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OSCILLATING MULTIPLIERS ON THE

HEISENBERG GROUP

BY

E. K. NARAYANAN and S. THANGAVELU (Bangalore)

Abstract. Let L be the sublaplacian on the Heisenberg group Hn. A recent result
of Müller and Stein shows that the operator L−1/2 sin

√
L is bounded on Lp(Hn) for all p

satisfying |1/p− 1/2| < 1/(2n). In this paper we show that the same operator is bounded
on Lp in the bigger range |1/p− 1/2| < 1/(2n− 1) if we consider only functions which are
band limited in the central variable.

1. Introduction and main results. Consider the Heisenberg group
Hn = C

n × R with the group law

(z, t)(w, s) =
(
z + w, t+ s+ 12 Im z.w

)
.

The vector fields

T =
∂

∂t
, Xj =

∂

∂xj
− 1
2
yj
∂

∂t
, Yj =

∂

∂yj
+
1

2
xj
∂

∂t
, j = 1, . . . , n,

form a basis for the Lie algebra of left invariant vector fields on the Heisen-
berg group. The operator

L = −
n∑

j=1

(X2j + Y
2
j )

is called the sublaplacian; it plays the same role as the ordinary Laplacian
does on R

n. It is well known that L is hypoelliptic and represents the sim-
plest example of the subelliptic realm.
The sublaplacian L is self-adjoint and nonnegative and hence admits the

spectral decomposition

L =
∞\
0

λdEλ.
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Given a bounded function m defined on (0,∞) one can define the operator
m(L) formally by setting

m(L)f =
∞\
0

m(λ) dEλf.

This operator is clearly bounded on L2(Hn) but need not be bounded on
Lp(Hn) for p 6= 2 unless some more conditions are imposed on the multi-
plier m. This problem has been studied by several authors and sufficient
conditions on m have been found. See the works [1], [6], [7] and [19]. The
optimal result has been proved in Müller–Stein [9] and Hebisch [5].
When m(λ) = ms(λ) = λ

−1/2 sin s
√
λ, the function u(z, t, s) defined by

u(z, t, s) = ms(L)f(z, t)
solves the Cauchy problem for the wave equation associated with the sub-
laplacian. Namely, u(z, t, s) solves the equation

∂2su(z, t, s) = Lu(z, t, s)
with initial conditions

u(z, t, 0) = 0, ∂su(z, t, 0) = f(z, t).

The Lp boundedness of the operator ms(L) has been studied by Müller and
Stein in [10], where they have established the following result.

Theorem 1.1 (Müller–Stein). For |1/p − 1/2| < 1/(2n), the operator
L−1/2 sin s

√
L extends to a bounded operator on Lp(Hn).

The analogue of this theorem for the Euclidean Laplacian has been
proved by Peral [15] and Miyachi [8]. Similar multipliers on noncompact
symmetric spaces have been studied by Giulini and Meda [3]. Results for the
sublaplacian on stratified groups have been obtained by Mauceri and Meda
[7]. Recently we have studied the wave equation associated with Hermite
and special Hermite expansions in [13]. For certain Schrödinger operators
see the work of Zhong [21] .
Observe that the multiplier m(λ) = λ−1/2 sin

√
λ satisfies the conditions

|m(j)(λ)| ≤ Cj(1 + λ2)−1/4−j/4, λ > 0,

for j = 0, 1, . . . Therefore, we are led to consider operators of the form m(L)
when m ∈ Sα̺ (R) where the symbol class Sα̺ consists of all C∞ functions on
R satisfying the estimates

|m(j)(λ)| ≤ Cj(1 + λ2)α/2−̺j/2

for j = 0, 1, . . . In [13] the Lp boundedness of operators of the form m(P )
for m ∈ Sα̺ (R) has been studied. More generally, the following theorem has
been established.
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Theorem 1.2. Let m ∈ S−α̺ (R) be such that m(λ) = 0 for |λ| ≤ 1/2.
Let P be a Rockland operator on Hn which is homogeneous of degree 2. Then
m(P ) is bounded on Lp(Hn) provided α > Q(1− ̺)|1/p− 1/2|, 1 < p <∞,
where Q = 2n+ 2 is the homogeneous dimension of Hn.

In particular, by taking P = L and m(λ) = λ−1/2 sin
√
λ we see that

L−1/2 sin
√
L is bounded on Lp(Hn) for |1/p− 1/2| < 1/Q. We see that the

result of Müller and Stein is much stronger than this. The interesting thing
to note is that in their result it is not the homogeneous dimension 2n+2 but
the Euclidean dimension 2n+1 which restricts the range of Lp boundedness.
Our aim in this paper is to slightly improve the result of Müller and Stein

on the wave equation in the case when f is band limited in the t-variable.
Let LpB(H

n) stand for those functions f in Lp(Hn) for which the partial
inverse Fourier transform fλ(z) in the t-variable is supported in |λ| ≤ B.
On this space we have the following improvement of Theorem 1.1.

Theorem 1.3. Let n ≥ 2. The operator L−1/2 sin
√
L is bounded on

LpB(H
n) for |1/p− 1/2| < 1/(2n− 1).

More generally, we can consider operators of the form L−α/2Jα(
√
L)

where Jα is the Bessel function of order α.

Theorem 1.4. The operators L−α/2Jα(
√
L) are bounded on LpB(H

n)
for |1/p−1/2| < (2α+1)/(4n−2) provided 6α≤ 4n−5. Otherwise, they are
bounded on LpB(H

n) in the smaller range |1/p− 1/2| < (2α+ 3)/(4n+ 4).
Note that when α = 1/2, we have λ−α/2Jα(

√
λ) =

√
2/π λ−1/2 sin

√
λ

and hence we only need to prove Theorem 1.4.
The operators L and T commute and so they admit a joint spectral

decomposition which can be written down explicitly. Let

ϕk(z) = L
n−1
k (|z|2/2)e−|z|

2/4

be the Laguerre functions of type n− 1. Define
eλk(z, t) = e

iλtϕλk(z) = e
iλtϕk(

√
|λ|z)

for λ ∈ R, λ 6= 0. Then eλk(z, t) are joint eigenfunctions of L and T :
Leλk(z, t) = (2k + n)|λ|eλk(z, t), T eλk(z, t) = iλe

λ
k(z, t).

The explicit spectral decomposition of L and T studied in great detail by
Strichartz [16] and [17] is then written as

f(z, t) = cn

∞\
−∞

( ∞∑

k=0

f ∗ eλk(z, t)
)
|λ|n dλ.

Given a bounded function m(ξ, η) of two variables we can consider the op-
erator
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Mf(z, t) = cn

∞\
−∞

( ∞∑

k=0

m(k, λ)f ∗ eλk(z, t)
)
|λ|n dλ.

One can naturally ask for conditions on m(k, λ) so that M extends to a
bounded operator on Lp(Hn).

Recently this problem has received considerable attention. In the pa-
pers [11] and [12] Müller, Ricci and Stein have obtained sufficient conditions
on m(ξ, η) so that M is bounded on Lp(Hn). More precisely, if m(ξ, η)
satisfies the Marcinkiewicz type conditions

|(ξ∂ξ)α(η∂η)βm(ξ, η)| ≤ Cα,β
for sufficiently many derivatives, thenM is bounded on Lp(Hn), 1 < p <∞.
In [12] the authors have obtained a sharp Marcinkiewicz multiplier theorem
where the above conditions are required to hold only for an optimal number
of derivatives.

When m(k, λ) = m((2k + n)|λ|) the operator M is nothing but m(L)
and the Marcinkiewicz conditions hold whenm ∈ S01(R). In the general case,
when m ∈ S01(R2), the corresponding operator M is bounded on Lp(Hn),
1 < p < ∞, as proved in [12]. It is an interesting problem to study the Lp
boundedness of M when m ∈ Sα̺ (R2). We plan to return to this problem in
the near future.

We now describe how we plan to prove Theorem 1.4. The proof of
Theorem 1.2 given in [13] can be modified to show that the multipliers
m((2k + n)|λ|) and m((2k + β)|λ|) have the same Lp boundedness proper-
ties when m ∈ S−α̺ (R). In view of this, in order to prove Theorem 1.4 it is
enough to consider the multipliers

mαr (k, λ) = bα((2k + α+ 1)|λ|r2)−α/2Jα(
√
(2k + α+ 1)|λ|r2)

where bα = 2
αΓ (α+ 1) and r > 0 is fixed. Let Mαr be the operator defined

by

Mαr f = cn

∞\
−∞

( ∞∑

k=0

mαr (k, λ)f ∗ eλk(z, t)
)
|λ|n dλ.

We plan to study these operators by first studying the family of operators
Tαr defined by

Tαr f = cn

∞\
−∞

( ∞∑

k=0

ψαk (r
√
|λ|)f ∗ eλk(z, t)

)
|λ|n dλ

where

ψαk (r) =
Γ (k + 1)Γ (α+ 1)

Γ (k + α+ 1)
Lαk

(
1

2
r2
)
e−r

2/4

are the Laguerre functions of type α.
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The operators Tαr can be defined even for complex α as long as Reα ≥
−1/2. When α = n − 1 we note that Tn−1r f = f ∗ µr where µr is the
normalised surface measure on the sphere Sr = {(z, 0) : |z| = r}. Using this
and analytic interpolation we obtain

Theorem 1.5. (i) If α > (2n−1)|1/p−1/2|−1/2, then Tαr are uniformly
bounded on LpB(H

n) for 0 < r ≤ 1.
(ii) If α > (2n− 4/3)|1/p− 1/2| − 1/3, then Tαr are uniformly bounded

on Lp(Hn) for all r > 0.

Once we have Theorem 1.5, Theorem 1.4 and hence Theorem 1.3 are
proved by comparing the multiplier mαr (k, λ) with ψ

α
k (
√
|λ|r). To this end

we make use of a Hilb type asymptotic expansion [18] of the Laguerre poly-
nomials. In the course of the proof we will make use of Theorem 1.2 in
dealing with the error terms.

We closely follow the notations employed in [20]. For various results
concerning the Heisenberg group we refer the reader to the monographs [2]
and [20].

2. Proof of Theorem 1.5. As indicated in the introduction we prove
Theorem 1.5 by using analytic interpolation. Let µr be the normalised sur-
face measure on the sphere Sr. Then it is well known (see [14]) that

(2.1) f ∗ µr = cn
∞\
−∞

( ∞∑

k=0

ψn−1k (
√
|λ|r)f ∗ eλk

)
|λ|n dλ.

Now Laguerre functions of different type are related by the formula (see [18])

Lα+βk (r) =
Γ (k + α+ β + 1)

Γ (β)Γ (k + α+ 1)

1\
0

sα(1− s)β−1Lαk (sr) ds,

which is valid for Reα > −1 and Reβ > 0. Using this we can write, when
α = n− 1 + δ + iσ,

ψαk (r) =
Γ (k + n+ δ + iσ)

Γ (δ + iσ)Γ (k + n)
(2.2)

×
1\
0

sn−1(1− s)δ+iσ−1e−(1−s2)r2/4ψn−1k (sr) ds.

Let us define an operator Arf by

(Arf)
λ(z) = e−r|λ|/4fλ(z)

where fλ(z) is the partial inverse Fourier transform of f(z, t) in the
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t-variable. We then have the formula

(2.3) Tαr f =
Γ (n+ δ + iσ)

Γ (δ + iσ)Γ (n)

1\
0

sn−1(1− s)δ+iσ−1Tn−1rs A(1−s2)r2f ds.

Similarly when α = −1/2 + δ + iσ we have

(2.4) Tαr f =
Γ (−1/2 + δ + iσ)
Γ (δ + iσ)Γ (−1/2)

1\
0

s−1/2(1−s)δ+iσ−1T−1/2rs A(1−s2)r2f ds.

The operators Arf are nothing but the Poisson integrals in the t-variable
and so they are uniformly bounded on Lp(Hn) for all 1 ≤ p ≤ ∞. Therefore,
from (2.3) we see that

‖Trf‖p ≤ C(σ)‖f‖p, 1 ≤ p ≤ ∞,

when α = n− 1+ δ+ iσ. When α = −1/2, the Laguerre functions ψ−1/2k (r)
are uniformly bounded in k as long as r remains bounded. Let χ ∈ C∞0 (|λ| ≤
B+1) be such that χ(λ) = 1 for |λ| ≤ B and define χ(i∂t) to be the operator

(χ(i∂t)f)
λ(z) = χ(λ)fλ(z).

Then the multiplier corresponding to Tαr χ(i∂t) is ψ
α
k (
√
|λ|r)χ(λ), which is

uniformly bounded; that is,

|ψαk (
√
|λ|r)χ(λ)| ≤ C

for all λ ∈ R, k = 0, 1, . . . and 0 ≤ r ≤ 1. Therefore, by Plancherel’s theorem,

‖Tαr χ(i∂t)f‖2 ≤ CB(σ)‖f‖2
when α = −1/2 + δ + iσ. Using Stirling’s formula for the gamma function
we can check that C(σ) and CB(σ) are of admissible growth.

By appealing to Stein’s analytic interpolation theorem we obtain

‖Tαr χ(i∂t)f‖p ≤ C‖f‖p
for α > (2n − 1)(1/p − 1/2) − 1/2. This proves part (i) of Theorem 1.5.
To prove the other part we use the uniform estimate |ψ−1/3k (t)| ≤ C, which
is valid for all r > 0 and k = 0, 1, . . . (see Szegő [18]). As before, analytic
interpolation will prove part (ii).

3. A variant of Theorem 1.2. In the next section we will use The-
orem 1.5 to study multipliers of the form m((2k + α + 1)|λ|). However,
in order to prove Theorem 1.3 we need to treat multipliers of the form
m((2k + n)|λ|). This can be achieved by comparing these two multipliers.
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Taking m(t) = t−α/2Jα(t) we have the equation

m((2k + n)|λ|)−m((2k + α+ 1)|λ|) = |λ|
n\
α+1

m′((2k + t)|λ|) dt.

Since m′(t) = −12 t−(α+1)/2Jα+1(
√
t) we have

(3.1) m((2k + n)|λ|)−m((2k + α+ 1)|λ|)

= c|λ|
n\
α+1

Jα+1(
√
(2k + t)|λ|)

(
√
(2k + t)|λ|)α+1

dt.

Note that λ−(α+1)/2Jα+1(
√
λ) belongs to the symbol class S

−α/2−3/4
1/2 (R)

whereas m(λ) = λ−α/2Jα(
√
λ) belongs to S

−α/2−1/4
1/2 (R).

Therefore, if we can show that the operators Jαr f defined by

Jαr f =

∞\
−∞

( ∞∑

k=0

Jα+1(
√
(2k + r)|λ|)

(
√
(2k + r)|λ|)α+1

f ∗ eλk
)
|λ|n dλ

are uniformly bounded on Lp(Hn) for 2α+3 > 2Q(1/p−1/2), α+1 ≤ r ≤ n,
then from (3.1) it will follow that m(L) is bounded on LpB(Hn) when the
multiplier m((2k + α+ 1)|λ|) defines a bounded operator on LpB(Hn). Thus
we require the following variant of Theorem 1.2.

Theorem 3.1. Let m ∈ S−α̺ (R) and let Mr be the operator with the
multiplier m((2k+r)|λ|) where 0 < ε < r < 2n−ε. Then Mr are uniformly
bounded on Lp(Hn) when α > Q(1− ̺)|1/p− 1/2|.
Proof. Let ϕ ∈ C∞0 (R) be such that ϕ(λ) = 0 for |λ| ≤ 1/2 and ϕ(λ) = 1

for |λ| ≥ 1. Then the multiplier
m1(ξ, η) = m((2ξ + r)η)(1− ϕ((2ξ + r)η))

satisfies the conditions

sup
ξ>0, η∈R

|(ξ∂ξ)j(η∂η)lm1(ξ, η)| ≤ Cjl

for all j and l uniformly in r. Therefore, by a theorem of Müller, Ricci
and Stein (Theorem 2.2 in [12]) the operators with multipliers m1(k, λ) are
uniformly bounded on Lp(Hn), 1 < p <∞. So, it is enough to consider the
operator M̃r with the multiplier m̃((2k + r)|λ|) where m̃(λ) = m(λ)ϕ(λ).
Let Hf be the Hilbert transform of f in the t-variable defined by

(Hf)λ(z) = −i sgnλfλ(z).
Write g= 12 (f+iHf) and h=

1
2 (f−iHf) so that f = g+h and ‖g‖p≤C‖f‖p,

‖h‖p ≤ C‖f‖p. Note that gλ(z) vanishes for λ < 0 and hλ(z) for λ > 0. We
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have

M̃rg = cn

∞\
−∞

( ∞∑

k=0

m̃((2k + n)|λ|+ (r − n)λ)g ∗ eλk
)
|λ|n dλ,

which is nothing but m̃(L+i(n−r)T )g. Similarly, M̃rh = m̃(L−i(n−r)T )h.
Note that the operators L+i(n−r)T and L−i(n−r)T are homogeneous

of degree 2 and since 0 < r < 2n it is easily verified that they are Rockland
operators. Therefore, by appealing to Theorem 1.2 we can conclude that
m̃(L+ i(n− r)T ) are bounded on Lp(Hn) for α > Q(1− ̺)|1/p− 1/2|. As
M̃rf = M̃rg + M̃rh we see that M̃r is bounded on L

p(Hn).

It remains to be shown that the operator norms of M̃r are uniform in
r as long as ε ≤ r ≤ 2n − ε. To this end we have to recall the main ideas
involved in the proof of Theorem 1.2. In [13] we have treated multipliers
for a wide class of operators. If P is a nonnegative self-adjoint operator on
R
n for which the kernel SδR(x, y) of the Bochner–Riesz mean (1 − P/R)δ+
satisfies an estimate of the form

(3.2) |SδR(x, y)| ≤ CRn/2(1 +R1/2|x− y|)−δ+β

then an analogue of Theorem 1.2 holds for m(P ), m ∈ Sα̺ (R). Therefore, if
we can show that the Bochner–Riesz kernels associated with the operators
L+ i(n− r)T satisfy the above estimates with C independent of r, then the
operators M̃r will be uniformly bounded.

For a ∈ R consider the operator Pa = L+ iaT , which is a Rockland op-
erator as long as a is admissible. We will show that if |a| ≤ n−ε, ε > 0, then
the Bochner–Riesz kernel associated with Pa satisfies uniform estimates of
the form (3.2). To do this we make use of a method developed by Hebisch [3]
which only requires uniform estimates on the heat kernel associated with Pa.
In the present case we can easily obtain estimates on the heat kernel.

Proposition 3.2. Let ps,a(z, t) be the kernel of the operator e
−sPa ,

s > 0. Then

|ps,a(z, t)| ≤ Cs−Q/2e−(A/s)(|z|
2+|t|)

where A and C are independent of a for |a| ≤ n− ε.

Proof. By homogeneity it is enough to consider s = 1. Let us write
p1,a(z, t) = Ka(z, t). It is well known that the kernel is given by the formula

Ka(z, t) = cn
\
ka(z, t, λ) dλ

where

ka(z, t, λ) = e
−aλ

(
λ

sinhλ

)n
e−λ(cothλ)|z|

2/4eiλt.
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Note that ka(z, t, λ) extends to a holomorphic function of λ in the strip
|Imλ| < π/2. Hence by Cauchy’s theorem

Ka(z, t) = lim
R→∞

{ π/4\
0

ka(z, t,−R+ iσ) dσ

+

R\
−R

ka

(
z, t, λ+ i

π

4

)
dλ−

π/4\
0

ka(z, t, R+ iσ) dσ

}
.

In the above the first and last integrals go to zero uniformly in a as R→∞,
provided |a| ≤ n− ε. Then we get

Ka(z, t) = cn
\
ka

(
z, t, λ+ i

π

4

)
dλ

and from this we obtain

(3.3) |Ka(z, t)| ≤ Ce−π|t|/4, t > 0,

where C is independent of a. The same estimate holds for t < 0 as well. As
cothλ behaves like λ for λ small we easily get the estimate

(3.4) |Ka(z, t)| ≤ Ce−|z|
2/4.

The estimates (3.3) and (3.4) put together prove the proposition.

Using the heat kernel estimate proved above and following a method of
Hebisch [4] we can obtain uniform estimates on the Bochner–Riesz kernels
associated with Pa. Write w = (z, t) and let |w| be the homogeneous norm
defined by |w|4 = |z|4 + |t|2.

Proposition 3.3. Let SδR,a(w) be the kernel of the Bochner–Riesz
means associated with Pa. Then for |a| ≤ n− ε and δ large,

|SδR,a(w)| ≤ CRQ/2(1 +R1/2|w|)−δ+β

where C is independent of a and R, and β is a fixed constant.

Proof. Due to homogeneity of the operators Pa it is enough to consider
R = 1. Following Hebisch we let Ean(w) be the kernel of the operator e

inKK
with K = e−Pa . By appealing to Theorem 3.1 of [4] we get the estimate\

Hn

|Ean(w)|(1 + |w|)γ dw ≤ C(1 + |n|)γ+Q/2

for every γ ≥ 0 and C independent of a. Defining ean to be the kernel of
einKK2 we have

ean(w) = E
a
n ∗ p1,a(w).
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Using the L1 estimate of Ean and the heat kernel estimate of Pa we easily
get the estimate

(3.5) |ean(w)| ≤ C(1 + |w|)−γ(1 + |n|)γ+Q/2

for all γ ≥ 0 with C independent of a.
We can now make use of the functional calculus developed in [4] to

get estimates of the Bochner–Riesz kernel. For the sake of completeness we
briefly indicate the method. Let F (λ) = (1 − λ)δ+ψ(λ) where ψ ∈ C∞ is
such that ψ(λ) = 1 for λ ≥ 0 and ψ(λ) = 0 for λ ≤ −e−1. Let G(λ) =
λ−2F (− log λ) for λ > 0 and G(λ) = 0 otherwise. Then G(λ) is supported
in [0, e] and F (Pa) = G(e

−Pa)e−2Pa . Expanding G(λ) into Fourier series as

G(λ) =
∑
Ĝ(n)einλ we get

F (Pa) =
∑

Ĝ(n)einKK2

where, as before, K = e−Pa .
Using the estimate (3.5) we get

|Sδ1,a(x, y)| ≤ C(1 + |w|)−γ
∑
|Ĝ(n)|(1 + |n|)γ+Q/2.

The coefficients Ĝ(n) are given by

Ĝ(n) =
1

2π

e\
0

G(λ)e−inλ dλ.

Making a change of variables we get

Ĝ(n) =
1

2π

1\
−e−1

F (t)ete−ine
−t

dt.

As F (t) = (1− t)δ+ψ(t) we easily get the estimate
|Ĝ(n)| ≤ C(1 + |n|)−l

provided δ > l − 1. Taking δ = γ +Q/2 + 2 we have
|Ĝ(n)| ≤ C(1 + |n|)−γ−Q/2−2

and hence
|Sδ1,a(w)| ≤ C(1 + |w|)−δ+Q/2+2

where C is independent of a. This completes the proof of the proposition.

Once we have uniform estimates on the Bochner–Riesz kernels SδR,a we
can prove Theorem 3.1. See [13] for the details.

4. Proof of Theorem 1.4. In view of Theorem 3.1 and the remarks
preceding it, it is enough to consider the operator Mαr given by the multi-
pliermαr (k, λ). We now compare the multipliersm

α
r (k, λ) and ψ

α
k (
√
|λ| r) by
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using a Hilb type asymptotic formula for the Laguerre polynomials. Formula
(8.64.3) on page 217 of Szegő [18] gives

(4.1) ψαk (r) = m
α
r (k, 1) + e(k, α, r)

where e(k, α, r) is given by the integral

π

23
r4

sinαπ

1\
0

(Jα(r
√
K)J−α(rs

√
K)− Jα(rs

√
K)Jα(r

√
K))sα+3ψαk (rs) ds.

In the above formula K = 2k + α + 1. When α is an integer, sinαπ in
the above formula has to be replaced by −1 and Jα by the modified Bessel
function Yα.

Define aα(λ, r, s) for λ > 0 by

aα(λ, r, s) = (Jα(r
√
λ)J−α(rs

√
λ)− J−α(r

√
λ)Jα(rs

√
λ))sα+3r4

and let Aα(r, s) be the operator whose multiplier is aα((2k+n)|λ|, r, s). Let
χ ∈ C∞0 (|λ| ≤ B + 1) and χ(i∂t) be as before. From (4.1) it follows that

Tαr χ(i∂t)f =M
α
r χ(i∂t)f + c1

1\
0

Aα(r, s)T
α
rsχ1(i∂t)f ds

where χ1(λ) = λ
2χ(λ) and c1 is some constant. Another iteration produces

the formula

Mαr χ(i∂t)f = T
α
r χ(i∂t)f + c1

1\
0

Aα(r, s)M
α
rsχ1(i∂t)f ds(4.2)

+ c2

1\
0

1\
0

Aα(r, s)Aα(rs, s
′)Tαrss′χ2(i∂t)f ds ds

′

where χ2(λ) = λ
4χ(λ) and c1, c2 are constants. For the symbols aα(λ, r, s)

we prove the following estimates.

Lemma 4.1. For 0 ≤ r, s ≤ 1 we have the estimates
|∂kλaα(λ, r, s)| ≤ Ck(1 + λ)−k/2−1/2

valid for all λ > 0, k ≥ 0. More precisely ,
|∂kλaα(λ, r, s)| ≤ Cr3s5/2(1 + λ)−(k+1)/2

× {(1 + r2λ)−α/2(1 + r2s2λ)α/2 + s2α(1 + r2λ)α/2(1 + r2s2λ)−α/2}.
Proof. Let Bα(λ) = λ−α/2Jα(

√
λ) and when α is a negative integer

replace Jα by Yα. Then Bα satisfies the equation

d

dλ
Bα(λ) = −

1

2
Bα+1(λ).
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The asymptotic properties of the Bessel function give us the estimates
∣∣∣∣
(
d

dλ

)k
Bα(λ)

∣∣∣∣ ≤ C(1 + λ)
−(α+k+1/2)/2.

Consider the first term, which is equal to Bα(r
2λ)B−α(r

2s2λ)s3r4. The
kth derivative of that term is a linear combination of terms of the form

r2j+4Bα+j(r
2λ)(r2s2)k−jB−α+k−j(r

2s2λ)s3,

which is bounded by a constant times

r2k+4s2k−2j+3(1 + r2λ)−(α+j+1/2)/2(1 + r2s2λ)−(−α+k−j+1/2)/2.

As 0 ≤ r, s ≤ 1, the above is bounded by a constant times
r3s5/2(1 + λ)−(k+1)/2(1 + r2λ)−α/2(1 + r2s2λ)α/2,

which in turn is bounded by C(1 + λ)−(k+1)/2. Similarly, the kth derivative
of the second term is bounded by

Cr3s2α+5/2(1 + λ)−1/2−k/2(1 + r2λ)α/2(1 + r2s2λ)−α/2,

which in turn is bounded by C(1 + λ)−(k+1)/2. This proves the lemma.

We are now in a position to prove Theorem 1.4. From Theorem 1.5 we
know that Tα1 χ(i∂t) is bounded on L

p(Hn) for |1/p−1/2|<(2α+1)/(4n−2).
If 6α ≤ 4n − 5, then (2α+ 1)/(4n− 2) ≤ (2α+ 3)/(4n+ 4) and conse-
quently α/2+3/4 > Q|1/p−1/2|/2 whenever |1/p−1/2|< (2α+1)/(4n−2).
The multiplier corresponding to the product Aα(1, s)M

α
s is given by the

symbol

m(λ, s) = aα(λ, 1, s)Bα(s
2λ),

which belongs to the class S
−α/2−3/4
1/2 (R). Using Lemma 4.1 we can show

that

|∂kλm(λ, s)| ≤ C(1 + λ)−(α+3/2+k)/2

where C is uniform for 0 ≤ s ≤ 1. Since α/2 + 3/4 > Q|1/p− 1/2|/2, from
Theorem 3.1 we conclude that

‖Aα(1, s)Mαs f‖p ≤ C‖f‖p
where C is independent of s. Therefore, the operator

1\
0

Aα(1, s)M
α
s χ(i∂t)f ds

is bounded on Lp(Hn).

For the third term in (4.2), the symbol of the operator Aα(1, s)Aα(s, s
′)

comes from S−11/2(R) and the derivatives satisfy uniform estimates for 0 ≤
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s, s′ ≤ 1 in view of Lemma 4.1. If 0 ≤ α ≤ 1/2 we can conclude that the
operator

1\
0

1\
0

Aα(1, s)Aα(s, s
′)Tαss′χ2(i∂t)f ds ds

′

is also bounded on Lp(Hn). Therefore, from (4.2) we see that Mα1 χ(i∂t) is
bounded on Lp(Hn). If α > 1/2, we can perform further iterations and then
the symbol of

Aα(1, s1)Aα(s1, s2) . . . Aα(s1s2 . . . sl−1, sl)

will come from S
−l/2
1/2 (R) with estimates uniform in s1, . . . , sl. We can choose

l large enough so that α/2 + 3/4 ≤ l/2 and appealing to Theorem 3.1 we
get the boundedness of Mα1 in the case when 6α ≤ 4n− 5.
If 6α > 4n − 5 then we need to assume the condition |1/p − 1/2| <

(2α+ 3)/(4n+ 4) so that α/2 + 3/4 > Q|1/p− 1/2|/2. We then proceed as
before to complete the proof.
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