CONDITIONS FOR p-SUPERSOLUBILITY AND p-NILPOTENCY OF FINITE SOLUBLE GROUPS

ву

WENAI YAN, BAOJUN LI and ZHIRANG ZHANG (Chengdu)

Abstract. Let \mathfrak{Z} be a complete set of Sylow subgroups of a group G. A subgroup H of G is called \mathfrak{Z} -permutably embedded in G if every Sylow subgroup of H is also a Sylow subgroup of some \mathfrak{Z} -permutable subgroup of G. By using this concept, we obtain some new criteria of p-supersolubility and p-nilpotency of a finite group.

1. Introduction. Throughout this paper, all groups considered are finite. Let G be a group. $\pi(G)$ denotes the set of all prime divisors of |G|. If π is a set of primes then an integer n is called a π -number if all its prime divisors belong to π , and π' is the complement of π in the set \mathbb{P} of all primes.

Recall that $O_{\pi}(G)$ is the maximal normal π -subgroup of G, and F(G), the *Fitting subgroup* of G, is the maximal nilpotent normal subgroup of G. Let p be a prime divisor of G. Then $F_p(G)$ is the maximal p-nilpotent normal subgroup of G. The reader is referred to Guo [8] or Robinson [17] for all unexplained terminology and notations.

A subgroup A of a group G is said to permute with a subgroup B if AB = BA. A subgroup H of G is called quasinormal [15] or permutable [6] in G if H permutes with all subgroups of G. If H permutes with all Sylow subgroups of G, then H is called s-permutable in G [11]. After [11, 5], permutability of subgroups was extensively studied (cf. [2, 4, 16]). More recently, in [19], by discussing weakly s-permutable subgroups of given order, some interesting results were obtained and many known results were generalized.

In [1], a set \mathfrak{Z} is called a *complete set of Sylow subgroups* of G, or a *complete Sylow set* of G, if for each prime $p \in \pi(G)$, \mathfrak{Z} contains exactly one Sylow p-subgroup of G, and a subgroup H of G is said to be \mathfrak{Z} -permutable in G if H permutes with every member of \mathfrak{Z} . By using the \mathfrak{Z} -permutability of some primary subgroups of given order, certain classes of groups were characterized (cf. [1, 14]). A subgroup U of a group G is called a *normally embedded subgroup* of G if every Sylow subgroup of U is also a Sylow sub-

²⁰¹⁰ Mathematics Subject Classification: 20D10, 20D20.

Key words and phrases: \mathfrak{Z} -permutably embedded, supplements, p-supersoluble, p-nilpotent.

group of some normal subgroup of G (cf.[7]). If every Sylow subgroup of U is a Sylow subgroup of some permutable subgroup of G, then U is called a permutably embedded subgroup [3]. Along these lines, we will discuss subgroups in which every Sylow subgroup is also a Sylow subgroup of some 3-permutable subgroup of G and we introduce the following definition.

DEFINITION 1.1. Let \mathfrak{Z} be a complete set of Sylow subgroups of a group G. A subgroup H of G is called \mathfrak{Z} -permutably embedded in G if every Sylow subgroup of H is also a Sylow subgroup of some \mathfrak{Z} -permutable subgroup of G.

It is easy to see that all Sylow subgroups of a group G are \mathfrak{Z} -permutably embedded in G for any complete set \mathfrak{Z} of Sylow subgroups of G. But if G is not nilpotent, then there must be some Sylow subgroups which are not \mathfrak{Z} -permutable in G. The following example shows that subgroups which are \mathfrak{Z} -permutably embedded but not \mathfrak{Z} -permutable in G are not necessarily Sylow subgroups, even in a soluble group.

EXAMPLE 1.2. Let $G = S_4$ be the symmetric group of degree 4. Then G has a Sylow 2-subgroup $G_2 = \{(1), (12)(34), (13)(24), (14)(23), (14), (23), (1243), (1342)\}$ and a Sylow 3-subgroup $G_3 = \langle (123) \rangle$. Choose $\mathfrak{Z} = \{G_2, G_3\}$ and $H = \langle (12) \rangle$. Then H is not 3-permutable in G since it does not permute with G_2 in \mathfrak{Z} . Let $U = \langle (123), (12) \rangle \cong S_3$. Then it is easy to verify that U is 3-permutable in G, and H is a Sylow 2-subgroup of U. Hence H is 3-permutably embedded in G.

Let H be a subgroup of a group G. Then a subgroup T of G is called a supplement of H in G if HT = G. The role of supplements of some subgroups in a group was often studied together with the permutability of subgroups (cf. [9, 19]). In view of this, we shall prove the following main theorems of this paper:

Theorem A. Let G be a p-soluble group and \mathfrak{Z} a complete Sylow set of G. Assume that G has a normal subgroup N with p-supersoluble quotient. If every maximal subgroup of a Sylow p-subgroup of $F_p(N)$ either is \mathfrak{Z} -permutably embedded in G or has a p-supersoluble supplement in G, then G is p-supersoluble.

THEOREM B. Let G be a p-soluble group and \mathfrak{Z} a complete Sylow set of G. Assume that G has a normal subgroup N with p-supersoluble quotient and let P be a Sylow p-subgroup of $F_p(N)$. If every cyclic subgroup of order p or 4 (when P is a non-abelian 2-group) of P either is \mathfrak{Z} -permutably embedded in G or has a p-supersoluble supplement in G, then G is p-supersoluble.

Note that if (p-1, |G|) = 1, then G is p-supersoluble if and only if it is p-nilpotent. In fact, if G is p-nilpotent, then G is certainly p-supersoluble.

Conversely, if G is p-supersoluble and (p-1,|G|)=1, then any pd-chief factor H/K of G is cyclic of order p and so $\operatorname{Aut}(H/K)$ is of order p-1. Since $G/C_G(H/K)$ is isomorphic to a subgroup of $\operatorname{Aut}(H/K)$, the order of $G/C_G(H/K)$ is a divisor of p-1. It follows from (p-1,|G|)=1 that $G/C_G(H/K)=1$. Hence every pd-chief factor H/K of G is central and so G is p-nilpotent. Considering this, if (p-1,|G|)=1 in Theorem A or B, we can also obtain a criterion of p-nilpotency of G. Moreover, if $(p^2-1,|G|)=1$, we can obtain

THEOREM C. Let G be a p-soluble group and \mathfrak{Z} a complete Sylow set of G. Assume that G has a normal subgroup N with p-nilpotent quotient and let P be a Sylow p-subgroup of $F_p(N)$. If $(p^2 - 1, |G|) = 1$ and every subgroup of order p^2 of P either is \mathfrak{Z} -permutable in G or has a p-nilpotent supplement in G, then G is p-nilpotent.

2. Preliminaries. In this section, we shall give some elementary properties of 3-permutably embedded subgroups, and for the sake of easy reference, we shall also cite some useful known results from the literature.

Let N be a normal subgroup of G, and \mathfrak{Z} a complete Sylow set of G. Following [1], we shall denote by $\mathfrak{Z}N$ the following set of subgroups of G:

$$\mathfrak{Z}N = \{G_pN \mid G_p \in \mathfrak{Z}\},\$$

by $\mathfrak{Z}N/N$ the following set of subgroups of G/N:

$$\mathfrak{Z}N/N = \{G_p N/N \mid G_p \in \mathfrak{Z}\},\$$

and by $\mathfrak{Z} \cap N$ the following set of subgroups of G:

$$\mathfrak{Z} \cap N = \{ G_p \cap N \mid Gp \in \mathfrak{Z} \}.$$

Clearly, 3N/N and $3\cap N$ are complete Sylow sets of G/N and N respectively.

LEMMA 2.1. Let H and K be subgroups of a group G, and \mathfrak{Z} a complete set of Sylow subgroups of G. Then the following hold:

- (i) if H is 3-permutably embedded in G, and K is permutable in G, then HK is 3-permutably embedded in G;
- (ii) if H is \mathfrak{Z} -permutably embedded in G, and K is normal in G, then HK/K is $\mathfrak{Z}K/K$ -permutably embedded in G/K;
- (iii) if K is normal in G, and $K \subseteq H$, then H is \mathfrak{Z} -permutably embedded in G if and only if H/K is $\mathfrak{Z}K/K$ -permutably embedded in G/K;
- (iv) if H is \mathfrak{Z} -permutably embedded in G, and K is normal in G, then $H \cap K$ is \mathfrak{Z} -permutably embedded in G;
- (v) if H is \mathfrak{Z} -permutably embedded in G, and K is subnormal in G, then $H \cap K$ is $\mathfrak{Z} \cap K$ -permutably embedded in K.

Proof. (i) For any $p \in \pi(H)$, let U be a \mathfrak{Z} -permutable subgroup of G with a Sylow p-subgroup P_1 which is also a Sylow p-subgroup of H. Then for any

 $Q \in \mathfrak{Z}$, both U and K permute with Q and hence UKQ = UQK = QUK. Thus UK is \mathfrak{Z} -permutable in G. To complete the proof of (i), we show that some Sylow p-subgroup of UK is also a Sylow p-subgroup of HK. Let P be a Sylow p-subgroup of HK with $P_1 \subseteq P$ and P_2 a Sylow p-subgroup of K contained in P. Then

$$\frac{|HK|}{|P_1P_2|} = \frac{|H|\,|K|\,|P_1\cap P_2|}{|H\cap K|\,|P_1|\,|P_2|}$$

is a p'-number and so $P = P_1P_2$. By the same argument, $|UK|/|P| = |UK|/|P_1P_2|$ is a p'-number and so P is a Sylow p-subgroup of UK. Thus (i) holds.

- (ii) is a direct corollary of (i) and (iii).
- (iii) Assume that H is 3-permutably embedded in G. For any $p \in \pi(H)$, let U be a 3-permutable subgroup of G with a Sylow p-subgroup P which is also a Sylow p-subgroup of H. Then UQ = QU for any subgroup Q in 3 and it follows that

$$(UK/K)(QK/K) = UQK/K = QUK/K = (QK/K)(UK/K).$$

Thus UK/K is $\mathfrak{Z}K/K$ -permutable in G/K. It is easy to see that PK/K is a Sylow p-subgroup of both H/K and U/K. By the definitions, we conclude that H/K is $\mathfrak{Z}K/K$ -permutably embedded in G/K.

Conversely, assume that H/K is $\mathfrak{Z}K/K$ -permutably embedded in G/K. For any $p \in \pi(H/K)$, let U/K be a $\mathfrak{Z}K/K$ -permutable subgroup of G/K with a Sylow p-subgroup L/K which is also a Sylow p-subgroup of H/K. Then for any Sylow subgroup $QK/K \in \mathfrak{Z}K/K$, (U/K)(QK/K) = (QK/K)(U/K), and thus UQ = (UK)Q = U(QK) = (QK)U = QU. Hence U is \mathfrak{Z} -permutable in G. Let P be a Sylow p-subgroup of L. Then L = PK and |L:P| is a p'-number and hence |U:P| = |U:L| |L:P| is a p'-number. It follows that P is a Sylow p-subgroup of P. By the same argument, one can prove that P is also a Sylow P-subgroup of P. Thus P is P-permutably embedded in P.

(iv) For any $p \in \pi(H)$, let U be a \mathfrak{Z} -permutable subgroup of G with a Sylow p-subgroup which is also a Sylow p-subgroup of H. Then UQ = QU for any subgroup Q in \mathfrak{Z} .

We claim that $U \cap K$ is \mathfrak{Z} -permutable in G. It is sufficient to prove that $(U \cap K)Q = UQ \cap KQ$ for any $Q \in \mathfrak{Z}$. Clearly, $(U \cap K)Q \subseteq UQ \cap KQ = (U \cap KQ)Q$. Since

 $|U \cap KQ| = |U| |KQ|/|UKQ| = |U| |K| |Q| |UK \cap Q|/(|K \cap Q| |UK| |Q|)$ and $|U \cap K| = |U| |K|/|UK|$, we see that $|U \cap KQ|/|U \cap K| = |UK \cap Q|/|K \cap Q|$ is a q-number, where q is the unique prime divisor of |Q|. It follows that $|UQ \cap KQ|/|(U \cap K)Q|$ is a q-number. But Q is a Sylow q-subgroup of G. So $|UQ \cap KQ|/|(U \cap K)Q|$ must be a q-number. Hence $|(U \cap K)Q| = |UQ \cap KQ|$.

It follows that $(U \cap K)Q = UQ \cap KQ$ is a subgroup of G and hence $U \cap K$ is \mathfrak{Z} -permutable in G, proving our claim.

Let P be a Sylow p-subgroup of both H and U. Then $P \cap K = P \cap U \cap K$ is a Sylow p-subgroup of $U \cap K$ since $U \cap K$ is normal in U. Similarly, $P \cap K$ is also a Sylow p-subgroup of $H \cap K$, and this shows that $H \cap K$ is \mathfrak{Z} -permutably embedded in G.

(v) By induction, we may assume that K is normal in G. Let $H_1 = H \cap K$. By (iv), H_1 is \mathfrak{Z} -permutably embedded in G. For any $p \in \pi(H_1)$, let U be a \mathfrak{Z} -permutable subgroup of G with a Sylow p-subgroup which is also a Sylow p-subgroup of H_1 ; by the argument in (iv), we can also assume that $U \subseteq K$. Then for any $Q \in \mathfrak{Z}$, UQ = QU and hence $U(Q \cap K) = UQ \cap K = (Q \cap K)U$. So U is $\mathfrak{Z} \cap K$ -permutable in K. Therefore, $H_1 = H \cap K$ is $\mathfrak{Z} \cap K$ -permutably embedded in K.

LEMMA 2.2. Let H be a p-subgroup of G, and L/K an abelian chief factor of G. Assume that \mathfrak{Z} is a complete Sylow set of G, and H is \mathfrak{Z} -permutably embedded in G. If there is a Sylow p-subgroup G_p of G such that $H \cap L \subseteq G_p$, then H either covers or avoids L/K.

Proof. By Lemma 2.1, the hypotheses of the lemma still hold on G/K. So, by induction on |G|, we may assume that K=1 and hence L is minimal normal in G. Since H is a 3-permutably embedded p-subgroup of G, there is a 3-permutable subgroup U of G with a Sylow p-subgroup H. Since L is abelian, L is primary. If L is not a p-group then clearly L is avoided by H. Assume L is a p-group. Let G_q be any element in 3. Then $UG_q = G_qU$. Assume G_q is not a p-group. Then H is also a Sylow p-subgroup of UG_q and so $H \cap L = L \cap UG_q \unlhd UG_q$. By the choice of G_q , we see that $|G:N_G(H \cap L)|$ is a p-number. On the other hand, $H \cap L \unlhd G_p$ for some Sylow p-subgroup G_p . So $H \cap L \unlhd G$ and hence $H \cap L = L$ or 1 by the minimality of L. Thus H covers or avoids L, and the lemma follows.

Lemma 2.3 ([8, 1.8.1]). Let N be a normal subgroup of a group G such that $N/N \cap \Phi(G)$ is p-nilpotent. Then N is also p-nilpotent.

We use Soc(G) to denote the product of all minimal normal subgroups of G.

LEMMA 2.4 ([18, 3.13]). Let $N \leq K \leq \operatorname{Soc}(G)$ where $N, K \leq G$. Then there is a normal subgroup T of G such that $K = N \times T$.

LEMMA 2.5 ([9, Lemma 3.1]). Let N and L be normal subgroups of a group G such that P/L is a Sylow p-subgroup of NL/L, and M/L is a maximal subgroup of P/L. If P_p is a Sylow p-subgroup of $P \cap N$, then P_p is a Sylow p-subgroup of $P \cap N$ such that $D = M \cap N \cap P_p$ is a maximal subgroup of P_p , and M = LD.

Recall that the generalized Fitting subgroup $F^*(G)$ of a group G is the maximal quasinilpotent normal subgroup of G, and if G is soluble then $F^*(G) = F(G)$ is the Fitting subgroup of G. Let $\mathfrak U$ be the class of all supersoluble groups. Then the $\mathfrak U$ -hypercenter $Z^{\mathfrak U}_{\infty}(G)$ of a group G is the maximal normal subgroup in which all G-chief factors are cyclic.

LEMMA 2.6 ([13, Lemma 2.17]). Let G be a group and E a normal subgroup of G. If $F^*(E) \subseteq Z^{\mathfrak{U}}_{\infty}(G)$, then $E \subseteq Z^{\mathfrak{U}}_{\infty}(G)$.

3. Proof of Theorem A. Assume that Theorem A is false and let G be a counterexample with minimal order.

We first show that the hypotheses of the theorem still hold on the quotient group G/Φ , where $\Phi = \Phi(G)$ is the Frattini subgroup of G. Consider $F/\Phi = F_p(N\Phi/\Phi)$. Then $F = F \cap N\Phi = (F \cap N)\Phi$. Since F/Φ is a p-nilpotent normal subgroup of G/Φ , F is a p-nilpotent normal subgroup of G by Lemma 2.3. Hence $F \cap N \leq F_p(N)$. On the other hand, because $F_p(N)/F_p(N) \cap \Phi \cong F_p(N)\Phi/\Phi \leq F_p(N\Phi/\Phi)$, we have $F_p(N) \subseteq F$. Consequently, $F \cap N = F_p(N)$ and therefore

$$F_p(N\Phi/\Phi) = F/\Phi = (F \cap N)\Phi/\Phi = F_p(N)\Phi/\Phi.$$

Now let P/Φ be a Sylow p-subgroup of F/Φ , let M/Φ be a maximal subgroup of P/Φ , and let P_p be a Sylow p-subgroup of $P\cap F_p(N)$. Then, by Lemma 2.5, P_p is a Sylow p-subgroup of $F_p(N)$, and $L=M\cap F_p(N)\cap P_p$ is a maximal subgroup of P_p . By our hypotheses, L either is \mathfrak{Z} -permutably embedded in G or has a p-supersoluble supplement T in G. By Lemma 2.5 again, we have $M=\Phi L$. If L is \mathfrak{Z} -permutably embedded in G, then, by Lemma 2.1, $L\Phi/\Phi$ is $\mathfrak{Z}\Phi/\Phi$ -permutably embedded G/Φ , and so $M/\Phi=L\Phi/\Phi$ is $\mathfrak{Z}\Phi/\Phi$ -permutably embedded in G/Φ . If L has a p-supersoluble supplement T in G, then $T\Phi/\Phi$ is also a p-supersoluble supplement of $L\Phi/\Phi$ in G/Φ . Thus, the group G/Φ has a normal subgroup $N\Phi/\Phi$ such that each maximal subgroup of every Sylow p-subgroup of $F_p(N\Phi/\Phi) = F_p(N)\Phi/\Phi$ either is $\mathfrak{Z}\Phi/\Phi$ -permutably embedded in G/Φ or has a p-supersoluble supplement in G/Φ . Because $(G/\Phi)/(N\Phi/\Phi) \cong G/N\Phi \cong (G/N)/(N\Phi/N)$ is a p-supersoluble group, we see that the hypotheses of the theorem still hold on G/Φ .

If $\Phi \neq 1$, then $|G/\Phi| < |G|$, and so G/Φ is *p*-supersoluble by the choice of G. Hence G is *p*-supersoluble by [10, VI, 9.3]. This contradicts our assumption on G. Hence $\Phi(G) = 1$. Analogously, we can prove that $O_{p'}(G) = 1$ and hence

$$F_p(G) = O_p(G) = F(G) = R_1 \times \cdots \times R_t$$

by [6, A, 10.6], where R_1, \ldots, R_t are the minimal normal subgroups of G. Clearly, $F_p(N) = F(N) = N \cap F(G)$ and hence F(N) itself is its Sylow p-subgroup. Let P be the Sylow p-subgroup of G contained in \mathfrak{Z} , and M_i be a maximal subgroup of R_i , $i=1,\ldots,t$, normal in P. Assume that for some index i, we have $|M_i| \neq 1$. Also, assume that $R_i \not\subseteq N$. Then NR_i/N is a p-chief factor of the p-supersoluble group G/N and so $|NR_i/N|$ is a prime. But $R_i \cong NR_i/N$, and we see that $M_i = 1$. This contradiction shows that $R_i \leq N$. By using Lemma 2.4, we see that $F(N) = R_i \times D$ for some normal subgroup $P(N) = R_i \setminus M_i = R_i \setminus R_i = R_i$

If $R_i \cap T \neq 1$, then $R_i \subseteq T$ and hence G = MT = DT. So, $G/D = DT/D \cong T/T \cap D$ is a *p*-supersoluble group. This implies that $R_i \cong R_i D/D$ is a group of prime order. This is a contradiction.

Now, assume that $R_i \cap T = 1$. Without loss of generality, we can assume that i = 1. Recall that $F(N) = R_1 \times \cdots \times R_n = R_1 \times D$.

If n = 1, then $M = M_1 < R_1$. Hence $G = MT = R_1T$. Since $R_1 \cap T = 1$, $|R_1| = |G:T| = |MT:T| \le |M| < |R_1|$, a contradiction.

Suppose that n=2 and $F(N)=R_1\times R_2$. If $R_2\leq T$, then $TM=TM_1=G$, and hence $|G:T|\leq |M_1|<|R_1|$. But $R_1T=G$, and so $|G:T|=|R_1|$. This contradiction shows that $R_2\not\leq T$. On the other hand, if $R_1R_2\cap T=1$, then, by $G=TM_1R_2=TR_1R_2$, we have $|G:T|=|R_1|\,|R_2|$. But from $TM_1R_2=G$, we derive that $|G:T|\leq |M_1|\,|R_2|<|R_1|\,|R_2|$, a contradiction.

Hence $\Delta = R_1R_2 \cap T \neq 1$. Since R_1R_2 is an abelian group, $\Delta = R_1R_2 \cap T$ is clearly a normal subgroup of G. Let R be a minimal normal subgroup of G contained in Δ . Since $R_1 \not \leq T$, $R_2 \not \leq T$ and $R \leq T$, we see that $R \neq R_1$, and $R \neq R_2$. Hence $F(N) = R_1R_2 = RR_2$, and so $F(N)/R_2 \cong R_1 \cong R$. Analogously, we can prove that $R_1 \cong R_2$. We also note that $\Delta = \Delta \cap R_1R_2 = \Delta \cap R_1R = R(\Delta \cap R_1) = R$. Hence

$$|G| = \frac{|T| |R_1 R_2|}{|T \cap R_1 R_2|} = \frac{|T| |R_1| |R_2|}{|R|} = |T| |R_1|,$$

and so $|G:T| = |R_1|$.

Let $E = R_1T$. Assume that $E \neq G$. Then $|G:T| = |E:T| |G:E| > |R_1|$, a contradiction. Hence $E = G = R_1T$, and so $G/R_1 \cong T/R_1 \cap T$ is a p-supersoluble group. But R_2R_1/R_1 is a minimal normal p-subgroup in G/R_1 and so $|R_2| = |R_1| = p$. This contradiction shows that $n \geq 3$.

Assume that $\Delta \not\leq T$ for every minimal normal subgroup Δ of G contained in $R_2 \cdots R_n$. Then, evidently, $T \cap R_2 \cdots R_n = 1$, and hence $|G: TR_2 \cdots R_n| \leq |M_1|$. It is clear that $TR_2 \cdots R_n \neq G$. But $R_1 T R_2 \cdots R_n = G$, and we have $|G: TR_2 \cdots R_n| = |R_1|$, a contradiction.

Hence, there is a minimal normal subgroup Δ_1 in G such that $\Delta_1 \leq T \cap R_2 \cdots R_n$. We note that since $\bigcap_{i=2}^n R_2 \cdots R_{i-1} R_{i+1} \cdots R_n = 1$, there exists an index i such that $R_2 \cdots R_{i-1} R_i R_{i+1} \cdots R_n = R_2 \cdots R_{i-1} \Delta_1 R_{i+1} \cdots R_n$. Thus we may suppose, without loss of generality, that there is an index $2 \leq i < n$ such that $R_2, \ldots, R_i \leq T$ and that for every minimal normal subgroup Δ_2 of G contained in $R_{i+1} \cdots R_n$, we have $\Delta_2 \not\leq T$. This implies that $T \cap R_{i+1} \cdots R_n = 1$.

Now let $\Delta_3 = R_1 R_{i+1} \cdots R_n \cap T$. Assume that $\Delta_3 = 1$. Then, since $G = TR_1 \cdots R_n = TR_1 R_{i+1} \cdots R_n$, we have $|G:T| = |R_1| |R_{i+1}| \cdots |R_n|$. On the other hand, as $G = TM_1 R_2 \cdots R_n = TM_1 R_{i+1} \cdots R_n$, we have $|G:T| \leq |M_1| |R_{i+1}| \cdots |R_n|$, a contradiction. Consequently, $\Delta_3 \neq 1$.

Let L be a minimal normal subgroup of G contained in Δ_3 . Since $L \leq T$, we have $L \not\leq R_{i+1} \cdots R_n$. But $L \leq R_1 R_{i+1} \cdots R_n$, therefore $LR_{i+1} \cdots R_n = R_1 R_{i+1} \cdots R_n$, and so

$$G = TR_1R_2 \cdots R_n = R_2 \cdots R_i TR_1 R_{i+1} \cdots R_n = R_2 \cdots R_i TLR_{i+1} \cdots R_n$$

= $R_2 \cdots R_i TR_{i+1} \cdots R_n$.

Hence $G/R_2 \cdots R_n \cong T/(T \cap R_2 \cdots R_n) = T/T \cap D$ is a p-supersoluble group. This implies that $R_1 \cong R_1 R_2 \cdots R_n/R_2 \cdots R_n$ is a group of prime order; however, this is a contradiction. Hence, every group R_i has a prime order for $i = 1, \ldots, t$ and so $F^*(N) = F(N) = F_p(N) \subseteq Z_{\infty}^{\mathfrak{U}}(G)$, where \mathfrak{U} is the formation of all supersoluble groups. Now, by Lemma 2.6, $N \subseteq Z_{\infty}^{\mathfrak{U}}(G)$. Therefore, G is p-supersoluble since G/N is. This contradiction completes the proof.

4. Proofs of Theorems B and C

Proof of Theorem B. Assume that the theorem is not true. Via the following steps, we shall prove the theorem assuming that G is a counterexample of minimal order.

(1)
$$O_{p'}(G) = 1$$
 and so $F_p(N) = F(N) = P$ is a p-group.

Since N is normal in G, $O_{p'}(N) \subseteq O_{p'}(G)$ and so

$$F_p(NO_{p'}(G))/O_{p'}(G) = F_p(N)O_{p'}(G)/O_{p'}(G) = PO_{p'}(G)/O_{p'}(G).$$

Let $H/O_{p'}(G)$ be a cyclic subgroup of $PO_{p'}(G)/O_{p'}(G)$ of order p or 4 (when $PO_{p'}(G)/O_{p'}(G) \cong P$ is a nonabelian 2-group). Then $H = (H \cap P)O_{p'}(G)$ and $H \cap P$ is cyclic of order p or 4. By hypotheses, $H \cap P$ either is 3-permutably embedded in G or has a p-supersoluble supplement T in G.

If $H \cap P$ is \mathfrak{Z} -permutably embedded in G, then by Lemma 2.1, $H/O_{p'}(G) = (H \cap P)O_{p'}(G)/O_{p'}(G)$ is $\mathfrak{Z}O_{p'}(G)/O_{p'}(G)$ -permutably embedded in $G/O_{p'}(G)$; if $H \cap P$ has a p-supersoluble supplement T in G, then, clearly, $O_{p'}(G) \subseteq T$ and $T/O_{p'}(G)$ is a p-supersoluble supplement of $H/O_{p'}(G)$ in $G/O_{p'}(G)$.

Assume $O_{p'}(G) \neq 1$. Then $|G/O_{p'}(G)| < |G|$ and hence $G/O_{p'}(G)$ is p-supersoluble by the choice of G. But this induces that G is p-supersoluble, a contradiction. Hence $O_{p'}(G) = 1$ and so $O_{p'}(N) = 1$. Therefore, $F_p(N) = PO_{p'}(N) = P = F(N)$, proving (1).

(2) Let L be a minimal normal subgroup of G. Then L is of order p.

If $L \nsubseteq N$ then LN/N is a minimal normal subgroup of a p-supersoluble group G/N. Since $O_{p'}(G) = 1$, $L \cong LN/N$ is cyclic of order p. Assume that $L \subseteq N$. Recall that N is p-soluble. Again as $O_{p'}(G) = 1$, L is a p-group. Assume G_p is the Sylow p-subgroup of G lying in \mathfrak{Z} . Then $L \subseteq G_p$ and $L \cap Z(G_p) \neq 1$. Choose x to be an element of order p in $L \cap Z(G_p)$ and let $H = \langle x \rangle$. Then $H \subseteq G_p$. Also, by the hypotheses, H either is \mathfrak{Z} -permutably embedded in G or has a p-supersoluble supplement T in G.

Assume that H has a p-supersoluble supplement T in G. Then G = HT = LT. Since L is minimal normal in G, $L \subseteq T$ or $L \cap T = 1$. If $L \subseteq T$ then G = LT = T is p-supersoluble, a contradiction.I f $L \cap T = 1$, then $|L| = |G:T| = |HT:T| \le |H| \le |L|$. So L = H is cyclic.

Assume that H is \mathfrak{Z} -permutably embedded in G. Then H covers or avoids L by Lemma 2.2. But $H \cap L = H \neq 1$ by the choice of H, so H covers L. This means that L = H is cyclic of order p.

(3) Every G-chief factor L/K in P is of prime order.

Assume that there exists a G-chief factor L/K in P which is not of prime order. Then by (2), $K \neq 1$. Choose a G-chief factor L/K in P such that |L/K| is not a prime but |X/Y| is a prime for all chief factors X/Y of G with |X| < |L|.

Let $W = \bigcap_{X \subseteq K} C_G(X/Y)$, where X/Y is a G-chief factor. Then, by [6, A, (12.3)], all elements in W of p'-order act trivially on K since they act trivially on each G-chief factor of K. Let $C = C_G(K)$.

Assume $L \nsubseteq C$. If $L \subseteq KC$, then $L \cap C/K \cap C \cong L/K$ is a chief factor of G. By the choice of L/K, $|L/K| = |L \cap C/K \cap C|$ is a prime, a contradiction. If $L \nsubseteq KC$, then it is easy to see that $LC/K = L/K \times KC/K$ and therefore, all p'-elements in C act trivially on L/K. It follows that all p'-elements in W act trivially on L/K. Hence $W \subseteq C_G(L/K)$. Since $G/W = G/\bigcap_{X \subseteq K} C_G(X/Y)$ is an abelian group of exponent dividing p-1 and $W \subseteq C_G(L/K)$, $G/C_G(L/K)$ is an abelian group of exponent dividing

p-1. Since L/K is G-irreducible, L/K is of prime order by [20, I, Lemma 1.3], a contradiction.

Now assume that $L \subseteq C$. Then $K \subseteq Z(L)$. Let a, b be elements of order p in L. Suppose p > 2 or P is abelian. Then $(ab)^p = a^p b^p [b, a]^{p(p-1)/2} = 1$. Hence the product of elements of order p is still of order p and therefore $\Omega = \{a \in L \mid a^p = 1\}$ is a subgroup of L.

If $\Omega \subseteq K$, then all elements of W with p'-order act trivially on every element of L of order p since they act trivially on K. It follows from [10, IV, Satz 5.12] that all elements in W of p'-order act trivially on L. Thus $W \subseteq C_G(L/K)$ and, as in the above argument, L/K is of prime order, a contradiction.

If $\Omega \nsubseteq K$, then $L = \Omega K$. Choose an element a in $\Omega \setminus K$ such that $\langle a \rangle K/K \subseteq L/K \cap Z(G_p/K)$. Let $H = \langle a \rangle$. If H has a p-supersoluble supplement T in G, then HK/K has a p-supersoluble supplement TK/K in G/K. Thus G/K = (HK/K)(TK/K) = (L/K)(TK/K). Since L/K is minimal normal in G/K and is abelian, either $L/K \cap TK/K = 1$ or $L/K \subseteq TK/K$ and TK/K = G/K.

If $L/K \cap UK/K = 1$, then $|L/K| = |G/K : TK/K| = |HTK/K : TK/K| \le |H| = p$. It follows that L/K is cyclic of order p, which contradicts the choice of L/K.

If $L/K \subseteq TK/K = G/K$, then L/K is cyclic since L/K is minimal normal p-subgroup of G/K and $G/K = TK/K \cong T/T \cap K$ is p-supersoluble. Assume that H is \mathfrak{Z} -permutably embedded in G. Then H covers or avoids L/K by Lemma 2.2. Clearly, H does not avoid L/K by the choice of H. Hence H covers L/K and so $L/K = (H \cap L)K/K = HK/K$ is cyclic, a contradiction. This implies that every G-chief factor in P is cyclic. By a similar argument, we can show that every G-chief factor in P is cyclic when P is a nonabelian 2-group. Hence (3) holds.

(4) Final contradiction.

It follows directly from (3) that $F(N) = P \subseteq Z_{\infty}^{\mathfrak{U}}(G)$ and hence $N \subseteq Z_{\infty}^{\mathfrak{U}}(G)$ by Lemma 2.6. Therefore, G is p-supersoluble since G/N is. This is the final contradiction proving the theorem.

Proof of Theorem C. Assume that the theorem is not true and let G be a counterexample of minimal order. Then

(1)
$$O_{p'}(G) = 1$$
 and $F_p(N) = P = F(N)$.

This can be proved in the same way as step (1) in the proof of Theorem B.

(2) Let R be a minimal normal subgroup of G contained in N. Then R is cyclic of order p and $R \subseteq Z(G)$.

By (1), R is a p-group. Assume that $|R| > p^2$. Then R has a proper subgroup H of order p^2 and H is normal in some Sylow p-subgroup of G. By the hypotheses, H either is \mathfrak{Z} -permutably embedded in G or has a p-nilpotent supplement T in G. If H is \mathfrak{Z} -permutably embedded in G, then H covers or avoids R by Lemma 2.2. This is impossible by the choice of H. So H has a p-nilpotent supplement T in G. Thus G = HT = RT. Since R is an abelian normal subgroup of G, we have $R \cap T \subseteq G$. Then the minimality of R shows that $R \cap T = R$ or 1. If $R \cap T = R$ then $R \subseteq T$ and G = T is p-nilpotent, contrary to the choice of G. If $R \cap T = 1$, then $|R| = |G:T| = |HT:T| \leq |H| < |R|$, a contradiction.

Assume that $|R| = p^2$. Then $|\operatorname{Aut} R| = (p^2 - 1)(p^2 - p)$. Since $G/C_G(R)$ is isomorphic to some subgroup of $\operatorname{Aut} R$ and $(|G|, p^2 - 1) = 1$, $G/C_G(R)$ is a p-group. Now, applying [8, Lemma 1.7.11], we find that $G/C_G(R) = 1$ and so $R \subseteq Z(G)$. Thus |R| = p. The inclusion $R \subseteq Z(G)$ can be obtained directly from $(|G|, p^2 - 1) = 1$ and |R| = p.

(3) p = 2 and P is nonabelian.

If $\Phi(N)=1$ then $F(N)=\operatorname{Soc}(N)$ is a product of some minimal normal subgroups of G. By (1), we have $F(N)\subseteq Z_\infty^{\mathfrak{U}}(G)$. Hence, by Lemma 2.6, G is p-supersoluble since G/N is p-nilpotent. But since $(|G|,p^2-1)=1$, G p-supersoluble means G is p-nilpotent. Assume $\Phi(N)\neq 1$ and choose R to be a minimal normal subgroup of G contained in $\Phi(N)$. Then $F_p(N/R)=F(N/R)=F(N)/R$. For any subgroup H/R of order p in F(N)/R, H is of order p^2 . By the hypotheses, H either is \mathfrak{Z} -permutably embedded in G or has a p-nilpotent supplement T in G. If H is \mathfrak{Z} -permutably embedded in G/R. If H has a p-nilpotent supplement T in G, then TR/R is a p-nilpotent supplement of H/R in G/R. Thus, if p>2 or P is abelian, then the hypotheses of Theorem B hold and hence G is p-supersoluble. Therefore, G is p-nilpotent because $(|G|,p^2-1)=1$. Thus p=2 and P is nonabelian.

(4) Let H be a subgroup of P of order 4. If H is cyclic or $R \subseteq H$, where R is as in (2), then H is \mathfrak{Z} -permutably embedded in G.

By our hypotheses, H either is 3-permutably embedded in G or has a p-nilpotent supplement in G. Assume (4) is not true and let T be a p-nilpotent supplement of H in G. If H is cyclic, then $H = \langle x \rangle$ for some $x \in P$ of order 4. Clearly, $T \neq G$. Let M be a maximal subgroup of G contained T. Since $x^2 \in \Phi(P) \subseteq \Phi(G)$, $x^2 \in M$ and hence $H \cap M = \langle x^2 \rangle$. It follows that |G:M| = |HT:M| = |HM:M| = 2. Thus M is normal in G. Again as $H \cap M = \langle x^2 \rangle \subseteq \Phi(G)$, the group $M/\Phi(G) = T\Phi(G)/\Phi(G) \cong T/T \cap \Phi(G)$ is p-nilpotent and so is M by [8, Lemma 1.8.1]. But $O_{p'}(M) \subseteq O_{p'}(G) = 1$ by (1), so M is a p-group and hence so is G since |G:M| = p = 2,

a contradiction. If $R \subseteq H$ then $R \subseteq Z(G)$ and by the same argument as above, we can also obtain a contradiction. Thus (4) holds.

(5) Assume that $q \neq p$ is a prime divisor of |G| and let Q be a Sylow q-subgroup of G in \mathfrak{Z} . Then $Q \subseteq C_G(x)$ for any element x of order 2 or 4 in P.

Assume |x|=4 and let $H=\langle x\rangle$. Then, by (4), H is 3-permutably embedded in G. Let U be a 3-permutable subgroup of G with a Sylow 2-subgroup H. Then UQ=QU is a subgroup of G. Clearly H is also a Sylow 2-subgroup of UQ. Since H is cyclic, UQ is 2-nilpotent and hence 2'-closed. On the other hand, since $H=P\cap UQ \subseteq UQ$, we see that UQ is 2-closed. Thus $H\subseteq Z(UQ)$ and $Q\subseteq C_G(x)$.

Assume |x| = 2. Let $H = R\langle x \rangle$. By a similar argument we also obtain $Q \subseteq C_G(x)$ and thus (5) holds.

(6) Final contradiction.

Let $\Omega = \langle x \mid |x| = 2 \text{ or } 4 \rangle$. Then Q acts trivially on Ω by (5) and hence acts trivially on P by [10, IV, Satz 5.12]. Thus $Q \subseteq C_G(P)$. Since G/N is p-nilpotent, G/N is p-closed. Let M/N be the normal p-complement of G/N. Then $M \subseteq G$ and $Q \subseteq M$. We claim that $F_p(M) = F(M) = F(N) = P$. Since $O_{p'}(M) \subseteq O_{p'}(G) = 1$, we have $O_{p'}(M) = 1$ and so $F_p(M) = F(M) = O_p(M)$. It follows that $F_p(M) \subseteq N$ since M/N is a p'-group. Therefore, $F_p(M) = F(M) \subseteq F(N) = F_p(N) \subseteq F_p(M)$ and our claim holds. But this implies that $Q \subseteq M \cap C_G(P) = C_M(P) \subseteq P = F_p(N)$, a contradiction. This shows that G is a p-group and so it is nilpotent, contrary to the choice of G. Therefore Theorem C holds.

5. Some corollaries. In this section, we give some corollaries which can be obtained from our theorems.

Let p be a prime and G a group. As we know, if (p-1,|G|)=1, then G is p-nilpotent if and only if G is p-supersoluble. The following corollaries can be obtained directly from Theorems A and B:

COROLLARY 5.1. Let G be a p-soluble group and \mathfrak{Z} a complete Sylow set of G. Assume that G has a normal subgroup N with p-nilpotent quotient. If (p-1,|G|)=1 and every maximal subgroup of a Sylow p-subgroup of $F_p(N)$ either is \mathfrak{Z} -permutable in G or has a p-nilpotent supplement in G, then G is p-nilpotent.

COROLLARY 5.2. Let G be a p-soluble group and \mathfrak{Z} a complete Sylow set of G. Assume that G has a normal subgroup N with p-nilpotent quotient. If (p-1,|G|)=1 and every subgroup of order p or 4 (when p=2 and a Sylow p-subgroup of $F_p(N)$ is nonabelian) of $F_p(N)$ either is \mathfrak{Z} -permutably embedded in G or has a p-nilpotent supplement in G, then G is p-nilpotent.

By similar arguments to the proofs of Theorems A and B, we can obtain respectively:

COROLLARY 5.3. Let G be a soluble group and \mathfrak{Z} a complete Sylow set of G. Then G is supersoluble if and only if every maximal subgroup of every Sylow subgroup of F(G) either is \mathfrak{Z} -permutable in G or has a supersoluble supplement in G.

COROLLARY 5.4. Let G be a soluble group and \mathfrak{Z} a complete Sylow set of G. Then G is supersoluble if and only if every cyclic subgroup of prime order or of order 4 of every Sylow subgroup of F(G) either is \mathfrak{Z} -permutable in G or has a supersoluble supplement in G.

Some known results can also be deduced from our theorems.

COROLLARY 5.5 ([16]). Let G be a soluble group. If all maximal subgroups of Sylow subgroups of F(G) are normal in G, then G is supersoluble.

COROLLARY 5.6 ([2]). Let G be a group and E a soluble normal subgroup of G with supersoluble quotient G/E. Suppose that all maximal subgroups of any Sylow subgroup of F(E) are s-permutable in G. Then G is supersoluble.

COROLLARY 5.7 ([4]). Let G be a soluble group with a normal subgroup E such that G/E is supersoluble. If all maximal subgroups of Sylow subgroups of F(E) are S-quasinormally embedded in G, then G is supersoluble.

Acknowledgments. The authors are grateful for the helpful suggestions of the referee.

This research is supported by a grant of the Research Program of Chengdu University of Information Technology (Grant J201114) and NNSF of P.R. China (Grant 11371335).

REFERENCES

- M. Asaad and A. A. Heliel, On permutable subgroups of finite groups, Arch. Math. (Basel) 80 (2003), 113–118.
- [2] M. Asaad, M. Ramadan and A. Shaalan, Influence of π -quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math. (Basel) 56 (1991), 521–527.
- [3] A. Ballester-Bolinches, Permutably embedded subgroups of finite soluble groups, Arch. Math. (Basel) 65 (1995), 1–7.
- [4] A. Ballester-Bolinches and M. Pedraza-Aguilera, Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra 127 (1998), 113–118.
- [5] W. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125–132.
- [6] K. Doerk and T. Hawkes, Finite Soluble Groups, de Gruyter, Berlin, 1992.
- [7] B. Fischer, Klassen konjugierter Untergruppen in endlichen auflösbaren Gruppen, Habilitationsschrift, Universität Frankfurt am Main, 1966.
- [8] W. Guo, The Theory of Classes of Groups, Kluwer, Dordrecht, 2000.

- W. Guo, K. P. Shum and A. N. Skiba, G-covering systems of subgroups for the classes of p-supersoluble and p-nilpotent finite groups, Siberian Math. J. 45 (2004),
- B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. [10]
- [11] O. H. Kegel, Sylow Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205-221.
- O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. (Basel) 12 (1961), 90–93. [12]
- [13]B. Li, On Π-property and Π-normality of subgroups of finite groups, J. Algebra 334 (2011), 321-337.
- [14]Y. Li, L. Wang and Y. Wang, Finite groups with some 3-permutable subgroups, Glasgow Math. J. 52 (2010), 145–150.
- O. Ore, Contributions in the theory of groups of finite order, Duke Math. J. 5 (1939), [15]431 - 460.
- [16] M. Ramadan, Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar. 59 (1992), 107–110.
- [17]D. J. Robinson, A Course in the Theory of Groups, Springer, New York, 1993.
- L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, [18] 1989 (in Russian).
- [19]A. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007),
- M. Weinstein (ed.), Between Nilpotent and Solvable, Polygonal Publ. House, Wash-[20] ington, 1982.

Wenai Yan, Baojun Li (corresponding author), Zhirang Zhang College of Mathematics

Chengdu University of Information Technology

Chengdu 610225, P.R. China E-mail: baojunli@cuit.edu.cn

> Received 6 February 2013; revised 4 September 2013 (5870)