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TWO-GENERATED IDEMPOTENT GROUPOIDS
WITH SMALL CLONES

BY

J. GALUSZKA (Gliwice)

Abstract. A characterization of all classes of idempotent groupoids having no more
than two essentially binary term operations with respect to small finite models is given.

1. Introduction. In [6] J. Dudek described all varieties of idempotent
groupoids having no more than two essentially binary term operations. In
this paper we characterize these varieties with respect to small finite models.
To investigate the varietes described in [6] we use a technique analogous to
the methods used for example in [4], [7] and [9]. The notations and notions
used in this paper are standard (see [10] and [11]).

Let & = (G, ) be a groupoid. We denote by p,(®) the number of essen-
tially m-ary term operations over & and by po(®) the number of unary
constant term operations over &. Moreover, p(®&) denotes the sequence
(Po(8),p1(8),p2(8),...).

For the class G of groupoids we use the following notations: we write xy
instead of z-y, xy" instead of (... (zy) ...)y and "yx instead of y(. .. (yz)...)
where y appears n times. Recall that a groupoid & is nontrivial if card(G) >
2, and proper if the operation zy in & depends on both its variables. The
dual groupoid & = (G, o) is defined by zoy = yx. If C is a class of groupoids,
then C denotes the class of all groupoids &4 for & € C.

We say that a groupoid & is idempotent if it satisfies 22 = z. In the
whole paper we are dealing with idempotent groupoids only. We say that
& is medial (or entropic) if it satisfies (zy)(zt) = (zz)(yt). An idempotent
commutative groupoid satisfying zy? = z is called a Steiner quasigroup;
an idempotent commutative groupoid satisfying zy? = xy is called a near-
semilattice, and an idempotent associative groupoid satisfying (zy)z = zz is
called a diagonal semigroup (for details see [12]). We also use the following
notation:

e G denotes the class of all idempotent groupoids,
e G¢ denotes the class of all commutative groupoids,
e G denotes the class of all idempotent medial groupoids.
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In general C,(4,....z,)) denotes the subclass of the class C (C G) satisfying
the condition 7.
Let us recall the results of J. Dudek summarized in [6] and [3].

THEOREM 1.1 ([6]). & € Gy, (w)<1) if and only if & belongs to one of
the following varieties:

Gi: wy=yz, vy’ =2z (the variety of Steiner quasigroups);
Gi: wy=yx, vy’ =ay (the variety of near-semilattices).

THEOREM 1.2 ([6]). & € Gi(py(s)<2) if and only if & belongs to one of
the following varieties:

Gt ay? =, ay = (zy)r = 2(yz), *zy = (zy)(yz) =
Gs: ay? =y, (zy)(yz) = (2y)z =z, zy = "oy = y(ay);
Gi: ay’ =y, (wy)r=u, ay= ny = y(zy) = (yo)(zy);
Gi: wy’ =y, ay = (yo)y = y(ey) = *zy = (yz)(zy);
Gs o ay’ =y, (zy)r=a(yz) = (vy)(yz) = =
G wy’ =ay = (zy)r = x(yz) = ey = (vy)(yx);
G2 wy? =yr, (vy)r=a(yr) =y, *zy = yx, (2y)(y) ==
gg c oz =z, zy=vyx (the variety of Steiner quasigroups);
gg : xy2 = ym2, Ty = yzx, xy2 = a:y3 (the variety N3)

or to one of the varieties gfd (i=1,...,9).

Let us recall that the variety Ay was described by J. Dudek in [4]. By
Theorem 1.2, Ql(pQ(@,) <2) = Q% U g%d U...U QS U di

THEOREM 1.3 ([3]). Let & € Gy Then

(1) p2(®) =1 if and only if & is either a semilattice or an affine space
over GF(3).

(ii) p2(®) = 2 if and only if either & is a diagonal semigroup, or &
represents the sequence w, or & is an affine space over GF(4).

(The definition of a groupoid representing a sequence is recalled in the
next section.)

2. Theorems. Using Cayley’s tables we define groupoids needed in the
next theorems. In what follows, ©ly denotes a two-element semilattice, and
Gl3 a three-element semilattice which is not a chain. Some of the groupoids
®/ and &/ defined below are described in [1] and [2].
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Let C C G. We denote by S, (C) the following class of groupoids: & €
S,(C) if and only if & is isomorphic to an n-generated subgroupoid of some
$Hecl.

We use the following conventions:

e any two isomorphic groupoids are treated as identical,
e “n-generated” means that the groupoid is generated by a set of cardi-
nality n and it is not generated by any set of cardinality less than n.

For C = {&} we write S, (®) instead of S, ({&}).

THEOREM 2.1. For the class Ql(pz(@ <2) gl U QQd LU gg U Qg we
have:
(1S = {0, 62, 62}

2
) e — o ohy
(3) 5:(G2) = {1, 82, 63).
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(4) $2(63) = {1, 83, 054}

(5) Sa2(G3) = {Po, P1, B3}

(6) S2(G2) = {‘430,6[2,6[3,66, ®21.
(7) 82(G%) = {& }

(8) S2(G3) = {&3}-

(9) S2(G3) = {Bly, B3, &5}

Here 0512 is a free 2-generated groupoid in the variety G2 for i = 1,...,9.
The dual versions of (1)~(9) for the classes G39,... G2 are analogous.

THEOREM 2.2. Let & € g[(pQ(Qj)SQ). Then:

(1) & ¢ g%(p2(<‘5)=2) if and only if Ss(®) C {Po, &2, &3} and either @3%
or &2 can be embedded in &.

(2) & € QQ (pa(®)=2) if and only if S»(&) C {PB1, 83} and &3 can be
embedded in &.

(3) & ¢ Qg(m(@):m if and only if Sy(®) C {P1, &2, 63} and either 2
or ®3 can be embedded in &.

(4) & € QZ(M(G)ZQ) if and only if S2(®) C {P, (’/Si, ®3} and @Z can be
embedded in &.

(5) & € G2, (6)=2) if and only if Sa(8) C {Po, 1,83} and both Po
and P1 can be embedded in &. R

(5) & € Gi(p(0)=2) if and only if Sa(&) C {Po, Sk, Sl3, 63, 65} and
both Py and Sly can be embedded in &.

(6) 6 ¢ g7 2(6)=2) U and only if S2(&) C {&2} and 2 can be embedded
mn 6.

(7) If pa(®) = 2 then & & G§.

(8) & e gg (pa(®)=2) if and only if Sx(®) C {Bly, Bl3, 3} and B2 can be
embedded in &.

The dual versions of (1)—(9) are also true.

We say that a groupoid & represents a sequence a = (ag,ai,asg,...)
(finite or not) if a is a subsequence of p(®) (written a C p(®)). A sequence a
is representable (resp. representable in a class C) if there exists a groupoid &
(resp. & € C) such that & represents a. If a is a finite sequence representable
by a given groupoid & (resp. & € C) then p(®) is called an extension of a

(resp. extension of a in C). On the class of sequences of cardinal numbers

we have a natural partial order: a < b &L vie N, a; < b;. Take a (finite)

sequence a and consider the set {p(®)|a C p(&)} (resp. {p(&)|BeC, aC
p(®)}) of all extensions of a ordered by <. A least element in this set is called
the minimal extension of a (resp. minimal extension of a in C). Combining
the results of [1], [5] and [8] with Theorem 2.2 we obtain the simple but
interesting observations presented below. We use the standard notations
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X1, Yo, X3 for the varieties of groupoids representing the sequence w =
(0,1,2,...) described by J. Plonka. Recall that these varieties are defined
by the following identities:

Di:oa® =, (ay)z = a(yz), 2(yz) = 2(2y);
Yy: 2? =z, (zy)z = (z2)y, z(y2) = zy, zy® = zy;
Ty: 2t =w, (wy)z = (z2)y, 2(yz) ==

(for details see [10], pp. 394-395 and [13]).

y, vy’ =7

(1) 6\5% and ®7 are both medial proper groupoids in X3 having exactly
two essentially binary term operations; p(@%) is a minimal extension of the
sequence (0,1,2) in G; p(@%) = w.

(2) @3% is a nonmedial groupoid having exactly two essentially binary
term operations; it is neither a diagonal semigroup nor a member of X U
Y5 U X3 nor an affine space over GF(4); p(®32) is a minimal extension of the
sequence (0,1,2) in G3; p3(®3) > 6.

(3) @5% and @% are both nonmedial groupoids having exactly two es-
sentially binary term operations; they are neither diagonal semigroups nor
members of Xy U Xy U X3 nor affine spaces over GF(4); p(83) is a minimal
extension of the sequence (0,1,2) in G3; pg(@%) = 21.

(4) (’/5?1 and ®? are both medial proper groupoids in X having exactly
two essentially binary term operations; p(@i) = w is a minimal extension of
the sequence (0, 1,2) in G2.

(5) &2 is a diagonal semigroup having exactly two essentially binary term
operations; p(@%) =(0,1,2,0,0,...) is a minimal extension of the sequence
(0,1,2) in G2.

(6) (75(% and &2 are both medial proper two-generated groupoids in ;
p(@%) = w is a minimal extension of the sequence (0, 1,2) in G2.

(7) ®2 is an affine space over GF(4) having exactly two essentially binary
term operations; p(®%) is a minimal extension of the sequence (0, 1) in G,
®2 represents the sequence (0,1,2,7) (cf. [8]).

(8) &2 is an affine space over GF(3) and a medial Steiner quasigroup; it
can be embedded in every nontrivial groupoid & from G%; p(®3) is a minimal
extension of the sequence (0, 1) in G2; &2 represents the sequence (0,1, 1,3).

(9) G2 = N> so evidently &2 is Dudek’s groupoid and hence it is a free
two-generated groupoid in No; p(Qﬁg) is a minimal extension of the sequence
(0,1,2) in G2 (and in G¢); B3 represents the sequence (0,1,2,10).

Analogously we can formulate the dual versions of (1)—(9).

Theorem 2.2 also yields the following remark:
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REMARK. The assumption & € Gpy in Theorem 1.3(ii) cannot be omit-

ted. For example pg(@%) = 2 but @3% is neither a diagonal semigroup nor a
member of X U X U Xy U ¢ U 25U X nor an affine space over GF(4).

3. Proofs of theorems. We say that term operations p(zi,,...,z;,,)
and q(xj,,...,;,) (built from the binary operation “”) are left-uniform if
the variables z;, and xj, really occur in p and g respectively and z;;, = z;,.
Analogously p and q are right-uniform if x;,, = x;,. We say that the identity
p = q is left-uniform (resp. right-uniform) if the term operations p and ¢ are
left-uniform (resp. right-uniform). We say that a variety V is left-uniform
(resp. right-uniform) if the identities defining it are all left-uniform (resp.
right-uniform). Evidently if a variety V in the class of groupoids is left-
uniform (resp. right-uniform) then By (resp. P1) is a nontrivial groupoid
in V.

Proof of Theorem 2.1. We present the steps of the proof for the classes
G3,..., gg only. The proof for the dual classes proceeds analogously and is
omitted. We leave it to the reader to check that the models of groupoids
presented are members of the given classes. The author has checked it using
an unpublished program written by Marek Zabka. We present the details of
the proof of the first item only. The parts of the proofs of (2)—(9) which are
analogous to the proof of (1) are omitted.

(1) Consider the class G2 and take a free groupoid § generated by two
free variables z, y. The Cayley table of this groupoid is

S\ Ty zYy yx
r|lrx Yy T TY
ylyz Yy yxr oy
xy|lry x Y X

yr|y yr 'y yr

The function f defined on the set {x,y, zy, yx} as follows: f(x)=0, f(y)=1,
f(zy) = 2, f(yx) = 3 is an isomorphism from § onto &?. The variety
Q% is left-uniform so clearly By is a member of g%. Assume that & is a
nontrivial member of G2. So there exist a,b € G such that a # b. Con-
sider the subgroupoid &(a,b) = (G(a,b),-) of & generated by {a,b}. Then
G(a,b) = {a,b,ab,ba} and card(G(a,b)) < 4. Evidently a # ba. Indeed,
suppose that @ = ba. Then a = a® = ba®? = b, a contradiction. Assume that
a = ab and b = ba. Then card(G(a,b)) = 2 and the Cayley table of &(a,b)

1S
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so B(a,b) = Po. Assume now that & is a proper groupoid. Then the term
operation zy is not a projection. Thus there exist a,b € G such that a # ab.
Then evidently a # b. Suppose that a = ba. Then a = a® = ba® = b, a
contradiction. Thus a # ba. Analogously b # ab. Suppose now that ab = ba.
Then a = ab® = (ba)b = ba, a contradiction. So we have two possibilities
only: b = ba or b # ba. Assume that b = ba. Then card(G(a, b)) = 3 and the
Cayley table of &(a,b) is

G(a,b)|a b ab
ala ab a
blb b b

ab|lab a ab

so &(a,b) = @5% Assume now that b # ba. Then card(G(a,b)) = 4 and the
Cayley table of &(a,b) is

@(a,b)‘ a b ab ba
a|lb ab a ab
blba b ba b

ablab a ab a
ba| b ba b ba

so &(a,b) = &2. Evidently (‘Aﬁf is a homomorphic image of ®2.

(2) The variety Q% is right-uniform so P € gg. Let & € Qg be nontrivial.
Then there exist a,b € G such that a # b. Evidently ab # ba. Suppose
that @ = ab. Then a = ab = ab® = b, a contradiction. If a = ba, then
ab = (ba)b = b and &(a,b) = P;. Assume now that & is a proper groupoid.
Then there exist a,b € G such that a # ba. Then G(a,b) = {a, b, ab,ba} is a
four-element set and &(a,b) = ®3.

(3) The variety Q% is right-uniform so 3 € g§. Let & € Q% be nontrivial.
Then there exist a,b € G such that a # b. Hence G(a,b) = {a,b,ab,ba}
where a # ab. If a = ba then ab = b and &(a,b) = P;. Assume that & is
proper. Then there exist a,b € G such that a # ba. Hence a # b, a # ab,
a # ba, b # ba, b # ab. If ab = ba then &(a,b) = &3. If ab # ba then
®(a,b) = &2

(4) The variety G2 is right-uniform so 31 € G3. Let & € G be nontrivial.
Let a,b € G be such that a # b. If a = ba and b = ab then &(a,b) = P;.
Assume that & is proper. Take a,b € G such that a # ba. Then a, b, ba are
all distinct. Moreover a # ab. Suppose that ab = ba. Then ba = (ab)a =
ba? = a, a contradiction. Assume that ab = b. Then &(a,b) = @52 If ab # b
then &(a,b) = &3.
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(5) The variety G2 is left-uniform and right-uniform simultaneously. Thus
Po, P1 € G2. Let & € G2 be nontrivial. Let a,b € G, a # b. Consider the
groupoid &(a,b). We have G(a,b) = {a,b,ab,ba}. Evidently ab # ba. If
a = ab, b = ba then &(a,b) = Po. If a = ba, b = ab then &(a,b) = P;. If &
is proper then (a) there exist a,b € G such that a # ab and (b) there exist
a,b € G such that b # ab. (a) Assume that a # ab. Then b # ba. Thus we
have two possibilities only: either b = ab and &(a,b) = P, or b # ab and
®(a,b) = &2. (b) For the case b # ab we analogously conclude that either
®(a,b) = Po or &(a,b) = B2,

(6) The variety Qﬁ% is left-uniform. Thus Py € g%. Also 61, € Q%. Let
6 e Q% be nontrivial. Let a,b € G, a # b. If a = ab and b = ba then
&(a,b) = Po. Assume that & is proper. Let a,b € G, a # ab. Suppose that
b = ab. Then ba = b and &(a,b) = Sly. Assume that b # ab. Then either
ba = b and &(a,b) = B2, or ba = ab and &(a,b) = Sl3, or ba # ab and
&(a,b) = B2

(7) Consider a nontrivial groupoid & € g%. Let a,b € G, a # b. Then
a,b,ab, ba are all distinct. Hence &(a,b) = &2.

(8) Let & € G2 be nontrivial. Then &(a,b) = &2.

(9) This item is a consequence of the results presented in [4].

Proof of Theorem 2.2. (1) Let & € G2 and po(®) = 2. Then by Theo-
rem 2.1(1), S2(8) C {PBo, @3%, ®2}. Since po(B) = 2, & is a proper groupoid.
As in the proof of Theorem 2.1(1) we find that either @% or &% can be em-
bedded in &. Conversely, if S2(6) C {Po, @5%, ®2} then by Theorem 2.1(1),
® € G3. Assume that either @5% or &7 can be embedded in &. Then 2 =
p2(&7) = pa(&1) < p2(®) < 2. So pa(®) = 2.

(2)-(3) and (7). The proofs are analogous to the proof of (1) and are
omitted.

(4) The proof is similar to that of (1). Moreover (‘Aﬁi can be embedded
in (’52

(5) Let & € G2 and po(®) = 2. Then by Theorem 2.1(5), Sz(®) C
{Bo, P1, ®2}. As & is a proper groupoid, as in Theorem 2.1(5) we conclude
that either (a) 91 or &2 can be embedded in &, or (b) Py or B2 can
be embedded in &. Observe that both By and 31 can be embedded in Qﬁg.
Evidently So(&) € {PBo} and S2(&) € {PB1}. Thus in either case ((a) or (b))
both P, P1 can be embedded in &. Conversely, assume now that Sp(&) C
{Bo, P1, &2} and both Py, P can be embedded in &. By Theorem 2.1(5),
6 e gg. The term operation xy evidently depends on both variables z and

y (zy depends on z in By and on y in Pp). Moreover zy is noncommutative.
Thus p2(®) > 2. As & € GZ we have py(®) = 2.
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(6) Assume that & € G2 and pa(®) = 2. Then by Theorem 2.1(6),
S2(®) C {Po, Sly, 6[3,@2, ®2} and (a) there exist a,b € G such that ab #
ba and (b) there exist a,b € G such that ab # a.

(a) Assume that a,b € G and ab # ba. Suppose that a = ab. Then either
b = ba and &(a,b) = Py, or b # ba and &(a,b) = @5% Assume that a # ab.
Then b # ab (if b = ab, then ba = ab® = ab, a contradiction). So we have two
possibilities: either b = ba and &(a, b) = ®2, or b+ ba and B(a,b) = B2

(b) Assume now that a,b € G and ab # a. If ab = b then ba = b(ab) = b
and &(a,b) = Gly. Assume that ab # b. If ab = ba then &(a,b) = Slz. If
ab # ba we have two possibilities only: either ba = b and &(a,b) = @52, or
ba # b and &(a,b) = &2. Evidently 2 can be embedded in ®2 and both
Lo and Sly can be embedded in 6% Thus in each case both By and Sly
can be embedded in &. N

Assume now that Sa(®) C {Po, Slo, Sl3, &2, &2} and both Py and Sly
can be embedded in &. Then by Theorem 2.1(6), & € G2 and the term oper-
ation zy is noncommutative and depends on both variables. Thus p2(®) = 2.

(8) If & € G2 then py(&) = 1.

(9) This is a consequence of [4].
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