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Abstract. Denote by Km the mirror image of a planar convex body K in a straight
line m. It is easy to show that K∗

m = conv(K ∪ Km) is the smallest by inclusion convex
body whose axis of symmetry is m and which contains K. The ratio axs(K) of the area
of K to the minimum area of K∗

m over all straight lines m is a measure of axial symmetry
of K. We prove that axs(K) > 1

2

√
2 for every centrally symmetric convex body and that

this estimate cannot be improved in general. We also give a formula for axs(P ) for every
parallelogram P .

1. Introduction. Denote by E2 the Euclidean plane. The mirror image
of a convex body K in a straight line m is denoted by Km. We put K∗m =
conv(K ∪ Km) and call m the mirror line. It is easy to show that K∗m is
the smallest by inclusion convex body containing K whose axis of symmetry
is m. Recall two claims formulated in [11].

Claim 1.1. Let K ⊂ E2 be a convex body. If the position of a straight
line m varies continuously, then area(K∗m) varies continuously.

Claim 1.2. Let K ⊂ E2 be a convex body and let m and n be two
parallel straight lines such that only m passes through K. Then area(K∗m) <
area(K∗n).

By these claims and by compactness arguments we conclude that the
infimum of the area of K∗m over all straight lines m is attained. So using
the term minimum instead of infimum is correct here (the same remark
concerns many other places of the paper where we consider compact families
of straight lines m).

The number

axs(K) =
area(K)

min
m

area(K∗m)

is the measure of axial symmetry of K that we consider in this paper. This
measure and miscellaneous other measures of axial symmetry are discussed
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in [1–12]. In particular, the appendix of [8] gives an overview of measures
of symmetry of convex bodies, including axial symmetry measures. Also
Section 4.2 of the survey article [9] considers measures of symmetry of convex
bodies, and in particular their measures of axial symmetry.

We conjecture that axs(K) > 1
2

√
2 for every convex body K ⊂ E2.

From [10] we know that axs(K) ≥ 16/31 for every convex body K ⊂ E2.
That paper also considers approximation of planar convex bodies by some
specific axially symmetric convex bodies like rhombi and isosceles triangles.

In [11] it is proved that axs(K) > 1
2

√
2 for every triangle K and that

this estimate cannot be improved. Also final estimates for right-angled and
acute triangles are given.

The main aim of the present paper is to prove that axs(K) > 1
2

√
2 for

every centrally symmetric convex body K (see Theorem 4.1) and that this
estimate cannot be improved. More precisely, it cannot be improved for the
family of parallelograms; see Theorem 2.1 which gives the value of axs(P )
for an arbitrary parallelogram P . The proof of the inequality axs(K) > 1

2

√
2

in Theorem 4.1 is based on Theorem 3.1 which says that for any centrally
symmetric planar convex body K there exists an axially symmetric convex
octagon Q circumscribed about K such that area(K) > 1

2

√
2 · area(Q).

Our proofs of Theorems 3.1 and 4.1 are based on similar ideas to those in
the proof of Theorem 8 of [7]. That theorem and its proof claim the weaker
inequalities axs(K) ≥ 1

2

√
2 and area(K) ≥ 1

2

√
2 · area(Q) for every centrally

symmetric K, but the proof in [7] is partially incorrect (see our comment at
the end of Section 3).

We omit an easy proof of the following claim.

Claim 1.3. If K ⊂ E2 is a centrally symmetric convex body with center
o and if two perpendicular straight lines m1 and m2 pass through o, then
K∗m1

and K∗m2
coincide.

2. Measure of axial symmetry of parallelograms. In the following
theorem we give a formula for the measure axs(P ) of axial symmetry of an
arbitrary parallelogram P = abcd. For definiteness, we assume that ∠bad ≤
π/2 and |ad| ≤ |ab|. We use the same symbol to denote an angle and its
measure.

Theorem 2.1. Let P = abcd be a parallelogram such that ∠bad ≤ π/2
and |ad| ≤ |ab|. Put α = ∠bac and β = ∠abd. If |ac|/|ab| ≤

√
2, then

(1) axs(P ) =
sin(α+ β)
2 sinβ cosα

.
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If |ac|/|ab| ≥
√

2, then

(2) axs(P ) =
sinβ

sin(α+ β) cosα
.

Proof. Without loss of generality, we assume that |ab| = 1. Denote by o
the center of symmetry of P . We put γ = ∠adb and δ = ∠oad.

Since ∠bad ≤ π/2 and |ad| ≤ |ab|, we get |ob| ≤ |ao| ≤ |ab| and ∠bao ≤
∠oba. Thus α ≤ β. Moreover, π/2 ≤ ∠aob, ∠bad ≤ π/2 and ∠bad = α + δ.
Hence

(3) α+ β ≤ π/2 and α+ δ ≤ π/2.
From δ < α + δ and the right inequality in (3) we obtain δ < π/2. Of

course, ∠acb = δ. Clearly in the triangle abc we have |bc| ≤ |ab| ≤ |ac|,
which implies α ≤ δ. To summarize,

(4) α ≤ δ < π/2.

By the sine theorem we get

(5) |oc| = |ao| = sinβ
sin(α+ β)

and |od| = |ob| = sinα
sin(α+ β)

.

Further we limit ourselves to the mirror lines m through o because it is
not difficult to see that if n is a straight line parallel to m, then area(P ∗m) ≤
area(P ∗n).

If p is a point, then we denote by pm the mirror image of p in the line m.
Let l be the straight line through o parallel to the side ab. Denote by ϕ

the angle between l and m. From Claim 1.3 we see that it is sufficient to
minimize area(P ∗m) over all ϕ ∈ [0, π/2].

In four subintervals of [0, π/2] we have different formulas for area(P ∗m).
So we consider four cases. The corresponding formulas f1(ϕ), . . . , f4(ϕ) are
discussed in Cases 1–4 below.

Case 1: ϕ ∈ [0, α]. In this case P ∗m is the octagon admbcmcbmdam (see
Fig. 1). Obviously,

P ∗m = ocmc ∪ ocbm ∪ obmd ∪ odam ∪ oama ∪ oadm ∪ odmb ∪ obcm.
Observe that the angle between m and the straight line through a and c is
α− ϕ.

From this and since cm is symmetric to c with respect to m we get
∠cmoc = 2(α−ϕ). Now |oc| = |ocm| implies area(ocmc) = 1

2 |oc|
2 sin(2α−2ϕ).

Since the triangles ocmc and oama are symmetric with respect to o, we see
that area(ocmc) = area(oama). Of course, ∠cmobm = α+β. From this, from
∠cmoc = 2α−2ϕ and ∠cobm = ∠cmobm−∠cmoc we get ∠cobm = β−α+2ϕ.
This and |obm| = |ob| lead to area(ocbm) = 1

2 |oc| |ob| sin(β−α+2ϕ). Clearly,
area(ocbm) = area(odam) = area(oadm) = area(obcm). Observe that ∠cod =
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Fig. 1 Fig. 2

π−α−β. Hence, by ∠bmod = ∠cod−∠cobm and ∠cobm = β−α+2ϕ we get
∠bmod = π − 2β − 2ϕ. Now |obm| = |ob| and (5) imply that area(obmd) =
1
2 |ob|

2 sin(π−2β−2ϕ). Of course, area(obmd) = area(odmb). All this implies
that area(P ∗m) is given by the function

f1(ϕ) = |oc|2 sin(2α−2ϕ) + 2|oc||ob| sin(β−α+ 2ϕ) + |ob|2 sin(π−2β−2ϕ).

Since ϕ ∈ [0, α], we conclude that
0 ≤ 2α− 2ϕ ≤ 2α,

β − α ≤ β − α+ 2ϕ ≤ α+ β,

π − 2(α+ β) ≤ π − 2β − 2ϕ ≤ π − 2β.

From the first inequality and α ≤ π/4 (which results from α ≤ β and the left
inequality of (3)) we obtain 0 ≤ 2α− 2ϕ ≤ π/2. From the second displayed
inequality, the left inequality of (3) and α ≤ β we get 0 ≤ β−α+2ϕ ≤ π/2.
From the third displayed inequality, the left inequality of (3) and 0 < β
we see that 0 ≤ π − 2β − 2ϕ < π. Consequently, 2α − 2ϕ, β − α + 2ϕ and
π−2β−2ϕ belong to [0, π]. Since the sine function is concave in this interval,
f1(ϕ) is concave there.

Case 2: ϕ ∈ [α, π/2−β] for γ ≤ π/2 and ϕ ∈ [α, α+ δ] for γ ≥ π/2. We
have

P ∗m = aamdmbccmbmd

= occm ∪ ocmbm ∪ obmd ∪ oda ∪ oaam ∪ oamdm ∪ odmb ∪ obc (see Fig. 2).

We omit tedious considerations (partially similar to those from Case 1)
which lead to the conclusion that area(P ∗m) equals

f2(ϕ) = |oc|2 sin(2ϕ− 2α) + 2|oc| |ob| sin(α+ β) + |ob|2 sin(π − 2β − 2ϕ).

Similarly to Case 1 we show that f2(ϕ) is concave in [α, π/2 − β] and
[α, α + δ] (when γ ≤ π/2 apply 0 < α + β, and when γ ≥ π/2 apply the
right inequality of (4), γ ≥ π/2 and 0 < α+ β).
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Fig. 3 Fig. 4

Case 3: ϕ ∈ [π/2 − β, α + δ] for γ ≤ π/2. We easily conclude that P ∗m
is the octagon aambdmccmdbm (see Fig. 3). Clearly,

P ∗m = occm ∪ ocmd ∪ odbm ∪ obma ∪ oaam ∪ oamb ∪ obdm ∪ odmc.

Observe that area(P ∗m) is given by

f3(ϕ) = |oc|2 sin(2ϕ−2α)+2|oc||ob| sin(π+α−β−2ϕ)+|ob|2 sin(2β+2ϕ−π).

Analogously to Case 1 we show that the function f3(ϕ) is concave in
[π/2 − β, α + δ] (we apply the left inequality of (3), the right inequality of
(4), γ ≥ π/4 and γ ≥ δ).

Case 4: ϕ ∈ [α + δ, π/2]. This time P ∗m is the rectangle aamccm (see
Fig. 4). The area of P ∗m equals

f4(ϕ) = 2|oc|2 sin(2ϕ− 2α).

Similarly to Case 1 we show that the function f4(ϕ) is concave in the
interval [α+δ, π/2] (apply 0 < α and 0 < δ). This finishes the considerations
of Case 4.

The functions fi(ϕ) for i = 1, . . . , 4 (when γ ≤ π/2) and for i = 1, 2, 4
(when γ ≥ π/2) are concave in the respective intervals considered in our
cases. So each attains its smallest value at an end-point (or both) of the
corresponding interval. Since the four (if γ ≤ π/2) and three (if γ ≥ π/2)
intervals are neighboring, the smallest value of area(P ∗m) is attained at least
at one end-point of at least one of the intervals.

First assume γ ≤ π/2. By the preceding paragraph, to find the smallest
value of area(P ∗m) we consider Cases 1–4. We choose the smallest of the
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numbers

f1(0) = |oc|2 sin 2α+ 2|oc||ob| sin(β − α) + |ob|2 sin(π − 2β),

f1(α) = f2(α) = 2|oc||ob| sin(β + α) + |ob|2 sin(π − 2β − 2α),

f2(π/2− β) = f3(π/2− β) = |oc|2 sin(π − 2β − 2α) + 2|oc| |ob| sin(α+ β),

f3(α+ δ) = |oc|2 sin 2δ + 2|oc||ob| sin(π − α− β − 2δ)

+ |ob|2 sin(2α+ 2δ + 2β − π),

f4(α+ δ) = 2|oc|2 sin 2δ,

f4(π/2) = 2|oc|2 sin(π − 2α).

Elementary, but time consuming calculations show that f1(0) = f4(π/2) =
2|oc|2 sin 2α, f1(α) = f2(α) = sin 2α, f2(π/2 − β) = f3(π/2 − β) = sin 2β
and f3(α + δ) = f4(α + δ) = 2|oc|2 sin 2δ. By α ≤ β and the left inequal-
ity of (3) we get α ≤ β ≤ π/2 − α. Since 0 < 2α ≤ 2β ≤ π − 2α < π,
we have sin 2α ≤ sin 2β. From the right inequality of (3) and the left in-
equality of (4) we obtain α ≤ δ ≤ π/2− α. Hence 0< 2α≤ 2δ≤ π−2α<π.
Consequently, sin 2α ≤ sin 2δ and 2|oc|2 sin 2α ≤ 2|oc|2 sin 2δ. Thus the min-
imum of area(P ∗m) is equal to sin 2α or to 2|oc|2 sin 2α.

Now assume γ ≥ π/2. From Cases 1, 2, 4 and from the concavity
of f1(ϕ), f2(ϕ), f4(ϕ), we see that in order to find the smallest value of
area(P ∗m) we have to choose the smallest of the numbers f1(0) = f4(π/2) =
2|oc|2 sin 2α, f1(α) = f2(α) = sin 2α, f2(α+δ) = f4(α+δ) = 2|oc|2 sin 2δ. As
in the preceding paragraph, 2|oc|2 sin 2α ≤ 2|oc|2 sin 2δ. Again we have the
same two candidates sin 2α and 2|oc|2 sin 2α to be the minimum of area(P ∗m).

It remains to compare the two candidates obtained in each of the two pre-
ceding paragraphs. Clearly, |oc| = 1

2 |ac|. Hence the inequality 2|oc|2 sin 2α ≤
sin 2α is equivalent to 1

2 |ac|
2 sin 2α ≤ sin 2α. Consequently, the last in-

equality holds true if and only if |ac| ≤
√

2. The first conclusion is that
if |ac| ≤

√
2, then the area of P ∗m is the smallest for ϕ = 0 and for ϕ = π/2

and equals
1
2
|ac|2 sin 2α = 2 · sin2 β sin 2α

sin2(α+ β)
.

The second conclusion is that if |ac| ≥
√

2, then the area of P ∗m is the
smallest for ϕ = α and it equals sin 2α. From the above two conclusions and
from area(P ) = 2 · sinβsinα

sin(α+β) , we obtain the assertion of Theorem 2.1.

Corollary 2.2. We have

axs(P ) =
1

cosα
·max

{
sin(α+ β)

2 sinβ
,

sinβ
sin(α+ β)

}
=

1
cosα

·max
{
|ab|
|ac|

,
|ac|
2|ab|

}
.
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Corollary 2.3. For |ac|/|ab| ≤
√

2, the value on the right side of (1)
is attained if and only if the mirror line m passes through the center of P ,
and is parallel or perpendicular to ab. For |ac|/|ab| ≥

√
2, the value on the

right side of (2) is attained if and only if m passes through the center of P ,
and contains ac or is perpendicular to it. For |ac|/|ab| =

√
2 formulas (1)

and (2) give the same value, and axs(P ) is attained for all the four positions
of m described above, and only for them.

This corollary follows from the last paragraph of the proof of Theorem
2.1. Just observe that the minimum of area(P ∗m) is attained only for the
values of ϕ given there.

Corollary 2.4. For every parallelogram P we have axs(P ) > 1
2

√
2.

This estimate cannot be improved for the family of parallelograms.

Proof. From Corollary 2.2 and from the well known inequality max{s, t}
≥
√
st we find that axs(P ) ≥ 1√

2 cosα
> 1

2

√
2.

To see that the estimate
√

2/2 cannot be improved, we take parallelo-
grams for which |ac|/|ab| =

√
2, that is, for which |ao|/|ab| =

√
2/2. Apply-

ing the sine theorem to the triangle abo we see that sin(α+ β)/ sinβ =
√

2.
By (1) we get

axs(P ) =
sin(α+ β)
2 sinβ cosα

=
1
2

√
2 · 1

cosα
.

Letting α tend to 0, we conclude that axs(P ) can be arbitrarily close to
1
2

√
2.

3. Circumscribed axially symmetric convex octagons. Here is
an alternative proof of a property formulated in [7] as Theorem 8 (see the
comment after our proof).

Theorem 3.1. For every centrally symmetric planar convex body K
there exists an axially symmetric convex octagon Q which is circumscribed
about K and satisfies area(K) > 1

2

√
2 · area(Q).

Proof. Let k be a straight line through the center o of symmetry of K.
We circumscribe about K the rectangle Rk = akbkckdk whose side akbk is
parallel to k. Put λk = |akbk|/|bkck| and αk = arctanλk. Clearly, 0 < αk <
π/2.

Next, we circumscribe about K the parallelogram Pk whose sides are
parallel to the diagonals of Rk (see Fig. 5). Clearly, o is the center of sym-
metry of the circumscribed octagon Qk = Rk ∩Pk = qkrksktkukvkwkzk (the
notation is chosen such that qkrk ⊂ akbk and sktk ⊂ bkck, as in Fig. 5).
Notice that for non-smooth K and for some specific k it may also happen
that the octagon Qk reduces to a hexagon or to a parallelogram.
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Fig. 5

It is well known that the position of a supporting line of a convex body in
a direction is a continuous function of the direction. Hence when k rotates,
Rk varies continuously. Moreover, since the function arctan is continuous,
also Pk varies continuously. As a consequence, Qk varies continuously when
k rotates. We intend to show that there exists a direction k0 such that

(6) |ak0qk0 | = |rk0bk0 |.

Assume that for instance |ak1qk1 | < |rk1bk1 | for a direction k1 (if we have
the opposite inequality, we proceed analogously, and if we have equality,
we take k1 in place of k0). Denote by k2 the direction obtained from k1 by
its rotation by π/2. Clearly, Rk2 = Rk1 . Hence the definition of Pk implies
that Pk2 = Pk1 . From both these equalities we get Qk2 = Qk1 with, in
particular, ak2 = bk1 and bk2 = ck1 . Moreover, qk2 = sk1 and rk2 = tk1 . Of
course, the triangle tk1ck1uk1 is symmetric (with respect to o) to zk1ak1qk1 ,
and the triangle rk1bk1sk1 is an enlarged image of zk1ak1qk1 by a similarity.
Consequently, |bk1sk1 | > |tk1ck1 |. Since Qk2 = Qk1 , this inequality can be
written as |ak2qk2 | > |rk2bk2 |. So by the construction of Qk and by the
continuity of the shape of Qk we find that between k1 and k2 (during the
process of rotating of k by π/2) there exists k0 for which (6) holds true.

From (6) and from the construction of Qk0 (in particular, from its cen-
tral symmetry) it follows that Qk0 is axially symmetric. The straight line
through the midpoints of sk0tk0 and wk0zk0 , and the straight line through
the midpoints of qk0rk0 and uk0vk0 , are its axes of symmetry.

From now on we omit the subscripts k0 and thus we write Q = qrstuvwz.
Since the octagon Q is circumscribed about K, every side of Q contains a
point of K. Namely, q′ ∈ qr, r′ ∈ rs, . . . , z′ ∈ zq. Put S = q′r′s′t′u′v′w′z′.
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Fig. 6

By the central symmetry of K, we may assume that these points are chosen
so that o is the center of symmetry of S.

Assume first that S is not a parallelogram. We then show that

(7) area(S) >
1
2

√
2 · area(Q).

Observe that it is sufficient to verify (7) in the special case when o is
the center of Cartesian coordinates and q = (h, 1), r = (−h, 1), s = (−1, h),
t = (−1,−h), u = −q, v = −r, w = −s and z = −t, where 0 ≤ h ≤ 1; the
reason is that this special case is obtained from the general case by an affine
transformation and from the fact that the ratio of areas of figures does not
change under affine transformations. Assume that |rr′| ≤ |z′q| (the opposite
case is analogous). Since area(r′z′r) ≤ area(r′z′q′), the area of S does not
increase when q′ moves to r and u′ moves to v, while the remaining six
vertices are unchanged (see Fig. 6). So imagine that q′ = r and u′ = v. In
this particular situation the area of S again does not increase when r′ moves
to r and v′ moves to v, while the remaining four vertices are unchanged. So
we get the hexagon H = rs′t′vw′z′ which is a special position of S and we
conclude that area(H) ≤ area(S).

From the preceding we see that in order to prove (7) it is sufficient to
show that for every h ∈ [0, 1] we have

(8) area(H) ≥ 1
2

√
2 · area(Q).

For this purpose it is sufficient to show that

(9)
1
2

√
2 · area(Q) ≤ area(rtvz),
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and that

(10) area(rtvz) ≤ area(H).

To verify (9) we first easily establish that area(rtvz) = 2h2 + 2 and
area(Q) = −2h2 + 4h+ 2. Consequently, (9) is equivalent to the inequality
1
2

√
2(−h2+2h+1) ≤ h2+1, that is, (h−

√
2+1)2 ≥ 0. Thus (9) is confirmed.

Having in mind the central symmetry of Q and H, to prove (10) it is
sufficient to show that for every fixed h ∈ [0, 1],

(11) area(rvz) ≤ area(rvw′z′).

Observe that w′ = (1, λ) for a λ ∈ [−h, h] and z′ = (µ, 1 + h − µ) for a
µ ∈ [h, 1] (see Fig. 6). We omit an elementary proof that

(12) area(rvw′z′) =
1
2
h2 + h+ 1 +

1
2
hλ− 1

2
hµ− 1

2
λµ.

Applying the partial derivative test for absolute extrema of functions of
two variables we easily show that this function of (λ, µ) ∈ [−h, h]× [h, 1] has
the global minimum only at the critical point (h, 1), that is, for λ = h and
µ = 1. Consequently, (11) and thus also (10) are true.

From (9) and (10) we see that (8) holds true.
As a consequence of (8), we obtain (7) with the weak inequality. Since

S is not a parallelogram, we exclude the case λ = h and µ = 1. Since the
global minimum of our function (12) is attained only for λ = h and µ = 1,
we obtain the strict inequality in (7).

Finally, consider the case when S is a parallelogram. Then the existence
of the octagon Q promised in the conclusion of Theorem 3.1 follows from
the proof of Theorem 2.1 and from Corollary 2.4.

As mentioned in the introduction, the inequality area(K)≥ 1
2

√
2·area(Q),

slightly weaker than ours, is formulated in Theorem 8 of [7, pp. 128–130]. Its
proof is, however, incorrect. In the rest of this paragraph we use the notation
of [7]. In the proof in question the angles between AB and EF and also GH
are not defined. The author only says that they should be equal, but this does
not define them and the octagon Q′′ uniquely. Thus for a given K, the author
obtains a class of circumscribed axially symmetric octagons Q′′ (instead of
one, as in our proof). For them the inequality area(P )/area(Q′′) ≥ 1

2

√
2 is

not true in general (for instance for x = y = 1 and k = 2).

4. Measure of axial symmetry of centrally symmetric bodies.
From Theorem 3.1 and Corollary 2.4 we immediately obtain the following
theorem.

Theorem 4.1. For every centrally symmetric planar convex body K we
have axs(K) > 1

2

√
2 and in general this inequality cannot be improved.
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Important centrally symmetric convex bodies are affine-regular hexagons,
i.e., hexagons which are affine images of regular hexagons. Here is an esti-
mate for the measure of axial symmetry of affine-regular hexagons.

Claim 4.2. For every affine-regular hexagon H we have axs(H) > 3/4.

To see this, consider a longest chord, say ad, ofH = abcdef . We construct
the rectangle J with two opposite sides containing bc and ef , and the other
two passing through a and d. From |be| ≤ |ad| and |cf | ≤ |ad| we see that
H is a proper subset of J . Moreover, since H is an affine-regular hexagon,
we have |bc| = |fe| = 1

2 |ad|. Hence area(H) < 3
4 · area(J). Since J is axially

symmetric, we obtain the assertion.
We conjecture that the estimate 3

4 for affine-regular hexagons cannot be
enlarged.

Problem 4.3. Provide extensions of Corollary 2.4 and of Theorem 4.1
to d-dimensional space, i.e., give estimates for the measure of mirror sym-
metry of d-dimensional parallelotopes and centrally symmetric convex bodies
(and also of arbitrary convex bodies).

REFERENCES

[1] H. K. Ahn, P. Brass, O. Cheong, H. S. Na, C. S. Shin and A. Vigneron, Approxi-
mation algorithms for inscribing or circumscribing an axially symmetric polygon to
a convex polygon, in: Lecture Notes in Comput. Sci. 3106, Springer, 2004, 259–267.

[2] —, —, —, —, —, —, Inscribing an axially symmetric polygon and other approxi-
mation algorithms for planar convex sets, Comput. Geom. 33 (2006), 152–164.

[3] A. B. Buda and K. Mislow, On a measure of axiality for triangular domains, Elem.
Math. 46 (1991), 65–73.

[4] G. D. Chakerian and S. K. Stein, Measures of symmetry of convex bodies, Canad.
J. Math. 17 (1965), 497–504.

[5] B. A. deValcourt, Measures of axial symmetry for ovals, Bull. Amer. Math. Soc. 72
(1966), 289–290.

[6] —, Measures of axial symmetry for ovals, Israel J. Math. 4 (1966), 65–82.
[7] —, Axially symmetric polygons inscribed in and circumscribed about convex sets,

Elem. Math. 22 (1967), 121–133.
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