

translative packing of a SQUare With SEQUENCES OF SQUARES

BY
JANUSZ JANUSZEWSKI (Bydgoszcz)

Abstract

Let S be a square and let S^{\prime} be a square of unit area with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S whose total area does not exceed $\frac{4}{9}$ can be packed translatively into S^{\prime}.

1. Introduction. Let C, C_{1}, C_{2}, \ldots be convex bodies in the plane. We say that the sequence $\left(C_{i}\right)$ can be packed translatively into C if there are translations σ_{i} such that $\sigma_{i} C_{i}$ are subsets of C with mutually disjoint interiors. We say that the sequence $\left(C_{i}\right)$ permits a translative covering of C if there are translations σ_{i} such that $C \subset \bigcup \sigma_{i} C_{i}$. The area of C is denoted by $|C|$.

Let S be a square. Moon and Moser showed in [5] that any sequence of squares homothetic to S can be packed translatively into S provided the total area of the squares in the sequence does not exceed $\frac{1}{2}|S|$. Additionally, any sequence of homothetic copies of S with total area not smaller than $3|S|$ permits a translative covering of S. In [4] it is shown that any sequence of homothetic copies of S whose total area is not smaller than $2.5\left|S^{\prime}\right|$ permits a translative covering of S^{\prime}, where S^{\prime} is a square with a diagonal parallel to a side of S. The aim of this paper is to give an analog of this result for packing. We show that if S^{\prime} is a square with a diagonal parallel to a side of S, then any sequence of homothetic copies of S can be packed translatively into S^{\prime} provided the total area of the copies does not exceed $\frac{4}{9}\left|S^{\prime}\right|$. The bound of $\frac{4}{9}$ cannot be improved upon. The reason is that two homothetic copies of S, each of area greater than $\frac{2}{9}\left|S^{\prime}\right|$, cannot be packed translatively into S^{\prime} (see Fig. 1, left).

Various results concerning packings and coverings are discussed in [1 -3 .
2. Packing method. Denote by S^{\prime} a square whose vertices are $(0,-1)$, $(1,0),(0,1),(-1,0)$. Let S be a square with sides parallel to the coordinate axes, let $\left(S_{i}\right)$ be a sequence of homothetic copies of S and let $a_{1} \geq a_{2} \geq \cdots$, where a_{i} denotes the side length of S_{i}, for $i=1,2, \ldots$.

[^0]

Fig. 1
We describe a method of translative packing of S_{1}, S_{2}, \ldots into S^{\prime}.
The first square from the sequence is packed into S^{\prime} as low as possible, i.e.,

$$
\sigma_{1} S_{1}=\left\{(x, y) ;-\frac{1}{2} a_{1} \leq x \leq \frac{1}{2} a_{1},-1+\frac{1}{2} a_{1} \leq y \leq-1+\frac{3}{2} a_{1}\right\}
$$

(see Figs. 1 and 2; in Figs. 2-7 each square $\sigma_{i} S_{i}$ is denoted by the integer i, for short).

We will pack S_{2}, S_{3}, \ldots into S^{\prime} in layers. Let $-1<d<1$ and $h>0$. By a layer L of height h we mean $\{(x, y) ; d \leq y \leq d+h\}$; by a container we mean the intersection of a layer with S^{\prime}.

Each container is a polygon. The longest side of this polygon that is parallel to the x-axis is called the base of the container. If there are two such sides, then we mean the lower one. The height $h(K)$ of a container $K=L \cap S^{\prime}$ is equal to the height of L. We say that S_{i} is k-packed into a container K if it is packed translatively into K so that one side of $\sigma_{i} S_{i}$ is contained in the base of K and, at the same time, no point of the interior of K lying on the right side of $\sigma_{i} S_{i}$ belongs to $\sigma_{1} S_{1} \cup \cdots \cup \sigma_{i-1} S_{i-1}$.

Let

$$
L_{2}=\left\{(x, y) ;-1+\frac{3}{2} a_{1} \leq y \leq-1+\frac{3}{2} a_{1}+a_{2}\right\}
$$

and let $K_{2}=L_{2} \cap S^{\prime}$. We declare that this container is basic and 2-open. We k-pack the second square from the sequence into K_{2} as far to the left as possible (see S_{2} in Fig. 2).

For each $i \geq 3$ we proceed as follows. Assume that the translations $\sigma_{1}, \ldots, \sigma_{i-1}$ have already been provided, that the $(i-1)$-open containers have been defined and that the basic containers $K(j)$, for some $j<i$, are defined.

Fig. 2

1. If there is an $(i-1)$-open container K into which S_{i} can be k-packed and if $a_{i} \geq \frac{1}{2} h(K)$, then each ($i-1$)-open container is i-open. Denote by $K(i)$ the lowest i-open container into which S_{i} can be k-packed. We k-pack S_{i} into $K(i)$ as far to the left as possible (see S_{4}, S_{5} and S_{7} in Fig. 2).
2. If there is an $(i-1)$-open container K into which S_{i} can be k-packed and if $a_{i}<\frac{1}{2} h(K)$, then let m be an integer such that $2^{-m-1} h(K)<$ $a_{i} \leq 2^{-m} h(K)$. Each $(i-1)$-open container is divided into 2^{m} containers of height $2^{-m} h(K)$. Only the newly created containers of height $2^{-m} h(K)$ are i-open. Denote by $K(i)$ the lowest i-open container into which S_{i} can be k-packed. We k-pack S_{i} into $K(i)$ as far to the left as possible (see S_{3} in Fig. 2).
3. If there is no $(i-1)$-open container K into which S_{i} can be k-packed, then we create a new layer $L(i)$ of height a_{i} directly above the highest layer. We declare that the container $K(i)=L(i) \cap S^{\prime}$ is basic. Moreover, only $K(i)$ is i-open. We k-pack S_{i} into $K(i)$ as far to the left as possible (see S_{6} in Fig. 2).
4. Packing density in basic containers. In this section we show that a large part of each basic container is filled with packed squares.

Lemma. Assume that K is a basic container, that S_{p} is the first square from the sequence packed into K, that S_{q+1} is the first square which cannot be packed into K by the method presented in Section 2 and that $q \geq p+1$. Then the total area of the squares packed into K is greater than $\frac{4}{9}|K|$.

Proof. Consider two cases depending on the size of the last square packed into K.

CASE 1: $a_{q} \geq \frac{1}{2} a_{p}$. Let R be the set of points of K lying between the right side of $\sigma_{p} S_{p}$ and the straight line containing the left side of $\sigma_{q} S_{q}$ (see

Fig. 3
Fig. 3). Obviously,

$$
\begin{equation*}
\sum_{i=p+1}^{q-1}\left|S_{i}\right| \geq \frac{1}{2}|R| \tag{1}
\end{equation*}
$$

(if $q=p+1$, then $R=\emptyset$ and the sum on the left-hand side of this inequality is meant to be zero).

We show that

$$
\begin{equation*}
\left|S_{p}\right|+\left|S_{q}\right|>\frac{4}{9}|K \backslash R| \tag{2}
\end{equation*}
$$

First consider the case where K is a trapezoid. Since $\left(\frac{3}{2} a_{q}-a_{p}\right)^{2} \geq 0$ it follows that

$$
3 a_{q} a_{p}-a_{p}^{2} \leq \frac{9}{4} a_{q}^{2}
$$

As a consequence,

$$
|K \backslash R|<2 a_{p}^{2}+\left(3 a_{q}-a_{p}\right) a_{p}<\frac{9}{4} a_{p}^{2}+\frac{9}{4} a_{q}^{2}=\frac{9}{4}\left(\left|S_{p}\right|+\left|S_{q}\right|\right)
$$

(see Fig. 3 (left), where $v<3 a_{q}-a_{p}$).
Now consider the case where K is a hexagon. Denote by b and c the length of the sides of K parallel to the x-axis and let $t=a_{p}-\frac{1}{2}|b-c|$ (see Fig. 4).

Fig. 4
If $t \leq a_{q}$, then we argue as in the case where K is a trapezoid (see Fig. 3, right).

If $t>a_{q}$, then

$$
|K \backslash R|<2 a_{p}^{2}-\left(\frac{t}{\sqrt{2}}\right)^{2}+a_{p}\left(2 a_{q}+t-a_{p}\right)=a_{p}^{2}+2 a_{p} a_{q}-\frac{1}{2} t^{2}+a_{p} t
$$

(see Fig. 4, where $w<2 a_{q}+t-a_{p}$). Consequently,

$$
|K \backslash R|<a_{p}^{2}+2 a_{p} a_{q}-\frac{1}{2} a_{p}^{2}+a_{p}^{2}=\frac{3}{2} a_{p}^{2}+2 a_{p} a_{q}
$$

Since
$\frac{9}{4} a_{p}^{2}-\frac{3}{2} a_{p}^{2}-2 a_{p} a_{q}+\frac{9}{4} a_{q}^{2}>\frac{3}{4} a_{p}^{2}-\frac{3 \sqrt{3}}{2} a_{p} a_{q}+\frac{9}{4} a_{q}^{2}=\left(\frac{\sqrt{3}}{2} a_{p}-\frac{3}{2} a_{q}\right)^{2} \geq 0$
it follows that

$$
|K \backslash R|<\frac{9}{4} a_{p}^{2}+\frac{9}{4} a_{q}^{2}=\frac{9}{4}\left(\left|S_{p}\right|+\left|S_{q}\right|\right)
$$

We conclude from (1) and (2) that

$$
\sum_{i=p}^{q}\left|S_{i}\right|>\frac{4}{9}|K|
$$

CASE 2: $a_{q}<\frac{1}{2} a_{p}$. Let m be an integer such that $2^{-m-1} a_{p}<a_{q} \leq$ $2^{-m} a_{p}$. Denote by $K_{q}(1), \ldots, K_{q}\left(2^{m}\right)$ the q-open containers of height $2^{-m} a_{p}$ obtained by partitioning K. For each $i \in\left\{1, \ldots, 2^{m}\right\}$ denote by $s_{q}(i)$ the maximum value of the x-coordinate on $\left(\sigma_{1} S_{1} \cup \cdots \cup \sigma_{q} S_{q}\right) \cap \operatorname{Int} K_{q}(i)$. Let $R_{q}(i)$ be the set of points of $K_{q}(i)$ lying between the right side of $\sigma_{p} S_{p}$ and the straight line $x=s_{q}(i)$ and let $R_{q}=\bigcup_{i=1}^{2^{m}} R_{q}(i)$. By the description of the packing method we deduce that

$$
\sum_{i=p+1}^{q}\left|S_{i}\right| \geq \frac{1}{2}\left|R_{q}\right|
$$

(see Fig. 5). Moreover,
$\left|K \backslash R_{q}\right|<\frac{3}{2} a_{p}^{2}+2^{m} \cdot \frac{3}{2}\left(2^{-m} a_{p}\right)^{2}=\frac{3}{2} a_{p}^{2}+\frac{3}{2} \cdot 2^{-m} a_{p}^{2} \leq a_{p}^{2}\left(\frac{3}{2}+\frac{3}{4}\right)=\frac{9}{4}\left|S_{p}\right|$.

Fig. 5
Consequently,

$$
\sum_{i=p}^{q}\left|S_{i}\right|>\frac{4}{9}|K|
$$

4. The main result

Theorem. Assume that S is a square and that S^{\prime} is a square with a diagonal parallel to a side of S. Any (finite or infinite) sequence of homothetic copies of S can be packed translatively into S^{\prime} provided the total area of the copies does not exceed $\frac{4}{9}\left|S^{\prime}\right|$.

Proof. Due to the affine invariant nature of the problem we can assume that the vertices of S^{\prime} are $(0,-1),(1,0),(0,1),(-1,0)$. Let $\left(S_{i}\right)$ be a sequence of homothetic copies of S and let $\sum\left|S_{i}\right| \leq \frac{4}{9}\left|S^{\prime}\right|$. Denote by a_{i} the side length of S_{i} for $i=1,2, \ldots$ Without loss of generality we can assume that $a_{1} \geq a_{2} \geq \cdots$.

We show that S_{1}, S_{2}, \ldots can be packed translatively into S^{\prime}.
Suppose that it is impossible to pack S_{1}, S_{2}, \ldots into S^{\prime} by the method described in Section 2. Let S_{z} be the first square which cannot be packed into S^{\prime}.

Denote by K_{1}^{+}the set of the points of S^{\prime} with y-coordinate not greater than $-1+\frac{3}{2} a_{1}$. All basic containers are denoted by K_{2}, \ldots, K_{l+1} in such a way that K_{i} is higher than K_{j} provided $i>j(l=3$ and $z=8$ in Fig. 2). Moreover, let K_{l}^{+}be the set of points of S^{\prime} lying above the base of K_{l}. Into $K_{l+1}=K(z)$ no square has been packed-this container is z-open, but it is impossible to pack translatively S_{z} into K_{l+1}.

First we show that $l \geq 2$. Since $\left|S_{1}\right| \leq \frac{4}{9}\left|S^{\prime}\right|<\frac{1}{2}\left|S^{\prime}\right|$ it follows that $l \geq 1$ $\left(\left|S_{1}\right|=\frac{1}{2}|S|\right.$ in Fig. 1, right). If $l=1$, then $\frac{3}{2} a_{1}+\frac{3}{2} a_{2}>2$ (see Fig. 1 (left), where $\frac{3}{2} a_{1}+\frac{3}{2} a_{2}=2$). Consequently,

$$
a_{1}^{2}+a_{2}^{2}>a_{1}^{2}+\left(\frac{4}{3}-a_{1}\right)^{2} \geq \frac{8}{9}=\frac{4}{9}\left|S^{\prime}\right|
$$

which is a contradiction.
Obviously,

$$
\begin{equation*}
S^{\prime}=K_{1}^{+} \cup K_{2} \cup \cdots \cup K_{l-1} \cup K_{l}^{+} \tag{3}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\left|S_{1}\right| \geq \frac{4}{9}\left|K_{1}^{+}\right| \tag{4}
\end{equation*}
$$

(see Fig. 6, left).
Denote by $\sigma_{r} S_{r}$ the first square packed into K_{l}. We show that

$$
\begin{equation*}
\sum_{i=r}^{z}\left|S_{i}\right|>\frac{4}{9}\left|K_{l}^{+}\right| \tag{5}
\end{equation*}
$$

Let T_{l} be the smallest right-angled isosceles triangle containing K_{l}^{+}. Obviously, if K_{l} is a trapezoid, then $T_{l}=K_{l}^{+}$. Denote by b_{l} the length of the hypotenuse of T_{l} and denote by b_{l+1} the length of the base of K_{l+1}.

Fig. 6
Observe that $z \leq r+2$. If $z \geq r+3$, then $2 a_{r}+a_{r+1}+2 a_{r+2} \leq b_{l}$ (see Fig. 6, right). Since $2 a_{r}+3 a_{r+2} \leq b_{l}$ and $b_{l+1}=b_{l}-2 a_{r}$ it follows that $3 a_{r+2} \leq b_{l+1}$, i.e., S_{z} can be packed into K_{l+1}, which is a contradiction.

There are two possibilities: either $z=r+1$ or $z=r+2$.
If $z=r+1$, then $2 a_{r}+2 a_{z}>b_{l}$ (see Fig. 7, left). Consequently, $\left|S_{r}\right|+\left|S_{z}\right|>a_{r}^{2}+\left(\frac{1}{2} b_{l}-a_{r}\right)^{2}=2 a_{r}^{2}-a_{r} b_{l}+\frac{1}{4} b_{l}^{2} \geq \frac{1}{8} b_{l}^{2} \geq \frac{1}{2}\left|K_{l}^{+}\right|>\frac{4}{9}\left|K_{l}^{+}\right|$.

If $z=r+2$, then $2 a_{r}+a_{r+1}+2 a_{z}>b_{l}$ (see Fig. 7, right). Consequently,

$$
\left|S_{r}\right|+\left|S_{r+1}\right|+\left|S_{z}\right|=a_{r}^{2}+a_{r+1}^{2}+a_{z}^{2}>a_{r}^{2}+a_{r+1}^{2}+\left(\frac{1}{2} b_{l}-a_{r}-\frac{1}{2} a_{r+1}\right)^{2}
$$

By using the standard method of finding the minimum of a function of two variables it is easy to check that this value is not less than $\frac{1}{9} b_{l}^{2} \geq \frac{4}{9}\left|K_{l}^{+}\right|$.

Fig. 7
It is easy to see that if $j \in\{2, \ldots, l\}$ and if only one square is packed into K_{j}, then $j=l$ (as in Fig. 7, left). Consequently, at least two squares are packed into K_{j} for $j=2, \ldots, l-1$. By (3)-(5) and by the Lemma we deduce that

$$
\sum_{i=1}^{z}\left|S_{i}\right|>\frac{4}{9}\left(\left|K_{1}^{+}\right|+\left|K_{2}\right|+\cdots+\left|K_{l-1}\right|+\left|K_{l}^{+}\right|\right)=\frac{4}{9}\left|S^{\prime}\right|
$$

which is a contradiction.

Acknowledgements. The author thanks Andrzej Derdziński for discovering a gap in the proof of the Theorem and for helpful comments on an earlier version of this paper.

REFERENCES

[1] K. Böröczky, Jr., Finite Packing and Covering, Cambridge Tracts in Math. 154, Cambridge Univ. Press, Cambridge, 2004.
[2] P. Brass, W. Moser and J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005.
[3] G. Fejes Tóth and W. Kuperberg, Packing and covering with convex sets, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, 1993, 799-860.
[4] J. Januszewski, Covering by sequences of squares, Studia Sci. Math. Hungar. 39 (2002), 179-188.
[5] J. W. Moon and L. Moser, Some packing and covering theorems, Colloq. Math. 17 (1967), 103-110.

Janusz Januszewski
Institute of Mathematics and Physics
University of Technology and Life Sciences
Kaliskiego 7
85-796 Bydgoszcz, Poland
E-mail: januszew@utp.edu.pl

[^0]: 2010 Mathematics Subject Classification: Primary 52C15.
 Key words and phrases: packing, square.

