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Abstract. We show that the study of the principal spectrum of a linear nonau-
tonomous parabolic PDE of second order ut = ∆u+a(t)u on a bounded domain, with the
Dirichlet or Neumann boundary conditions, reduces to the investigation of the spectrum
of the linear nonautonomous ODE v̇ = a(t)v.

In [3] the author presented a theory of principal spectrum for linear
nonautonomous parabolic partial differential equations (PDEs) of second
order

ut = ∆u+ a(t, x)u, x ∈ Ω, t > 0,

where Ω ⊂ R
N is a bounded domain with sufficiently smooth boundary ∂Ω.

The equation is complemented with the boundary conditions either of the
Dirichlet type or the Robin (regular oblique) type.

The keystone of the theory is the construction of a one-dimensional in-
variant subbundle S (the Krĕın–Rutman bundle). The principal spectrum
is defined now to be the dynamical (Sacker–Sell) spectrum of the linear
skew-product flow generated on S by the equation. It follows from the gen-
eral theory of linear skew-product flows that the principal spectrum is a
nonempty compact interval.

Moreover, it was proved that both the supremum and infimum of that
principal spectral interval are nondecreasing functions of the zero-order term
a, which gives us a useful tool for estimates.

The purpose of the present paper is to prove that if a is an essentially
bounded function depending on t only then the computation of the principal
spectrum consists in finding the exponential growth rates of solutions of the
scalar ordinary differential equation v̇ = a(t)v. The theory of growth rates
for systems of ordinary differential equations (ODEs) was presented in the
book [1] by B. F. Bylov et al.
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Consider a linear parabolic partial differential equation of second order

ut = ∆u+ a(t)u, x ∈ Ω, t > 0,(1)

where Ω ⊂ R
N is a bounded domain with boundary ∂Ω of class C2 and a ∈

L∞(0,∞). Equation (1) is complemented either with the Dirichlet boundary
conditions

(2a) u(t, x) = 0, x ∈ ∂Ω, t > 0,

or with the Neumann boundary conditions

(2b)
∂u

∂ν
(t, x) = 0, x ∈ ∂Ω, t > 0,

where ν: ∂Ω → R
N is the normal unit outward vector field.

For t ≥ 0 put (a · t)(s) := a(t+s). Denote by A the closure in the weak-∗

topology of the set {a · t : t ≥ 0} ⊂ L∞(0,∞). It is well known that

(i) A is a compact metrizable space,

(ii) the mapping A× [0,∞) ∋ (b, t) 7→ b · t ∈ A is continuous.

For b ∈ A denote by B the solution of the initial value problem
{
v̇ = b(t)v,
v(0) = 1.

(3)

It is well known that

B(t) = exp
(t\
0

b(s) ds
)
.(4)

We denote by C([0,∞)) the Fréchet space of continuous real functions
on [0,∞) (endowed with the ordinary topology of uniform convergence on
compact sets).

Proposition 1. The assignment A ∋ b 7→ B ∈ C([0,∞)) is continuous.

Proof. Let bn → b in A. Fix T > 0. The set {Bn|[0,T ]} is clearly bounded
and equicontinuous in the Banach space C([0, T ]) of continuous real func-
tions with the supremum norm, so by the Ascoli–Arzelà theorem there is a
subsequence converging to some B̃ ∈ C([0, T ]). But for each t ∈ [0, T ] one
has

lim
n→∞
Bn(t) = lim

n→∞
exp
(t\
0

bn(s) ds
)
= lim
n→∞
exp
(∞\
0

bn(s)1[0,t](s) ds
)

= exp
(∞\
0

b(s)1[0,t](s) ds
)
= exp

(t\
0

b(s) ds
)
= B(t),

from which it follows that Bn|[0,T ] converges in C([0, T ]) to B|[0,T ].
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For 1 < p < ∞ denote by {e∆pt}t≥0 the analytic semigroup of bounded
linear operators generated on Lp(Ω) by the closure of the Laplace oper-
ator ∆ with the corresponding boundary conditions (2). Let e stand for
the principal eigenfunction (we choose e so that e(x) > 0 for x ∈ Ω and
‖e‖L2(Ω) = 1), and let Λ stand for the principal eigenvalue of the Laplacian
with the boundary conditions (2).

Consider the equation

ut = ∆u+ b(t)u, x ∈ Ω, t > 0,(5)

where b ∈ A, endowed with the corresponding boundary conditions (2) and
the initial condition

u(0, x) = u0(x), x ∈ Ω.(6)

For b ∈ A, 1 < p <∞, u0 ∈ L
p(Ω) and t ≥ 0 put

up(t; b, u0) := B(t)e
∆ptu0.(7)

The theory of principal spectrum was presented in [3] in an axiomatic
way. We now briefly analyze the fulfillment of those axioms in the present
setting.

Axiom (A1) states that the parameter space A is a convex compact
metrizable subset of a topological vector space consisting of (equivalence

classes of) Lebesgue measurable functions from (0,∞) × Ω into R
N2+N+1.

As regards the domain and the dimensionality of the target space, now only
the zero-order term depends on t (and is independent of x), so the choice
of functions from (0,∞) to R is natural here. In the present setting A need
not be convex, since in [3] the convexity of A was used only in Part 3,
whereas in the main part of the theory (used in the present paper) it was
not necessary.

Axiom (A2) states the translation invariance of A and (A3) asserts that
the translation is continuous. Both are clearly satisfied (see (i) and (ii)).

The next six axioms (A4)–(A9) concern the properties of the solution.
Axiom (A4) establishes the existence of a solution considered a function
from [0,∞) to Lp(Ω).

Axiom (A5) states that the solution depends continuously (as an element
of the Banach space C([0, T ], Lp(Ω))) on initial conditions and parameters.
Its fulfillment follows from the following

Lemma 2. Let T > 0. Assume that bn converges in A to b and un
converges in Lp(Ω) to u0. Then up(·; bn, un) converges in C([0, T ], L

p(Ω))
to up(·; bn, un).
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Proof. We have

sup
t∈[0,T ]

‖Bn(t)e
∆ptun −B(t)e

∆ptu0‖Lp(Ω)

≤ ‖Bn −B‖C([0,T ]) · sup
t∈[0,T ]

‖e∆ptu0‖Lp(Ω)

+ ‖Bn‖C([0,T ]) · sup
t∈[0,T ]

‖e∆pt(un − u0)‖Lp(Ω).

The convergence to zero follows by Proposition 1 and the fact that {e∆pt}t≥0
is a C0-semigroup of bounded linear operators on L

p(Ω).

Axiom (A6) states that up(t;u0, b) is in fact an element of C
1(Ω) for

t > 0 (this allows us to write simply u(t;u0, b)), and (A7) states that for
t > 0 fixed the mapping Lp(Ω) ∋ u0 7→ u(t;u0, b) ∈ C

1(Ω) is completely
continuous. The fulfillment of both these axioms follows from the fact that
they are satisfied for the Laplacian.

The same argument holds in the case of Axiom (A8), which says that for
t > 0 and b ∈ A the linear mapping u0 7→ u(t;u0, b) extends to an operator
in L(C1(Ω)∗, C1(Ω)), where ∗ stands for the dual.

Axiom (A9) stipulates that for 0 < T1 ≤ T2 the mapping assigning to
a parameter b ∈ A the function u0 7→ u(·;u0, b) considered an element of
C([T1, T2],L(C

1(Ω)∗, C1(Ω))), 0 ≤ T1 < T2, is continuous. Its fulfillment
again follows easily by the construction of the solution.

Axiom (A10), stating that u(t;u0, b) belongs to the interior of the cor-
responding nonnegative cone provided u0(x) > 0 for a.e. x ∈ Ω and u0 6= 0,
is satisfied as it holds for the Laplacian.

Axiom (A11), regarding the monotone dependence of the solution with
respect to initial values and zero-order terms, is satisfied by the form (7) of
the solution and the maximum principles. (In fact, (A11) is not needed in
the definition of principal spectrum.)

Denote by v: [0,∞) → L2(Ω) the solution v(t) := u2(t; a, e). From now
on, let ‖ · ‖ stand for the L2(Ω)-norm.

By Thm. 2.12 in Mierczyński [3], λ ∈ R belongs to the principal spectrum
of (1) if and only if there are sequences 0 ≤ sn < tn, sn →∞, tn− sn →∞,
such that

lim
n→∞

log ‖v(tn)‖ − log ‖v(sn)‖

tn − sn
= λ.

As v(t) = A(t)e∆2te = A(t)e−Λte, where A(t) = exp(
Tt
0 a(θ) dθ), we

obtain our main result.

Theorem 3. λ ∈ R belongs to the principal spectrum of (1) if and only
if there are sequences sn < tn, sn →∞, tn − sn →∞, such that
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lim
n→∞

1

tn − sn

tn\
sn

a(θ) dθ = λ+ Λ.

In particular, under the Neumann boundary conditions the principal
spectrum equals the set
{
lim
n→∞

1

tn − sn

tn\
sn

a(θ) dθ : sn < tn, lim
n→∞
sn =∞, lim

n→∞
(tn − sn) =∞

}
.

An important special case arises when a is (the restriction to (0,∞) of)
a Bohr almost periodic function on (−∞,∞). Then the set of all possible
limits

lim
1

tn − sn

tn\
sn

a(θ) dθ

reduces to {a}, where a is the average of a,

a := lim
T→∞

1

T

T\
0

a(θ) dθ.

According to Theorem 3 the principal spectrum is the singleton {a − Λ}.
(For more on the theory of principal spectrum in the almost periodic case
see Hutson, Shen and Vickers [2].)

Our last remark concerns the situation when the equation (1) is asymp-
totically autonomous in the sense that there is a∗ ∈ R such that

1

t− s

t\
s

|a(θ)− a∗| dθ → 0 as s→∞, t− s→∞.(8)

Then it follows in a straightforward way from Theorem 3 that the principal
spectrum equals {a∗ − Λ}.

Condition (8) is satisfied for example if

lim
t→∞
a(t) = a∗

or if
∞\
t

|a(θ)− a∗| dθ → 0 as t→∞.
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