COLLOQUIUM MATHEMATICUM

OSCILLATING MULTIPLIERS ON THE
 HEISENBERG GROUP

BY

E. K. NARAYANAN and S. THANGAVELU (Bangalore)

Abstract

Let \mathcal{L} be the sublaplacian on the Heisenberg group H^{n}. A recent result of Müller and Stein shows that the operator $\mathcal{L}^{-1 / 2} \sin \sqrt{\mathcal{L}}$ is bounded on $L^{p}\left(H^{n}\right)$ for all p satisfying $|1 / p-1 / 2|<1 /(2 n)$. In this paper we show that the same operator is bounded on L^{p} in the bigger range $|1 / p-1 / 2|<1 /(2 n-1)$ if we consider only functions which are band limited in the central variable.

1. Introduction and main results. Consider the Heisenberg group $H^{n}=\mathbb{C}^{n} \times \mathbb{R}$ with the group law

$$
(z, t)(w, s)=\left(z+w, t+s+\frac{1}{2} \operatorname{Im} z \cdot \bar{w}\right)
$$

The vector fields

$$
T=\frac{\partial}{\partial t}, \quad X_{j}=\frac{\partial}{\partial x_{j}}-\frac{1}{2} y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}+\frac{1}{2} x_{j} \frac{\partial}{\partial t}, \quad j=1, \ldots, n
$$

form a basis for the Lie algebra of left invariant vector fields on the Heisenberg group. The operator

$$
\mathcal{L}=-\sum_{j=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

is called the sublaplacian; it plays the same role as the ordinary Laplacian does on \mathbb{R}^{n}. It is well known that \mathcal{L} is hypoelliptic and represents the simplest example of the subelliptic realm.

The sublaplacian \mathcal{L} is self-adjoint and nonnegative and hence admits the spectral decomposition

$$
\mathcal{L}=\int_{0}^{\infty} \lambda d E_{\lambda} .
$$

[^0]Given a bounded function m defined on $(0, \infty)$ one can define the operator $m(\mathcal{L})$ formally by setting

$$
m(\mathcal{L}) f=\int_{0}^{\infty} m(\lambda) d E_{\lambda} f
$$

This operator is clearly bounded on $L^{2}\left(H^{n}\right)$ but need not be bounded on $L^{p}\left(H^{n}\right)$ for $p \neq 2$ unless some more conditions are imposed on the multiplier m. This problem has been studied by several authors and sufficient conditions on m have been found. See the works [1], [6], [7] and [19]. The optimal result has been proved in Müller-Stein [9] and Hebisch [5].

When $m(\lambda)=m_{s}(\lambda)=\lambda^{-1 / 2} \sin s \sqrt{\lambda}$, the function $u(z, t, s)$ defined by

$$
u(z, t, s)=m_{s}(\mathcal{L}) f(z, t)
$$

solves the Cauchy problem for the wave equation associated with the sublaplacian. Namely, $u(z, t, s)$ solves the equation

$$
\partial_{s}^{2} u(z, t, s)=\mathcal{L} u(z, t, s)
$$

with initial conditions

$$
u(z, t, 0)=0, \quad \partial_{s} u(z, t, 0)=f(z, t)
$$

The L^{p} boundedness of the operator $m_{s}(\mathcal{L})$ has been studied by Müller and Stein in [10], where they have established the following result.

Theorem 1.1 (Müller-Stein). For $|1 / p-1 / 2|<1 /(2 n)$, the operator $\mathcal{L}^{-1 / 2} \sin s \sqrt{\mathcal{L}}$ extends to a bounded operator on $L^{p}\left(H^{n}\right)$.

The analogue of this theorem for the Euclidean Laplacian has been proved by Peral [15] and Miyachi [8]. Similar multipliers on noncompact symmetric spaces have been studied by Giulini and Meda [3]. Results for the sublaplacian on stratified groups have been obtained by Mauceri and Meda [7]. Recently we have studied the wave equation associated with Hermite and special Hermite expansions in [13]. For certain Schrödinger operators see the work of Zhong [21] .

Observe that the multiplier $m(\lambda)=\lambda^{-1 / 2} \sin \sqrt{\lambda}$ satisfies the conditions

$$
\left|m^{(j)}(\lambda)\right| \leq C_{j}\left(1+\lambda^{2}\right)^{-1 / 4-j / 4}, \quad \lambda>0
$$

for $j=0,1, \ldots$ Therefore, we are led to consider operators of the form $m(\mathcal{L})$ when $m \in S_{\varrho}^{\alpha}(\mathbb{R})$ where the symbol class S_{ϱ}^{α} consists of all C^{∞} functions on \mathbb{R} satisfying the estimates

$$
\left|m^{(j)}(\lambda)\right| \leq C_{j}\left(1+\lambda^{2}\right)^{\alpha / 2-\varrho j / 2}
$$

for $j=0,1, \ldots$ In [13] the L^{p} boundedness of operators of the form $m(P)$ for $m \in S_{\varrho}^{\alpha}(\mathbb{R})$ has been studied. More generally, the following theorem has been established.

Theorem 1.2. Let $m \in S_{\varrho}^{-\alpha}(\mathbb{R})$ be such that $m(\lambda)=0$ for $|\lambda| \leq 1 / 2$. Let P be a Rockland operator on H^{n} which is homogeneous of degree 2. Then $m(P)$ is bounded on $L^{p}\left(H^{n}\right)$ provided $\alpha>Q(1-\varrho)|1 / p-1 / 2|, 1<p<\infty$, where $Q=2 n+2$ is the homogeneous dimension of H^{n}.

In particular, by taking $P=\mathcal{L}$ and $m(\lambda)=\lambda^{-1 / 2} \sin \sqrt{\lambda}$ we see that $\mathcal{L}^{-1 / 2} \sin \sqrt{\mathcal{L}}$ is bounded on $L^{p}\left(H^{n}\right)$ for $|1 / p-1 / 2|<1 / Q$. We see that the result of Müller and Stein is much stronger than this. The interesting thing to note is that in their result it is not the homogeneous dimension $2 n+2$ but the Euclidean dimension $2 n+1$ which restricts the range of L^{p} boundedness.

Our aim in this paper is to slightly improve the result of Müller and Stein on the wave equation in the case when f is band limited in the t-variable. Let $L_{B}^{p}\left(H^{n}\right)$ stand for those functions f in $L^{p}\left(H^{n}\right)$ for which the partial inverse Fourier transform $f^{\lambda}(z)$ in the t-variable is supported in $|\lambda| \leq B$. On this space we have the following improvement of Theorem 1.1.

THEOREM 1.3. Let $n \geq 2$. The operator $\mathcal{L}^{-1 / 2} \sin \sqrt{\mathcal{L}}$ is bounded on $L_{B}^{p}\left(H^{n}\right)$ for $|1 / p-1 / 2|<1 /(2 n-1)$.

More generally, we can consider operators of the form $\mathcal{L}^{-\alpha / 2} J_{\alpha}(\sqrt{\mathcal{L}})$ where J_{α} is the Bessel function of order α.

THEOREM 1.4. The operators $\mathcal{L}^{-\alpha / 2} J_{\alpha}(\sqrt{\mathcal{L}})$ are bounded on $L_{B}^{p}\left(H^{n}\right)$ for $|1 / p-1 / 2|<(2 \alpha+1) /(4 n-2)$ provided $6 \alpha \leq 4 n-5$. Otherwise, they are bounded on $L_{B}^{p}\left(H^{n}\right)$ in the smaller range $|1 / p-1 / 2|<(2 \alpha+3) /(4 n+4)$.

Note that when $\alpha=1 / 2$, we have $\lambda^{-\alpha / 2} J_{\alpha}(\sqrt{\lambda})=\sqrt{2 / \pi} \lambda^{-1 / 2} \sin \sqrt{\lambda}$ and hence we only need to prove Theorem 1.4.

The operators \mathcal{L} and T commute and so they admit a joint spectral decomposition which can be written down explicitly. Let

$$
\varphi_{k}(z)=L_{k}^{n-1}\left(|z|^{2} / 2\right) e^{-|z|^{2} / 4}
$$

be the Laguerre functions of type $n-1$. Define

$$
e_{k}^{\lambda}(z, t)=e^{i \lambda t} \varphi_{k}^{\lambda}(z)=e^{i \lambda t} \varphi_{k}(\sqrt{|\lambda|} z)
$$

for $\lambda \in \mathbb{R}, \lambda \neq 0$. Then $e_{k}^{\lambda}(z, t)$ are joint eigenfunctions of \mathcal{L} and T :

$$
\mathcal{L} e_{k}^{\lambda}(z, t)=(2 k+n)|\lambda| e_{k}^{\lambda}(z, t), \quad T e_{k}^{\lambda}(z, t)=i \lambda e_{k}^{\lambda}(z, t)
$$

The explicit spectral decomposition of \mathcal{L} and T studied in great detail by Strichartz [16] and [17] is then written as

$$
f(z, t)=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} f * e_{k}^{\lambda}(z, t)\right)|\lambda|^{n} d \lambda
$$

Given a bounded function $m(\xi, \eta)$ of two variables we can consider the operator

$$
M f(z, t)=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} m(k, \lambda) f * e_{k}^{\lambda}(z, t)\right)|\lambda|^{n} d \lambda
$$

One can naturally ask for conditions on $m(k, \lambda)$ so that M extends to a bounded operator on $L^{p}\left(H^{n}\right)$.

Recently this problem has received considerable attention. In the papers [11] and [12] Müller, Ricci and Stein have obtained sufficient conditions on $m(\xi, \eta)$ so that M is bounded on $L^{p}\left(H^{n}\right)$. More precisely, if $m(\xi, \eta)$ satisfies the Marcinkiewicz type conditions

$$
\left|\left(\xi \partial_{\xi}\right)^{\alpha}\left(\eta \partial_{\eta}\right)^{\beta} m(\xi, \eta)\right| \leq C_{\alpha, \beta}
$$

for sufficiently many derivatives, then M is bounded on $L^{p}\left(H^{n}\right), 1<p<\infty$. In [12] the authors have obtained a sharp Marcinkiewicz multiplier theorem where the above conditions are required to hold only for an optimal number of derivatives.

When $m(k, \lambda)=m((2 k+n)|\lambda|)$ the operator M is nothing but $m(\mathcal{L})$ and the Marcinkiewicz conditions hold when $m \in S_{1}^{0}(\mathbb{R})$. In the general case, when $m \in S_{1}^{0}\left(\mathbb{R}^{2}\right)$, the corresponding operator M is bounded on $L^{p}\left(H^{n}\right)$, $1<p<\infty$, as proved in [12]. It is an interesting problem to study the L^{p} boundedness of M when $m \in S_{\varrho}^{\alpha}\left(\mathbb{R}^{2}\right)$. We plan to return to this problem in the near future.

We now describe how we plan to prove Theorem 1.4. The proof of Theorem 1.2 given in [13] can be modified to show that the multipliers $m((2 k+n)|\lambda|)$ and $m((2 k+\beta)|\lambda|)$ have the same L^{p} boundedness properties when $m \in S_{\varrho}^{-\alpha}(\mathbb{R})$. In view of this, in order to prove Theorem 1.4 it is enough to consider the multipliers

$$
m_{r}^{\alpha}(k, \lambda)=b_{\alpha}\left((2 k+\alpha+1)|\lambda| r^{2}\right)^{-\alpha / 2} J_{\alpha}\left(\sqrt{(2 k+\alpha+1)|\lambda| r^{2}}\right)
$$

where $b_{\alpha}=2^{\alpha} \Gamma(\alpha+1)$ and $r>0$ is fixed. Let M_{r}^{α} be the operator defined by

$$
M_{r}^{\alpha} f=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} m_{r}^{\alpha}(k, \lambda) f * e_{k}^{\lambda}(z, t)\right)|\lambda|^{n} d \lambda .
$$

We plan to study these operators by first studying the family of operators T_{r}^{α} defined by

$$
T_{r}^{\alpha} f=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} \psi_{k}^{\alpha}(r \sqrt{|\lambda|}) f * e_{k}^{\lambda}(z, t)\right)|\lambda|^{n} d \lambda
$$

where

$$
\psi_{k}^{\alpha}(r)=\frac{\Gamma(k+1) \Gamma(\alpha+1)}{\Gamma(k+\alpha+1)} L_{k}^{\alpha}\left(\frac{1}{2} r^{2}\right) e^{-r^{2} / 4}
$$

are the Laguerre functions of type α.

The operators T_{r}^{α} can be defined even for complex α as long as $\operatorname{Re} \alpha \geq$ $-1 / 2$. When $\alpha=n-1$ we note that $T_{r}^{n-1} f=f * \mu_{r}$ where μ_{r} is the normalised surface measure on the sphere $S_{r}=\{(z, 0):|z|=r\}$. Using this and analytic interpolation we obtain

THEOREM 1.5. (i) If $\alpha>(2 n-1)|1 / p-1 / 2|-1 / 2$, then T_{r}^{α} are uniformly bounded on $L_{B}^{p}\left(H^{n}\right)$ for $0<r \leq 1$.
(ii) If $\alpha>(2 n-4 / 3)|1 / p-1 / 2|-1 / 3$, then T_{r}^{α} are uniformly bounded on $L^{p}\left(H^{n}\right)$ for all $r>0$.

Once we have Theorem 1.5, Theorem 1.4 and hence Theorem 1.3 are proved by comparing the multiplier $m_{r}^{\alpha}(k, \lambda)$ with $\psi_{k}^{\alpha}(\sqrt{|\lambda|} r)$. To this end we make use of a Hilb type asymptotic expansion [18] of the Laguerre polynomials. In the course of the proof we will make use of Theorem 1.2 in dealing with the error terms.

We closely follow the notations employed in [20]. For various results concerning the Heisenberg group we refer the reader to the monographs [2] and [20].
2. Proof of Theorem 1.5. As indicated in the introduction we prove Theorem 1.5 by using analytic interpolation. Let μ_{r} be the normalised surface measure on the sphere S_{r}. Then it is well known (see [14]) that

$$
\begin{equation*}
f * \mu_{r}=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} \psi_{k}^{n-1}(\sqrt{|\lambda|} r) f * e_{k}^{\lambda}\right)|\lambda|^{n} d \lambda \tag{2.1}
\end{equation*}
$$

Now Laguerre functions of different type are related by the formula (see [18])

$$
L_{k}^{\alpha+\beta}(r)=\frac{\Gamma(k+\alpha+\beta+1)}{\Gamma(\beta) \Gamma(k+\alpha+1)} \int_{0}^{1} s^{\alpha}(1-s)^{\beta-1} L_{k}^{\alpha}(s r) d s
$$

which is valid for $\operatorname{Re} \alpha>-1$ and $\operatorname{Re} \beta>0$. Using this we can write, when $\alpha=n-1+\delta+i \sigma$,

$$
\begin{align*}
\psi_{k}^{\alpha}(r)= & \frac{\Gamma(k+n+\delta+i \sigma)}{\Gamma(\delta+i \sigma) \Gamma(k+n)} \tag{2.2}\\
& \times \int_{0}^{1} s^{n-1}(1-s)^{\delta+i \sigma-1} e^{-\left(1-s^{2}\right) r^{2} / 4} \psi_{k}^{n-1}(s r) d s
\end{align*}
$$

Let us define an operator $A_{r} f$ by

$$
\left(A_{r} f\right)^{\lambda}(z)=e^{-r|\lambda| / 4} f^{\lambda}(z)
$$

where $f^{\lambda}(z)$ is the partial inverse Fourier transform of $f(z, t)$ in the
t-variable. We then have the formula

$$
\begin{equation*}
T_{r}^{\alpha} f=\frac{\Gamma(n+\delta+i \sigma)}{\Gamma(\delta+i \sigma) \Gamma(n)} \int_{0}^{1} s^{n-1}(1-s)^{\delta+i \sigma-1} T_{r s}^{n-1} A_{\left(1-s^{2}\right) r^{2}} f d s \tag{2.3}
\end{equation*}
$$

Similarly when $\alpha=-1 / 2+\delta+i \sigma$ we have

$$
\begin{equation*}
T_{r}^{\alpha} f=\frac{\Gamma(-1 / 2+\delta+i \sigma)}{\Gamma(\delta+i \sigma) \Gamma(-1 / 2)} \int_{0}^{1} s^{-1 / 2}(1-s)^{\delta+i \sigma-1} T_{r s}^{-1 / 2} A_{\left(1-s^{2}\right) r^{2}} f d s \tag{2.4}
\end{equation*}
$$

The operators $A_{r} f$ are nothing but the Poisson integrals in the t-variable and so they are uniformly bounded on $L^{p}\left(H^{n}\right)$ for all $1 \leq p \leq \infty$. Therefore, from (2.3) we see that

$$
\left\|T_{r} f\right\|_{p} \leq C(\sigma)\|f\|_{p}, \quad 1 \leq p \leq \infty
$$

when $\alpha=n-1+\delta+i \sigma$. When $\alpha=-1 / 2$, the Laguerre functions $\psi_{k}^{-1 / 2}(r)$ are uniformly bounded in k as long as r remains bounded. Let $\chi \in C_{0}^{\infty}(|\lambda| \leq$ $B+1)$ be such that $\chi(\lambda)=1$ for $|\lambda| \leq B$ and define $\chi\left(i \partial_{t}\right)$ to be the operator

$$
\left(\chi\left(i \partial_{t}\right) f\right)^{\lambda}(z)=\chi(\lambda) f^{\lambda}(z)
$$

Then the multiplier corresponding to $T_{r}^{\alpha} \chi\left(i \partial_{t}\right)$ is $\psi_{k}^{\alpha}(\sqrt{|\lambda|} r) \chi(\lambda)$, which is uniformly bounded; that is,

$$
\left|\psi_{k}^{\alpha}(\sqrt{|\lambda|} r) \chi(\lambda)\right| \leq C
$$

for all $\lambda \in \mathbb{R}, k=0,1, \ldots$ and $0 \leq r \leq 1$. Therefore, by Plancherel's theorem,

$$
\left\|T_{r}^{\alpha} \chi\left(i \partial_{t}\right) f\right\|_{2} \leq C_{B}(\sigma)\|f\|_{2}
$$

when $\alpha=-1 / 2+\delta+i \sigma$. Using Stirling's formula for the gamma function we can check that $C(\sigma)$ and $C_{B}(\sigma)$ are of admissible growth.

By appealing to Stein's analytic interpolation theorem we obtain

$$
\left\|T_{r}^{\alpha} \chi\left(i \partial_{t}\right) f\right\|_{p} \leq C\|f\|_{p}
$$

for $\alpha>(2 n-1)(1 / p-1 / 2)-1 / 2$. This proves part (i) of Theorem 1.5. To prove the other part we use the uniform estimate $\left|\psi_{k}^{-1 / 3}(t)\right| \leq C$, which is valid for all $r>0$ and $k=0,1, \ldots$ (see Szegő [18]). As before, analytic interpolation will prove part (ii).
3. A variant of Theorem 1.2. In the next section we will use Theorem 1.5 to study multipliers of the form $m((2 k+\alpha+1)|\lambda|)$. However, in order to prove Theorem 1.3 we need to treat multipliers of the form $m((2 k+n)|\lambda|)$. This can be achieved by comparing these two multipliers.

Taking $m(t)=t^{-\alpha / 2} J_{\alpha}(t)$ we have the equation

$$
m((2 k+n)|\lambda|)-m((2 k+\alpha+1)|\lambda|)=|\lambda| \int_{\alpha+1}^{n} m^{\prime}((2 k+t)|\lambda|) d t
$$

Since $m^{\prime}(t)=-\frac{1}{2} t^{-(\alpha+1) / 2} J_{\alpha+1}(\sqrt{t})$ we have

$$
\begin{align*}
& m((2 k+n)|\lambda|)-m((2 k+\alpha+1)|\lambda|) \tag{3.1}\\
&=c|\lambda| \int_{\alpha+1}^{n} \frac{J_{\alpha+1}(\sqrt{(2 k+t)|\lambda|})}{(\sqrt{(2 k+t)|\lambda|})^{\alpha+1}} d t .
\end{align*}
$$

Note that $\lambda^{-(\alpha+1) / 2} J_{\alpha+1}(\sqrt{\lambda})$ belongs to the symbol class $S_{1 / 2}^{-\alpha / 2-3 / 4}(\mathbb{R})$ whereas $m(\lambda)=\lambda^{-\alpha / 2} J_{\alpha}(\sqrt{\lambda})$ belongs to $S_{1 / 2}^{-\alpha / 2-1 / 4}(\mathbb{R})$.

Therefore, if we can show that the operators $J_{r}^{\alpha} f$ defined by

$$
J_{r}^{\alpha} f=\int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} \frac{J_{\alpha+1}(\sqrt{(2 k+r)|\lambda|})}{(\sqrt{(2 k+r)|\lambda|})^{\alpha+1}} f * e_{k}^{\lambda}\right)|\lambda|^{n} d \lambda
$$

are uniformly bounded on $L^{p}\left(H^{n}\right)$ for $2 \alpha+3>2 Q(1 / p-1 / 2), \alpha+1 \leq r \leq n$, then from (3.1) it will follow that $m(\mathcal{L})$ is bounded on $L_{B}^{p}\left(H^{n}\right)$ when the multiplier $m((2 k+\alpha+1)|\lambda|)$ defines a bounded operator on $L_{B}^{p}\left(H^{n}\right)$. Thus we require the following variant of Theorem 1.2.

Theorem 3.1. Let $m \in S_{\varrho}^{-\alpha}(\mathbb{R})$ and let M_{r} be the operator with the multiplier $m((2 k+r)|\lambda|)$ where $0<\varepsilon<r<2 n-\varepsilon$. Then M_{r} are uniformly bounded on $L^{p}\left(H^{n}\right)$ when $\alpha>Q(1-\varrho)|1 / p-1 / 2|$.

Proof. Let $\varphi \in C_{0}^{\infty}(\mathbb{R})$ be such that $\varphi(\lambda)=0$ for $|\lambda| \leq 1 / 2$ and $\varphi(\lambda)=1$ for $|\lambda| \geq 1$. Then the multiplier

$$
m_{1}(\xi, \eta)=m((2 \xi+r) \eta)(1-\varphi((2 \xi+r) \eta))
$$

satisfies the conditions

$$
\sup _{\xi>0, \eta \in \mathbb{R}}\left|\left(\xi \partial_{\xi}\right)^{j}\left(\eta \partial_{\eta}\right)^{l} m_{1}(\xi, \eta)\right| \leq C_{j l}
$$

for all j and l uniformly in r. Therefore, by a theorem of Müller, Ricci and Stein (Theorem 2.2 in [12]) the operators with multipliers $m_{1}(k, \lambda)$ are uniformly bounded on $L^{p}\left(H^{n}\right), 1<p<\infty$. So, it is enough to consider the operator \widetilde{M}_{r} with the multiplier $\widetilde{m}((2 k+r)|\lambda|)$ where $\widetilde{m}(\lambda)=m(\lambda) \varphi(\lambda)$.

Let $H f$ be the Hilbert transform of f in the t-variable defined by

$$
(H f)^{\lambda}(z)=-i \operatorname{sgn} \lambda f^{\lambda}(z)
$$

Write $g=\frac{1}{2}(f+i H f)$ and $h=\frac{1}{2}(f-i H f)$ so that $f=g+h$ and $\|g\|_{p} \leq C\|f\|_{p}$, $\|h\|_{p} \leq C\|f\|_{p}$. Note that $g^{\lambda}(z)$ vanishes for $\lambda<0$ and $h^{\lambda}(z)$ for $\lambda>0$. We
have

$$
\widetilde{M}_{r} g=c_{n} \int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} \widetilde{m}((2 k+n)|\lambda|+(r-n) \lambda) g * e_{k}^{\lambda}\right)|\lambda|^{n} d \lambda
$$

which is nothing but $\widetilde{m}(\mathcal{L}+i(n-r) T) g$. Similarly, $\widetilde{M}_{r} h=\widetilde{m}(\mathcal{L}-i(n-r) T) h$.
Note that the operators $\mathcal{L}+i(n-r) T$ and $\mathcal{L}-i(n-r) T$ are homogeneous of degree 2 and since $0<r<2 n$ it is easily verified that they are Rockland operators. Therefore, by appealing to Theorem 1.2 we can conclude that $\widetilde{m}(\mathcal{L} \pm i(n-r) T)$ are bounded on $L^{p}\left(H^{n}\right)$ for $\alpha>Q(1-\varrho)|1 / p-1 / 2|$. As $\widetilde{M}_{r} f=\widetilde{M}_{r} g+\widetilde{M}_{r} h$ we see that \widetilde{M}_{r} is bounded on $L^{p}\left(H^{n}\right)$.

It remains to be shown that the operator norms of \widetilde{M}_{r} are uniform in r as long as $\varepsilon \leq r \leq 2 n-\varepsilon$. To this end we have to recall the main ideas involved in the proof of Theorem 1.2. In [13] we have treated multipliers for a wide class of operators. If P is a nonnegative self-adjoint operator on \mathbb{R}^{n} for which the kernel $S_{R}^{\delta}(x, y)$ of the Bochner-Riesz mean $(1-P / R)_{+}^{\delta}$ satisfies an estimate of the form

$$
\begin{equation*}
\left|S_{R}^{\delta}(x, y)\right| \leq C R^{n / 2}\left(1+R^{1 / 2}|x-y|\right)^{-\delta+\beta} \tag{3.2}
\end{equation*}
$$

then an analogue of Theorem 1.2 holds for $m(P), m \in S_{\varrho}^{\alpha}(\mathbb{R})$. Therefore, if we can show that the Bochner-Riesz kernels associated with the operators $\mathcal{L} \pm i(n-r) T$ satisfy the above estimates with C independent of r, then the operators \widetilde{M}_{r} will be uniformly bounded.

For $a \in \mathbb{R}$ consider the operator $P_{a}=\mathcal{L}+i a T$, which is a Rockland operator as long as a is admissible. We will show that if $|a| \leq n-\varepsilon, \varepsilon>0$, then the Bochner-Riesz kernel associated with P_{a} satisfies uniform estimates of the form (3.2). To do this we make use of a method developed by Hebisch [3] which only requires uniform estimates on the heat kernel associated with P_{a}. In the present case we can easily obtain estimates on the heat kernel.

Proposition 3.2. Let $p_{s, a}(z, t)$ be the kernel of the operator $e^{-s P_{a}}$, $s>0$. Then

$$
\left|p_{s, a}(z, t)\right| \leq C s^{-Q / 2} e^{-(A / s)\left(|z|^{2}+|t|\right)}
$$

where A and C are independent of a for $|a| \leq n-\varepsilon$.
Proof. By homogeneity it is enough to consider $s=1$. Let us write $p_{1, a}(z, t)=K_{a}(z, t)$. It is well known that the kernel is given by the formula

$$
K_{a}(z, t)=c_{n} \int k_{a}(z, t, \lambda) d \lambda
$$

where

$$
k_{a}(z, t, \lambda)=e^{-a \lambda}\left(\frac{\lambda}{\sinh \lambda}\right)^{n} e^{-\lambda(\operatorname{coth} \lambda)|z|^{2} / 4} e^{i \lambda t}
$$

Note that $k_{a}(z, t, \lambda)$ extends to a holomorphic function of λ in the strip $|\operatorname{Im} \lambda|<\pi / 2$. Hence by Cauchy's theorem

$$
\begin{aligned}
K_{a}(z, t)= & \lim _{R \rightarrow \infty}\left\{\int_{0}^{\pi / 4} k_{a}(z, t,-R+i \sigma) d \sigma\right. \\
& \left.+\int_{-R}^{R} k_{a}\left(z, t, \lambda+i \frac{\pi}{4}\right) d \lambda-\int_{0}^{\pi / 4} k_{a}(z, t, R+i \sigma) d \sigma\right\}
\end{aligned}
$$

In the above the first and last integrals go to zero uniformly in a as $R \rightarrow \infty$, provided $|a| \leq n-\varepsilon$. Then we get

$$
K_{a}(z, t)=c_{n} \int k_{a}\left(z, t, \lambda+i \frac{\pi}{4}\right) d \lambda
$$

and from this we obtain

$$
\begin{equation*}
\left|K_{a}(z, t)\right| \leq C e^{-\pi|t| / 4}, \quad t>0 \tag{3.3}
\end{equation*}
$$

where C is independent of a. The same estimate holds for $t<0$ as well. As $\operatorname{coth} \lambda$ behaves like λ for λ small we easily get the estimate

$$
\begin{equation*}
\left|K_{a}(z, t)\right| \leq C e^{-|z|^{2} / 4} \tag{3.4}
\end{equation*}
$$

The estimates (3.3) and (3.4) put together prove the proposition.
Using the heat kernel estimate proved above and following a method of Hebisch [4] we can obtain uniform estimates on the Bochner-Riesz kernels associated with P_{a}. Write $w=(z, t)$ and let $|w|$ be the homogeneous norm defined by $|w|^{4}=|z|^{4}+|t|^{2}$.

Proposition 3.3. Let $S_{R, a}^{\delta}(w)$ be the kernel of the Bochner-Riesz means associated with P_{a}. Then for $|a| \leq n-\varepsilon$ and δ large,

$$
\left|S_{R, a}^{\delta}(w)\right| \leq C R^{Q / 2}\left(1+R^{1 / 2}|w|\right)^{-\delta+\beta}
$$

where C is independent of a and R, and β is a fixed constant.
Proof. Due to homogeneity of the operators P_{a} it is enough to consider $R=1$. Following Hebisch we let $E_{n}^{a}(w)$ be the kernel of the operator $e^{i n K} K$ with $K=e^{-P_{a}}$. By appealing to Theorem 3.1 of [4] we get the estimate

$$
\int_{H^{n}}\left|E_{n}^{a}(w)\right|(1+|w|)^{\gamma} d w \leq C(1+|n|)^{\gamma+Q / 2}
$$

for every $\gamma \geq 0$ and C independent of a. Defining e_{n}^{a} to be the kernel of $e^{i n K} K^{2}$ we have

$$
e_{n}^{a}(w)=E_{n}^{a} * p_{1, a}(w)
$$

Using the L^{1} estimate of E_{n}^{a} and the heat kernel estimate of P_{a} we easily get the estimate

$$
\begin{equation*}
\left|e_{n}^{a}(w)\right| \leq C(1+|w|)^{-\gamma}(1+|n|)^{\gamma+Q / 2} \tag{3.5}
\end{equation*}
$$

for all $\gamma \geq 0$ with C independent of a.
We can now make use of the functional calculus developed in [4] to get estimates of the Bochner-Riesz kernel. For the sake of completeness we briefly indicate the method. Let $F(\lambda)=(1-\lambda)_{+}^{\delta} \psi(\lambda)$ where $\psi \in C^{\infty}$ is such that $\psi(\lambda)=1$ for $\lambda \geq 0$ and $\psi(\lambda)=0$ for $\lambda \leq-e^{-1}$. Let $G(\lambda)=$ $\lambda^{-2} F(-\log \lambda)$ for $\lambda>0$ and $G(\lambda)=0$ otherwise. Then $G(\lambda)$ is supported in $[0, e]$ and $F\left(P_{a}\right)=G\left(e^{-P_{a}}\right) e^{-2 P_{a}}$. Expanding $G(\lambda)$ into Fourier series as $G(\lambda)=\sum \widehat{G}(n) e^{i n \lambda}$ we get

$$
F\left(P_{a}\right)=\sum \widehat{G}(n) e^{i n K} K^{2}
$$

where, as before, $K=e^{-P_{a}}$.
Using the estimate (3.5) we get

$$
\left|S_{1, a}^{\delta}(x, y)\right| \leq C(1+|w|)^{-\gamma} \sum|\widehat{G}(n)|(1+|n|)^{\gamma+Q / 2}
$$

The coefficients $\widehat{G}(n)$ are given by

$$
\widehat{G}(n)=\frac{1}{2 \pi} \int_{0}^{e} G(\lambda) e^{-i n \lambda} d \lambda
$$

Making a change of variables we get

$$
\widehat{G}(n)=\frac{1}{2 \pi} \int_{-e^{-1}}^{1} F(t) e^{t} e^{-i n e^{-t}} d t
$$

As $F(t)=(1-t)_{+}^{\delta} \psi(t)$ we easily get the estimate

$$
|\widehat{G}(n)| \leq C(1+|n|)^{-l}
$$

provided $\delta>l-1$. Taking $\delta=\gamma+Q / 2+2$ we have

$$
|\widehat{G}(n)| \leq C(1+|n|)^{-\gamma-Q / 2-2}
$$

and hence

$$
\left|S_{1, a}^{\delta}(w)\right| \leq C(1+|w|)^{-\delta+Q / 2+2}
$$

where C is independent of a. This completes the proof of the proposition.
Once we have uniform estimates on the Bochner-Riesz kernels $S_{R, a}^{\delta}$ we can prove Theorem 3.1. See [13] for the details.
4. Proof of Theorem 1.4. In view of Theorem 3.1 and the remarks preceding it, it is enough to consider the operator M_{r}^{α} given by the multiplier $m_{r}^{\alpha}(k, \lambda)$. We now compare the multipliers $m_{r}^{\alpha}(k, \lambda)$ and $\psi_{k}^{\alpha}(\sqrt{|\lambda|} r)$ by
using a Hilb type asymptotic formula for the Laguerre polynomials. Formula (8.64.3) on page 217 of Szegő [18] gives

$$
\begin{equation*}
\psi_{k}^{\alpha}(r)=m_{r}^{\alpha}(k, 1)+e(k, \alpha, r) \tag{4.1}
\end{equation*}
$$

where $e(k, \alpha, r)$ is given by the integral

$$
\frac{\pi}{2^{3}} \frac{r^{4}}{\sin \alpha \pi} \int_{0}^{1}\left(J_{\alpha}(r \sqrt{K}) J_{-\alpha}(r s \sqrt{K})-J_{\alpha}(r s \sqrt{K}) J_{\alpha}(r \sqrt{K})\right) s^{\alpha+3} \psi_{k}^{\alpha}(r s) d s
$$

In the above formula $K=2 k+\alpha+1$. When α is an integer, $\sin \alpha \pi$ in the above formula has to be replaced by -1 and J_{α} by the modified Bessel function Y_{α}.

Define $a_{\alpha}(\lambda, r, s)$ for $\lambda>0$ by

$$
a_{\alpha}(\lambda, r, s)=\left(J_{\alpha}(r \sqrt{\lambda}) J_{-\alpha}(r s \sqrt{\lambda})-J_{-\alpha}(r \sqrt{\lambda}) J_{\alpha}(r s \sqrt{\lambda})\right) s^{\alpha+3} r^{4}
$$

and let $A_{\alpha}(r, s)$ be the operator whose multiplier is $a_{\alpha}((2 k+n)|\lambda|, r, s)$. Let $\chi \in C_{0}^{\infty}(|\lambda| \leq B+1)$ and $\chi\left(i \partial_{t}\right)$ be as before. From (4.1) it follows that

$$
T_{r}^{\alpha} \chi\left(i \partial_{t}\right) f=M_{r}^{\alpha} \chi\left(i \partial_{t}\right) f+c_{1} \int_{0}^{1} A_{\alpha}(r, s) T_{r s}^{\alpha} \chi_{1}\left(i \partial_{t}\right) f d s
$$

where $\chi_{1}(\lambda)=\lambda^{2} \chi(\lambda)$ and c_{1} is some constant. Another iteration produces the formula

$$
\begin{align*}
M_{r}^{\alpha} \chi\left(i \partial_{t}\right) f= & T_{r}^{\alpha} \chi\left(i \partial_{t}\right) f+c_{1} \int_{0}^{1} A_{\alpha}(r, s) M_{r s}^{\alpha} \chi_{1}\left(i \partial_{t}\right) f d s \tag{4.2}\\
& +c_{2} \int_{0}^{1} \int_{0}^{1} A_{\alpha}(r, s) A_{\alpha}\left(r s, s^{\prime}\right) T_{r s s^{\prime}}^{\alpha} \chi_{2}\left(i \partial_{t}\right) f d s d s^{\prime}
\end{align*}
$$

where $\chi_{2}(\lambda)=\lambda^{4} \chi(\lambda)$ and c_{1}, c_{2} are constants. For the symbols $a_{\alpha}(\lambda, r, s)$ we prove the following estimates.

Lemma 4.1. For $0 \leq r, s \leq 1$ we have the estimates

$$
\left|\partial_{\lambda}^{k} a_{\alpha}(\lambda, r, s)\right| \leq C_{k}(1+\lambda)^{-k / 2-1 / 2}
$$

valid for all $\lambda>0, k \geq 0$. More precisely,

$$
\begin{aligned}
& \left|\partial_{\lambda}^{k} a_{\alpha}(\lambda, r, s)\right| \leq C r^{3} s^{5 / 2}(1+\lambda)^{-(k+1) / 2} \\
& \quad \times\left\{\left(1+r^{2} \lambda\right)^{-\alpha / 2}\left(1+r^{2} s^{2} \lambda\right)^{\alpha / 2}+s^{2 \alpha}\left(1+r^{2} \lambda\right)^{\alpha / 2}\left(1+r^{2} s^{2} \lambda\right)^{-\alpha / 2}\right\}
\end{aligned}
$$

Proof. Let $B_{\alpha}(\lambda)=\lambda^{-\alpha / 2} J_{\alpha}(\sqrt{\lambda})$ and when α is a negative integer replace J_{α} by Y_{α}. Then B_{α} satisfies the equation

$$
\frac{d}{d \lambda} B_{\alpha}(\lambda)=-\frac{1}{2} B_{\alpha+1}(\lambda)
$$

The asymptotic properties of the Bessel function give us the estimates

$$
\left|\left(\frac{d}{d \lambda}\right)^{k} B_{\alpha}(\lambda)\right| \leq C(1+\lambda)^{-(\alpha+k+1 / 2) / 2}
$$

Consider the first term, which is equal to $B_{\alpha}\left(r^{2} \lambda\right) B_{-\alpha}\left(r^{2} s^{2} \lambda\right) s^{3} r^{4}$. The k th derivative of that term is a linear combination of terms of the form

$$
r^{2 j+4} B_{\alpha+j}\left(r^{2} \lambda\right)\left(r^{2} s^{2}\right)^{k-j} B_{-\alpha+k-j}\left(r^{2} s^{2} \lambda\right) s^{3}
$$

which is bounded by a constant times

$$
r^{2 k+4} s^{2 k-2 j+3}\left(1+r^{2} \lambda\right)^{-(\alpha+j+1 / 2) / 2}\left(1+r^{2} s^{2} \lambda\right)^{-(-\alpha+k-j+1 / 2) / 2}
$$

As $0 \leq r, s \leq 1$, the above is bounded by a constant times

$$
r^{3} s^{5 / 2}(1+\lambda)^{-(k+1) / 2}\left(1+r^{2} \lambda\right)^{-\alpha / 2}\left(1+r^{2} s^{2} \lambda\right)^{\alpha / 2}
$$

which in turn is bounded by $C(1+\lambda)^{-(k+1) / 2}$. Similarly, the k th derivative of the second term is bounded by

$$
C r^{3} s^{2 \alpha+5 / 2}(1+\lambda)^{-1 / 2-k / 2}\left(1+r^{2} \lambda\right)^{\alpha / 2}\left(1+r^{2} s^{2} \lambda\right)^{-\alpha / 2}
$$

which in turn is bounded by $C(1+\lambda)^{-(k+1) / 2}$. This proves the lemma.
We are now in a position to prove Theorem 1.4. From Theorem 1.5 we know that $T_{1}^{\alpha} \chi\left(i \partial_{t}\right)$ is bounded on $L^{p}\left(H^{n}\right)$ for $|1 / p-1 / 2|<(2 \alpha+1) /(4 n-2)$. If $6 \alpha \leq 4 n-5$, then $(2 \alpha+1) /(4 n-2) \leq(2 \alpha+3) /(4 n+4)$ and consequently $\alpha / 2+3 / 4>Q|1 / p-1 / 2| / 2$ whenever $|1 / p-1 / 2|<(2 \alpha+1) /(4 n-2)$. The multiplier corresponding to the product $A_{\alpha}(1, s) M_{s}^{\alpha}$ is given by the symbol

$$
m(\lambda, s)=a_{\alpha}(\lambda, 1, s) B_{\alpha}\left(s^{2} \lambda\right)
$$

which belongs to the class $S_{1 / 2}^{-\alpha / 2-3 / 4}(\mathbb{R})$. Using Lemma 4.1 we can show that

$$
\left|\partial_{\lambda}^{k} m(\lambda, s)\right| \leq C(1+\lambda)^{-(\alpha+3 / 2+k) / 2}
$$

where C is uniform for $0 \leq s \leq 1$. Since $\alpha / 2+3 / 4>Q|1 / p-1 / 2| / 2$, from Theorem 3.1 we conclude that

$$
\left\|A_{\alpha}(1, s) M_{s}^{\alpha} f\right\|_{p} \leq C\|f\|_{p}
$$

where C is independent of s. Therefore, the operator

$$
\int_{0}^{1} A_{\alpha}(1, s) M_{s}^{\alpha} \chi\left(i \partial_{t}\right) f d s
$$

is bounded on $L^{p}\left(H^{n}\right)$.
For the third term in (4.2), the symbol of the operator $A_{\alpha}(1, s) A_{\alpha}\left(s, s^{\prime}\right)$ comes from $S_{1 / 2}^{-1}(\mathbb{R})$ and the derivatives satisfy uniform estimates for $0 \leq$
$s, s^{\prime} \leq 1$ in view of Lemma 4．1．If $0 \leq \alpha \leq 1 / 2$ we can conclude that the operator

$$
\int_{0}^{1} \int_{0}^{1} A_{\alpha}(1, s) A_{\alpha}\left(s, s^{\prime}\right) T_{s s^{\prime}}^{\alpha} \chi_{2}\left(i \partial_{t}\right) f d s d s^{\prime}
$$

is also bounded on $L^{p}\left(H^{n}\right)$ ．Therefore，from（4．2）we see that $M_{1}^{\alpha} \chi\left(i \partial_{t}\right)$ is bounded on $L^{p}\left(H^{n}\right)$ ．If $\alpha>1 / 2$ ，we can perform further iterations and then the symbol of

$$
A_{\alpha}\left(1, s_{1}\right) A_{\alpha}\left(s_{1}, s_{2}\right) \ldots A_{\alpha}\left(s_{1} s_{2} \ldots s_{l-1}, s_{l}\right)
$$

will come from $S_{1 / 2}^{-l / 2}(\mathbb{R})$ with estimates uniform in s_{1}, \ldots, s_{l} ．We can choose l large enough so that $\alpha / 2+3 / 4 \leq l / 2$ and appealing to Theorem 3.1 we get the boundedness of M_{1}^{α} in the case when $6 \alpha \leq 4 n-5$ ．

If $6 \alpha>4 n-5$ then we need to assume the condition $|1 / p-1 / 2|<$ $(2 \alpha+3) /(4 n+4)$ so that $\alpha / 2+3 / 4>Q|1 / p-1 / 2| / 2$ ．We then proceed as before to complete the proof．

REFERENCES

［1］L．De Michele and G．Mauceri，L^{p} multipliers on the Heisenberg group，Michigan Math．J． 26 （1979），361－371．
［2］G．B．Folland，Harmonic Analysis in Phase Space，Ann．of Math．Stud． 112 ，Prince－ ton Univ．Press，Princeton，NJ， 1989.
［3］S．Giulini and S．Meda，Oscillating multipliers on noncompact symmetric spaces，J． Reine Angew．Math． 409 （1990），93－105．
［4］W．Hebisch，Almost everywhere summability of eigenfunction expansions associated to elliptic operators，Studia Math． 96 （1990），263－275．
［5］－，Multiplier theorem on generalized Heisenberg groups，Colloq．Math． 65 （1993）， 231－239．
［6］G．Mauceri，Zonal multipliers on the Heisenberg group，Pacific J．Math． 95 （1981）， 143－159．
［7］G．Mauceri and S．Meda，Vector－valued multipliers on stratified groups，Rev．Mat． Iberoamericana 6 （1990），141－154．
［8］A．Miyachi，On some estimates for the wave equation in L^{p} and H^{p} ，J．Fac．Sci． Univ．Tokyo Sect．IA Math． 27 （1980），331－354．
［9］D．Müller and E．M．Stein，On spectral multipliers for Heisenberg and related groups， J．Math．Pures Appl． 73 （1994），413－440．
［10］－，一，L^{p}－estimates for the wave equation on the Heisenberg group，Rev．Mat． Iberoamericana 15 （1999），297－334．
［11］D．Müller，F．Ricci and E．M．Stein，Marcinkiewicz multipliers and multiparameter structure on Heisenberg type groups I，Invent．Math． 119 （1995），199－223．
［12］—，一，一，Marcinkiewicz multipliers and multiparameter structure on Heisenberg type groups II，Math．Z． 221 （1996），267－291．
［13］E．K．Narayanan and S．Thangavelu，Oscillating multipliers for some eigenfunction expansions，J．Fourier Anal．Appl． 7 （2001），375－396．
[14] A. Nevo and S. Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg group, Adv. Math. 127 (1997) 307-334.
[15] J. Peral, L^{p} estimates for the wave equation, J. Funct. Anal. 36 (1980), 114-145.
[16] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, ibid. 87 (1989), 51-148.
[17] -, L^{p} harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406.
[18] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1967.
[19] S. Thangavelu, A multiplier theorem for the sublaplacian on the Heisenberg group, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), 169-177.
[20] -, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998.
[21] J. Zhong, The $L^{p}-L^{q}$ estimates for the wave equation with a nonnegative potential, Comm. Partial Differential Equations 20 (1995), 315-334.

Statistics and Mathematics Division
Indian Statistical Institute
8th mile Mysore Road
Bangalore 560 059, India
E-mail: naru@isibang.ac.in veluma@isibang.ac.in

[^0]: 2000 Mathematics Subject Classification: Primary 43A80, 43A22; Secondary 42C10, 22E30.

 Key words and phrases: Heisenberg group, multipliers, symbols, Fourier transform, Laguerre functions, heat kernels and Bochner-Riesz means.

 Research of the first author supported by NBHM, India.

