$\sum_{i=r}^{z} |S_i| > \frac{4}{9} |K_l^+|.$$

Let T_l be the smallest right-angled isosceles triangle containing K_l^+ . Obviously, if K_l is a trapezoid, then $T_l = K_l^+$. Denote by b_l the length of the hypotenuse of T_l and denote by b_{l+1} the length of the base of K_{l+1} .

Fig. 6

Observe that $z \leq r+2$. If $z \geq r+3$, then $2a_r + a_{r+1} + 2a_{r+2} \leq b_l$ (see Fig. 6, right). Since $2a_r + 3a_{r+2} \leq b_l$ and $b_{l+1} = b_l - 2a_r$ it follows that $3a_{r+2} \leq b_{l+1}$, i.e., S_z can be packed into K_{l+1} , which is a contradiction.

There are two possibilities: either z = r + 1 or z = r + 2.

If z = r + 1, then $2a_r + 2a_z > b_l$ (see Fig. 7, left). Consequently,

$$|S_r| + |S_z| > a_r^2 + \left(\frac{1}{2}b_l - a_r\right)^2 = 2a_r^2 - a_rb_l + \frac{1}{4}b_l^2 \ge \frac{1}{8}b_l^2 \ge \frac{1}{2}|K_l^+| > \frac{4}{9}|K_l^+|.$$

If z = r + 2, then $2a_r + a_{r+1} + 2a_z > b_l$ (see Fig. 7, right). Consequently,

$$|S_r| + |S_{r+1}| + |S_z| = a_r^2 + a_{r+1}^2 + a_z^2 > a_r^2 + a_{r+1}^2 + \left(\frac{1}{2}b_l - a_r - \frac{1}{2}a_{r+1}\right)^2.$$

By using the standard method of finding the minimum of a function of two variables it is easy to check that this value is not less than $\frac{1}{9}b_l^2 \geq \frac{4}{9}|K_l^+|$.

Fig. 7

It is easy to see that if $j \in \{2, \ldots, l\}$ and if only one square is packed into K_j , then j = l (as in Fig. 7, left). Consequently, at least two squares are packed into K_j for $j = 2, \ldots, l - 1$. By (3)–(5) and by the Lemma we deduce that

$$\sum_{i=1}^{z} |S_i| > \frac{4}{9} (|K_1^+| + |K_2| + \dots + |K_{l-1}| + |K_l^+|) = \frac{4}{9} |S'|,$$

which is a contradiction. \blacksquare

Acknowledgements. The author thanks Andrzej Derdziński for discovering a gap in the proof of the Theorem and for helpful comments on an earlier version of this paper.

REFERENCES

- K. Böröczky, Jr., *Finite Packing and Covering*, Cambridge Tracts in Math. 154, Cambridge Univ. Press, Cambridge, 2004.
- P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
- [3] G. Fejes Tóth and W. Kuperberg, *Packing and covering with convex sets*, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, 1993, 799–860.
- [4] J. Januszewski, Covering by sequences of squares, Studia Sci. Math. Hungar. 39 (2002), 179–188.
- [5] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103–110.

Janusz Januszewski Institute of Mathematics and Physics University of Technology and Life Sciences Kaliskiego 7 85-796 Bydgoszcz, Poland E-mail: januszew@utp.edu.pl

> Received 15 April 2009; revised 21 May 2010

(5214)