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Abstract. A generalization of the weighted quasi-arithmetic mean generated by con-
tinuous and increasing (decreasing) functions fi,...,fx : I — R, k > 2, denoted by
AV f4l g considered. Some properties of AV k], including “associativity” assumed
in the Kolmogorov—Nagumo theorem, are shown. Convex and affine functions involving
this type of means are considered. Invariance of a quasi-arithmetic mean with respect to
a special mean-type mapping built of generalized means is applied in solving a functional
equation. For a sequence of continuous strictly increasing functions f; : I = R, j € N, a
mean AU1-f201 . Use, I* — T is introduced and it is observed that, except symmetry,
it satisfies all conditions of the Kolmogorov—Nagumo theorem. A problem concerning a
generalization of this result is formulated.

1. Introduction. Supposing that a function f : I — R is continuous
and strictly monotonic in a real interval I and f1,..., fx: I = R, k > 2, are
arbitrary functions, we show that a function M : I* — R defined by

M(xy,...,xx) = f_l(zk: fg(%))
j=1

is a mean if, and only if, f = Z?zl fj and, for each i € {1,...,k}, the
function f; is continuous, monotonic, and of the same type of monotonicity
as f (Theorem 1, cf. also [7] where the case k& = 2 is considered). The
function Alf1--fkl := M generalizes the weighted quasi-arithmetic mean (cf.
for instance [1], [2], [4]). We show, in particular, that AUt-/sl is symmetric
iff it is quasi-arithmetic, and, for each ¢ € {1,...,k} and all zy,..., a2 € I,
we have

APt () = AVedil (y, Y Tig, e m)
S——
7 times
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where y = Al fil (1,...,2;); so the mean Alfv- el inherits the character-
istic “associativity” property of the classical quasi-arithmetic means (Theo-
rem 2). In Section 3, the equality Alogrgl = Alffil i examined. In
Section 4 we consider functions which are convex, concave or affine with re-
spect to the mean Al/1-fkl. Using the functional equation h(8(x) + d(y)) =
v(z) + n(y) (Lemma 1), we find the form of affine functions with respect
to AUt fkl In Section 5 we remark that the question of comparability of
the means Al/1-Jkl and Alor--9+] Jeads to a convexity-type inequality. In
Section 6 we observe that the quasi-arithmetic mean A1,

k
1
(] S .
AV Nzy,ooz) = f (n;lf(xl)>, T1,..., 0 €1,

with f:= fi +--- 4+ fx, is invariant with respect to the mean-type mapping
M : I¥ — I* given by
M = (A[flr"'vfk:}’A[f27f37~'-7fk7f1]7 . 7A[fk:f17-'~7fkfl]),

and we apply this fact in solving a functional equation.

In connection with the above mentioned “associativity” property, in the
final Section 7, for a given sequence of continuous and strictly increasing
functions f; : I — R, j € N, we define a mean Alfvfar] Ure, I — 1,
and observe that, except symmetry, it satisfies all the assumptions of the
celebrated theorem of Kolmogorov—Nagumo [3], [L0] on a characterization of
quasi-arithmetic means (Corollary 3). Based on this, we formulate a conjec-
ture generalizing the Kolmogorov—Nagumo theorem.

2. Generalized quasi-arithmetic means, their properties, and
some lemmas. Let I C R be an arbitrary interval and k € N, k£ > 2.
A function M : I* — R is called a k-variable mean in I if

min(zy,...,z5) < M(x1,...,2,) < max(zy,...,2g), Z1,...,2 € 1;

if, moreover, each of these two inequalities becomes an equality only in the
case when x| = - -+ = x, the mean M is called strict.

THEOREM 1. Let I C R be an interval, and k € N, k > 2. Suppose that
a function f: I — R is continuous and strictly monotonic, and f1,..., fi :
I — R are arbitrary functions. Then the function M : I*¥ — R,

(1) M(zy,...a5) = fl(i fi(w)).

1s a mean if, and only if,

k
(2) f=2_1
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and, for each i € {1,...,k}, the function f; is continuous, monotonic, and
of the same type of monotonicity as f; moreover, for each i € {1,...,k},

() Mar,...,op) = (z B+ I - % he),
J=1,j#1 J=Lg#0
T1,...,x €1,

(4) M(zq,...,x5) = (zk:fj>_1(zk:fj(xj)>, T1,..., 05 € 1.
j=1

Proof. Since

(—f)1<zk:( i x]): (Zf] wj> x1,...,x, €1,

7=1
we can assume, without any loss of generahty, that f is strictly increasing.
Assume that M defined by (1) is a mean in I.
From (1), taking z; = -+ = 2 = x in the definition of a mean, we get

(Zf] )—x, xel,

whence (2)—(4) hold true.
Fix i € {1,...,k} and take arbitrary x,y € I, = < y. Since M is a mean,
setting x; = « for j # i and x; = y in (3), we get

k k
<Y L@ - Y LW) <y,
=1 =1, j#i
whence, as f is increasing,

k
(5) f@)< > fil@)+ - D i) < f).
j=1,j7i J=1,j#i

By (1), from the first of these inequalities, we get

k k k
o fie) < Y L@+ - D fiw),
j=1 j=1, j#i j=1 J=1,5#1
which reduces to the inequality
fi(z) < fi(y).
This proves that, for each i € {1,...,k}, the function f; is increasing. It
follows that at any ¢ € int I, the one-sided limits f;(t+) and f;(t—) exist.
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Letting y tend to z in (5), by the continuity of f, we obtain

k k
S fi@+fa) - Y filat),
=1, =1, j#i
that is,
k k
(6) Yo i)=Y filz),

j=1,#i J=Li#i
and this equality holds true for all € int U {inf I'} if inf I € I.
Similarly, letting = tend to y in (5), we get

k k
(7) > fi= > fily)
=1, j#i =1,
forally €eint IU{supl} ifsupl € I.

By the continuity of f we have f(t—) = f(t) = f(t+) for all ¢t € int [;
ft+) = f(t) ift =infI € I, and f(t—) = f(t) if t = supI € I. Hence, for
t €int I, we get

k k
Z L)+ fit=) = D L+ [ = D fith) + filt+),
J=1,7%# J=L,j# Jj=1,5%#

whence, by (6) and (7),

fit=) = fi(t) = fi(t+).

If t = inf I € I then from the equality f(t+) = f(t) and (6) we get f;(t+) =
fi(t). If t = sup I € I then from the equality f(t—) = f(¢t) and (7) we get
fi(t=) = fi(t). This proves that, for each ¢ € {1,...,k}, the function f; is
continuous in 1.

To prove the converse implication, assume that fi,...,fr : I — R are
continuous, increasing, f : I — R is strictly increasing and such that (2)
holds true. Hence, for arbitrary z1,...,z; € I, putting

x =min(zy,...,x;), y=max(xi,...,Tx),
we have
k k k
(8) F@) =) fi@) <Y file;) <D fily) =
j=1 j=1 j=1

Since f is continuous, the number Z?:l fj(x;) belongs to the range of f,
and so the function M in (1) is correctly defined.
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From (8) we obtain

= fl(i i) < fl(i fila)) < fl(i fiw) <v.

that is, min(x1,...,25) < M(z1,...,25) < max(zy,...,x;). Thus M is a
mean. This completes the proof. m
According to Theorem 1, given continuous strictly monotonic functions

fi,---, fu : I = R of the same kind of monotonicity, the function Al/1-/xl .
IF > 1,

koo k
(9) A[fla---,fk}(xl,,,,,xk) = (Z fj> I(Z fj(l‘j)), T1,...,x5 €1,
j=1 j=1

is a mean, and will be referred to as a (generalized) weighted quasi-arithmetic
mean with generators fi,..., fr (cf. [7], also [9] and [§]).

REMARK 1. Let ¢ : I — R be a continuous and strictly monotonic,
and fix wi,...,wy € (0,1) with wy + --- + wy = 1. Taking f; = w;¢p for
j=1,...,k, we get

k
Alfvo el (g0 ) = 71 (Z wj¢($j)>7
j=1

that is, AU/ becomes a weighted quasi-arithmetic mean with generator
 and weights wy, ..., wy. This justifies why Alfrfil ig called a generalized
weighted quasi-arithmetic mean [7].

Let us note some properties of the mean Al1-fxl,

THEOREM 2. Let I C R be an interval and k € N, k > 2. Assume
that f1,...,fr : I — R are continuous, monotonic of the same type, and
fi+ -+ fr is strictly monotonic. Then

(i) AT fil = Al il

(ii) the mean AlfvTel s inereasing with respect to each variable;

(i) for all z1,...,z, € I, if min(zy,...,zr) < max(zy,...,xE) then
either
min(zy, ..., z) < A0Skl ag)
or
AVl (g ) < max(z, ... a);

(iv) Alfvfil s strictly increasing with respect to each variable if, and
only if, f1,..., fr are strictly monotonic;

(v) Alffil s g strict mean iff it is strictly increasing with respect to
each variable;
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(vi) Alfvfil is symmetric if, and only if, there is a function g : I — R
and c; € R such that f; = g+c; for j =1,...,k; in particular

k
(1
A[fl;.n;fk}(xl’ .. 7$k) =g 1([{; Zg(x])), T1,...,Tk S I,
j=1

i.e. AUvIil coincides with the quasi-arithmetic mean A9 gener-
ated by g;
(vii) Alfvfil has the following associativity-type property: for each i €

{1,...,k}, if the functions fi+- -+ fi, fo+- -+ fix1,. .o fr—iv1+
-+ fr are strictly monotonic, then for all x1,...,xp € I,

$1,...,:rk)
— Al fk,](A[.fl 77777 f’i](w17...7$i)7...714[f1 ~~~~~~ fi]($1,~~~,$i)7$i+17~--,$k)
1 times

:A[fl """ fk](xl,A[fz """ fi'*'l](l'g,..,,:Ei+1),...,14[f2 """ fi“](xg,...,x¢+1),xi+2,...,mk>

i times

i times

Proof. Properties (i)—(iv) are easy to verify.

To prove (v) suppose that Alfifil g strict. We may assume that
fi,..., fx are increasing. Choose arbitrarily i € {1,...,k}, z,y € I, x < y,
and put

zj=a forje{l,...,k}\{i}, and x;=uv.

Since A1) is strict, we have
¢ =min(xy,...,xp) < AV Il ).

Hence, making use of (9) and the strict monotonicity of Z§:1 fj, we get

(Zk: fj)(fv) < Zk:fj(wj%
=1 j=1

that is, fi(z) < fi(y). Thus we have shown that, for every i € {1,...,k},
the function f; is strictly increasing. Conversely, if fi,..., fr are strictly
monotonic then, by (iv), the mean AlV1-fkl is strict.

To prove (vi), assume that Alfi-fil is symmetric. Hence, for i,j €
{1,...,k}, i < j, we have
A[fl"“’f’“](azl, ey Ty Ly, D) = A[fl""’f’“](m, e Ty, Ty D),
whence, taking z; = x, z; = y, from the definition of Alftfil we obtain

fl(x)_f](x):fl(y)_f](y)7 T,y €l,
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which implies that f; — f; is a constant function. Taking here j = 1 and
putting g := f1, ¢1 := 0, we get

filzx)=g(x)+¢, xzeli=1,...k,
for some ¢y, ..., ¢ € R. Now from (9), setting ¢ := 5%

j=1
Aot (g ay) = (Zk: fj)l(zk: fj(mj)>
(kg + ) (Zg ) +c> =g <ii9(ﬂﬂj)>
j=1

for all x1,...,x, € I. The converse 1mphcat10n is easy to verify.
To show (vii), take ¢ € {1,...,k} and note that, by (4),

Alfvesfl (0 a) = (i: fj)_l (f: fj(xj))
& i

>1((Z fj) o K]i; fj>1<]zi; fj(xj))} + zk: fj(%’))

j=1 7=1 Jj=i+1

cj, we have

(2

~(5) (S0 [(S9) (S o)+ 2 s)

Jj=1 j=1 Jj=1 j=i+1
— Alfrfi] <A[f1,...,fi](xh o i)y AP ) xk)

¢ times

and similarly we get the remaining equalities. m

In view of (i), we may assume from now on that fi,..., fx are increasing.

LEMMA 1. Let I,J C R be intervals, 3, : I — R nonconstant continu-
ous functions, and §,n : J — R arbitrary functions. If h : B(I) +6(J) = R
satisfies the functional equation
(10) h(B(z) +0(y)) =~(x) +nly), xel,yel
then there is a unique additive function a: R — R and a unique ¢ € R such
that

h(u) =a(u)+c, uwe(BI)+d(J)).
Moreover there is b € R such that
V)= a(B@) —b z€l ()=o) +b+e, ye
Here B(I)+6(J) :={u+v:ue p(I),vedl])}

Proof. Without any loss of generality we can assume that there are zy €
int I and yo € intJ such that S(zo) = 0 and d(yp) = 0. Indeed, in the
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opposite case we could fix any zp € int I and yo € int J, define Bl - R
by B(z) = B(x) — B(xo), ¥ : J = Rby ¥ : J(y) = d(y) — (yo), h :

(B(I) 4 0(J)) + B(xo) + 6(yo) — R and consider the functional equation

h(B(z) +0(y) =v(@) +nly), zel,yel,
that is equivalent to (10).
Setting y = yp and then z = xo in (10) we get
h(B(x)) =y(@) +n(yo), x€I;  h(dy) =(xo) +n(y), ye
whence, from (10),
h(B(z) +6(y)) = h(B(x)) + h(0(y)) —¢c, xzel, yel,
where ¢ := n(yo) + v(xo). Setting H := h — ¢, we get
H(B(z) +0(y)) = H(B(z)) + H((y)), xel,ye
whence
H(u+v)=H(u)+ H(v), wep),vedil]),
so H is additive in a nontrivial interval containing 0. Clearly there exists
a unique additive function « : R — R that is an extension of H. From the
definition of H we get h = a + c. Setting h = a + ¢ in (10) and making use
of the additivity of a, we obtain
a(f(x)) —v(x) =nly) —aléy) —¢, zel,yecl,
whence there is b € R such that a(f8(x)) — y(z) = b for all z € I, and
n(y) — a(é(y)) —c=10b for all y € J. This completes the proof. m
The following result is a reformulation of Theorem 2 in [7].

LEMMA 2. Let I C R be an interval and let f,g, F,G : I — R be contin-

wous, increasing and such that f + F and g+ G are strictly increasing. Then
AloGl = ALFL i and only if, there exist a,b,c € R, a # 0, such that

(11) g(x)=af(zx)+b, Gx)=aF(zr)+ec, x€l.

3. Equality of generalized weighted quasi-arithmetic means
THEOREM 3. Let I C R be an interval, k € N, k > 2, and let f1,..., fx,

g1,---,9k : I — R be continuous, increasing such that fi + --- + fr and
g1+ -+ - + g are strictly increasing. Then

(12) Algragel — pAlfrsfi]

if, and only if, there exist a,by,..., by € R, a # 0, such that

(13) 6i() = afs@) +b;, welj=1,.. k

Proof. Assume that (12) holds true for k = 2. Setting f := f1, F := fo,
g := g1, G := gy, we hence get Al9Cl = AILF] and, in view of Lemma 2,
there are a,b,c € R, a # 0, such that (11) holds true. Setting b := b, and
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by := ¢ we obtain (13) for £ = 2. Thus, in the case k = 2, equality (12)
implies (13).
Assume that (12) holds true for k¥ € N, k& > 2. Choosing arbitrarily

i€ {l,...,k}, we can write (12) in the following form: for all ;,...,z} € I,
k k
(gﬂr > gy> (gz (@) + Y gz )
Jj=1,3%# J=1,j#
k k
( + Z f> (fz xz) Z f]($3)>
J=1,j#i J=1,j#i

Taking x; =z, x; =y for all j € {1,...,k} \ {3}, for z,y € I, and setting

k k
Z fja Gz = Z 9gj,
j=1,j#i j=1,j#i
we hence get
(9i + Gi) ' (gi(2) + Gi(y)) = (fi + F) ' (filx) + Fi(y)), w,yel,

that is, AliGil = AlfiFil - Applying Lemma 2 we conclude that for each
i€ {l,...,k} there are a;,b;,¢;, € R, a; #0, i € {1,...,k}, such that

gi(x) = a; fi(x) + by, Zk: = az( Z fi(x > +c¢, wel.

Jj=1,j#i Jj=1,j#i

Adding these equalities we get

k k
Zgj(:c) = ai(ij(fc)> +bi+c, wzel.
Jj=1 j=1

It follows that a; does not depend on i € {1,...,k}. Thus, setting a := ay,
we obtain

gi(z) =afi(x)+b;, xe€l,i=1,... k.

Since the converse implication is easy to verify, the proof is complete. =

4. Convexity and affinity with respect to generalized weighted
quasi-arithmetic means

DEFINITION 1. Let fi1,...,fx : I — R, k > 2, be continuous, of the
same type of monotonicity and such that Z§:1 fj is strictly monotonic in
the interval I. Let J be a subinterval of I. We say that a function ¢ : J — I
is AlrIvl-conver if

(AP I (g ) < AV B (@), (@), @,z €
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Alfrfil_concave if the converse inequality is satisfied; and Alf1-fxl-gffine
if the equality is fulfilled.

For k = 2, setting here f = fi, g = f2, and making use of (9), we see
that the A9 -convexity of ¢ reduces to the inequality

(14)  o((f+9) (f(@)+9(y) < (F+9) " (flp@)+9(e®), w,y€J,
(the Alf9_concavity, to the converse inequality, and Alf9l-affinity to equal-
ity).

REMARK 2. Let I = R, J C R, and t € (0,1). Taking f(z) = tz,
g(x) = (1 —t)x for z € R, in (14) we get

ot + (1 =t)y) <te(x) + (1 -t)e(y), =y,

so AlF9_convexity generalizes the classical t-convexity of p:J — R In
particular, for t = 1/2 we get Jensen convexity.

Taking J C (0,00), f(x) =tlogx, g(z) = (1 —t)logz for z > 0 in (14)
we get

ey ™) < lp@)]'le)] ™, zyel,

so Alf9l_convexity generalizes the geometrical t-convexity of ¢ : J — (0, 00).
For t = 1/2 we get Jensen geometrical convexity:

o(Vry) < Velr)ely), zyel

THEOREM 4. Let I and J C I be intervals. Suppose that f,g : I — R
are increasing and such that f + g is continuous and strictly increasing.
A function ¢ : J — I is AP9 affine, that is,

(15 o((f+9) 7 (f(@)+9(y)) = (F+9) 7 (fle@)+9leW)), .y €,
if, and only if, there is an additive function a : R—R and b,c € R such that
p=(f+g9) " olao(f+g)+d

and
fop=aof—b, gop=aog+b+ec
Proof. Assume that ¢ : J — I is A9 affine. From (15) we get
(f+9)op((f+9) 7 (f(2) +9(y) = fle(2) +9(e(y), a,y €.

Applying Lemma 1 with h := (f+g)opo(f+g) ™', B:=f,0:=g,7:= foyp
and 71 := g o, we obtain (f +g)opo (f +g)~! = a + c for some additive
function o : R — R and ¢ € R, whence

p=(f+9) " olao(f+g)+d.
From the “moreover” part of Lemma 1 we get
fop=aof—b gop=—aog+bto

for some b € R. The converse implication is easy to verify. m
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Hence, by induction, we obtain

THEOREM 5. Let I and J C I be intervals. Suppose that fi,..., fx :
I —- R, k> 2, are increasing and fi1 + --- + fi is continuous and strictly
increasing. A function ¢ : J — I is AUvIel_affine if, and only if, there is
an additive function a: R — R and by, ..., bk, c € R such that

o= (L) e foo ()" )

fiocp=aofj+b;, j=1,..,k,
k

bj:C.
=1

J

5. Comparability of generalized weighted
quasi-arithmetic means

REMARK 3. Let I C R be an interval and k£ € N, k£ > 2. Assume that

fi»9; - I — R, 5 = 1,...,k, are continuous, increasing and such that the
functions f := f1 + -+ fr and g := g1 + - - - 4+ gi are strictly increasing. If
moreover fi,..., fi are strictly increasing, then

Al fel < Algrs--gx]
if, and only if,
k k
(16) gOf*( w)g gio [y (), wj € fi(I),j=1,... k.
= 1

J=1 J=
ExaMPLE 1. Let p,9 : I — R be continuous and strictly increasing.
Taking in this remark f; = ¢, g; = ¢ for j = 1,...,k, we find that

Alel < AWL that is,
ool <90(901) 4+ SO(wk)) <yt <¢($1) + -+ ()

)a $17"'7$k617
n n

if, and only if,

-1 -1
popt (Pt LYo )+ oy wwj
k k
ug, ..., ur € o(I).
Similarly, taking f; = t;jp, g; = tj¢,t; >0for j =1,... k, t1+---+t, =1,
we infer that

! (i tjcp(xj)> <yt (Zk: tj¢(xj)), T1,...,x €1,
j=1 j=1
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if, and only if, for all uy,...,ur € p(I),
o Htrugr + -+ tug) <t oo (ur) + -+ tih o o (ug).
Thus inequality (16) is related to convexity.
6. Invariance of means and application in solving a functional
equation

REMARK 4. Let fi,..., fx : I — R be continuous, increasing with f :=
fi 4 -+ fp strictly increasing. The quasi-arithmetic mean AT,

k
1
A[f](l'l,,xk):f_1<n§_;f($z)>, x1,..., T8 €1,

is invariant with respect to the mean-type mapping M : I* — I* defined by
(17) M = (jzl[fl,m,fk]’A[f2,f37~-~7ﬁmf1]7 o 7A[fk7fl7--~7fk71]),

that is, AU/ToM = Al

Indeed, for all x1, ...,z € I, we have
k
nf(A[f] o Ml (z1,... ,JUk)) = Z f(A[fiyfi—‘—l,n.,fk’fl,~~.,fk77;71}(x:l’ o 7$k))
i=1

I
Mw

(fi(x1) + fixr(@2) + -+ fro(wiz1) + fr(@s) + -+ fr—ic1 (o))

Z:I k k k k k
=33 i) =33 fitw) = Y (D ) @) = D @)
=1 j=1 7j=1 =1 j=1 1i=1 j=1

whence the invariance follows.

Theorem 2(iii) implies that if min(zq, ..., x;) < max(zy,...,x), then
max M(z1,...,x)—min M(z1,...,z;) <max(zy,...,xx)—min(zy,..., L),
for all x1,...,z, € I. Hence, applying [6, Theorem 1| (cf. also [5]) we obtain

COROLLARY 1. The sequence (M™),en of iterates of the mean-type map-
ping M : IF — I* given by (17) converges uniformly on compact subsets of
I* to the mean-type mapping K = (K1, ..., Ky) such that K1 = --- = K},
— Alfl

EXAMPLE 2. The functions fi, fa : (0,00) — (0,00) given by fi(z) =
e’ —x, fa(x) = x, are increasing, fi + fo = exp is strictly increasing, and we
have

AUz, y) = log(e” —a+y), AU (z,y) =logla+e/ —y),  w,y >0,
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According to Remark 4, the quasi-arithmetic mean

e* + eY

Nﬁ”ﬂwﬂﬁzh%< >, z,y >0,

is invariant with respect to the mapping (AV1:/21, Al/2/1l) and, in view of
Corollary 1,

lim (A[fl,fQ],A[fol])n _ (A[f1+f2]’A[f1+f2]) in (0’ 00)2'

n—oo
Corollary 1 allows us to solve a functional equation. Namely, we have the
following

THEOREM 6. Let I C R be an interval and fi,..., fr : I — R be con-
tinuous, increasing with f := fi1 + -+ + fi strictly increasing. Assume that
F : I* — R is continuous on the diagonal {(z1,...,x3) 21 = --- = x}, € I}.
Then F satisfies the functional equation

(18) Fo (A[flvn:fk}’A[f27f37--~7fk:f1]7 o 7A[fk:fl:-~7fk71]) - F

if, and only if, FF = ¢ o Alfl where @ I — R is an arbitrary continuous
function.

Proof. Suppose that F : I*¥ — R is continuous on the diagonal of I* and
satisfies (18), that is, F'o M = F, where M is given by (17). By induction
we get

F=FoM", neN.

Letting n — oo, and making use of Corollary 1 and the continuity of F' on
the diagonal of I*, we get

F(xy,...,x) :F(Am(xl,...,xk),Am(xl,...,azk),...,A[f](xl,...,xk))

for all (z1,...,2;) € I*. Hence, setting ¢(x) := F(x,...,z) for x € I, we
obtain

F(xy,...,x) :cp(A[f](azl,...,:L‘k)), T1,...,2, € 1.

Since it is easy to verify that any function of this form satisfies (18), the
proof is complete. m

From Example 2, applying Theorem 6, we obtain

COROLLARY 2. A function F : (0,00)%2 — (0,00) that is continuous on
the set {(z,x) : x > 0} satisfies the functional equation

F(log(ew—x—l—y),log(m—t—ey—y)) :F(.T,y), xay>07

if, and only if, F(x,y) = ¢(e* 4+ e¥) where ¢ : (0,00) — R is an arbitrary
continuous function.
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7. A conjecture generalizing the Kolmogorov—Nagumo theorem.
From Theorem 2(vii) & (vi) we obtain the following

COROLLARY 3. Let I C R be an interval and f; : I — R, j € N, be

a sequence of continuous and strictly increasing functions. Then Alft:f2-1 .
U, I — I given by

A[fl’fQ’"'}(:z:l, cey D) 1= A[fl"“’f’“](:nl, ox),  (x1,...,xp) €I* keN,

is an “associative” mean in g, I*, that is, for all n,r ki,..., k. € N,

ki<---<kr=n,andx1,...,x, €I, we have

(19) M(a;l,...,a:n):M(Ml,...,Ml,Mg,...,Mg,...,MT,...,MT>,
k1 times ko—k1 times n—ky,_1 times

where M = Alftf2-1 gnd
M; = A[fki—l"'l""’fki}(xkiil+1, R ,xki), 1=1,...,r (]{70 = 0)

Moreover, the mean Alft:F21 s symmetric if, and only if, there is a contin-
wous and strictly increasing function f : I — R such that AUvf21 45 the
quasi-arithmetic mean AUF) given by

f(x1)+---+f(wk)>

n

A[f’f""](xl, R RES f1<

(.%'1,...,.1%) EIk, ke N.

Recall that according to the celebrated result, obtained independently
by Kolmogorov [3] and Nagumo [I0], the quasi-arithmetic mean Al :
Upey I k — I is the only continuous, strictly increasing, symmetric and “as-
sociative” mean.

This corollary shows that there are a lot of associative quasi-arithmetic
means which are not symmetric.

Assume that I C R is an interval and M : o, I¥ — I is a mean that
is continuous, strictly increasing (with respect to each variable) and such
that for all n,r,ky,....k € N, k1 < --- < k., = n, and x1,...,2, € I,
equality (19) holds true. We conjecture that then there exists a sequence of
continuous and strictly increasing functions f; : I — R, j € N, such that
M = Alfu.fa ],
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