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CONDITIONS FOR p-SUPERSOLUBILITY AND p-NILPOTENCY
OF FINITE SOLUBLE GROUPS

BY
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Abstract. Let Z be a complete set of Sylow subgroups of a group G. A subgroup H
of G is called Z-permutably embedded in G if every Sylow subgroup of H is also a Sylow
subgroup of some Z-permutable subgroup of G. By using this concept, we obtain some
new criteria of p-supersolubility and p-nilpotency of a finite group.

1. Introduction. Throughout this paper, all groups considered are fi-
nite. Let G be a group. π(G) denotes the set of all prime divisors of |G|. If
π is a set of primes then an integer n is called a π-number if all its prime
divisors belong to π, and π′ is the complement of π in the set P of all primes.

Recall that Oπ(G) is the maximal normal π-subgroup of G, and F (G),
the Fitting subgroup of G, is the maximal nilpotent normal subgroup of G.
Let p be a prime divisor of G. Then Fp(G) is the maximal p-nilpotent normal
subgroup of G. The reader is referred to Guo [8] or Robinson [17] for all
unexplained terminology and notations.

A subgroup A of a group G is said to permute with a subgroup B if AB =
BA. A subgroup H of G is called quasinormal [15] or permutable [6] in G if H
permutes with all subgroups of G. If H permutes with all Sylow subgroups
of G, then H is called s-permutable in G [11]. After [11, 5], permutability of
subgroups was extensively studied (cf. [2, 4, 16]). More recently, in [19], by
discussing weakly s-permutable subgroups of given order, some interesting
results were obtained and many known results were generalized.

In [1], a set Z is called a complete set of Sylow subgroups of G, or a
complete Sylow set of G, if for each prime p ∈ π(G), Z contains exactly one
Sylow p-subgroup of G, and a subgroup H of G is said to be Z-permutable
in G if H permutes with every member of Z. By using the Z-permutability
of some primary subgroups of given order, certain classes of groups were
characterized (cf. [1, 14]). A subgroup U of a group G is called a normally
embedded subgroup of G if every Sylow subgroup of U is also a Sylow sub-
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group of some normal subgroup of G (cf.[7]). If every Sylow subgroup of U
is a Sylow subgroup of some permutable subgroup of G, then U is called
a permutably embedded subgroup [3]. Along these lines, we will discuss sub-
groups in which every Sylow subgroup is also a Sylow subgroup of some
Z-permutable subgroup of G and we introduce the following definition.

Definition 1.1. Let Z be a complete set of Sylow subgroups of a groupG.
A subgroup H of G is called Z-permutably embedded in G if every Sylow
subgroup of H is also a Sylow subgroup of some Z-permutable subgroup
of G.

It is easy to see that all Sylow subgroups of a group G are Z-permutably
embedded in G for any complete set Z of Sylow subgroups of G. But if
G is not nilpotent, then there must be some Sylow subgroups which are
not Z-permutable in G. The following example shows that subgroups which
are Z-permutably embedded but not Z-permutable in G are not necessarily
Sylow subgroups, even in a soluble group.

Example 1.2. Let G = S4 be the symmetric group of degree 4. Then
G has a Sylow 2-subgroup G2 = {(1), (12)(34), (13)(24), (14)(23), (14), (23),
(1243), (1342)} and a Sylow 3-subgroup G3 = 〈(123)〉. Choose Z = {G2, G3}
and H = 〈(12)〉. Then H is not Z-permutable in G since it does not permute
with G2 in Z. Let U = 〈(123), (12)〉 ∼= S3. Then it is easy to verify that
U is Z-permutable in G, and H is a Sylow 2-subgroup of U . Hence H is
Z-permutably embedded in G.

Let H be a subgroup of a group G. Then a subgroup T of G is called a
supplement of H in G if HT = G. The role of supplements of some subgroups
in a group was often studied together with the permutability of subgroups
(cf. [9, 19]). In view of this, we shall prove the following main theorems of
this paper:

Theorem A. Let G be a p-soluble group and Z a complete Sylow set
of G. Assume that G has a normal subgroup N with p-supersoluble quo-
tient. If every maximal subgroup of a Sylow p-subgroup of Fp(N) either is
Z-permutably embedded in G or has a p-supersoluble supplement in G, then
G is p-supersoluble.

Theorem B. Let G be a p-soluble group and Z a complete Sylow set
of G. Assume that G has a normal subgroup N with p-supersoluble quotient
and let P be a Sylow p-subgroup of Fp(N). If every cyclic subgroup of order p
or 4 (when P is a non-abelian 2-group) of P either is Z-permutably embedded
in G or has a p-supersoluble supplement in G, then G is p-supersoluble.

Note that if (p− 1, |G|) = 1, then G is p-supersoluble if and only if it is
p-nilpotent. In fact, if G is p-nilpotent, then G is certainly p-supersoluble.
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Conversely, if G is p-supersoluble and (p − 1, |G|) = 1, then any pd-chief
factor H/K of G is cyclic of order p and so Aut(H/K) is of order p − 1.
Since G/CG(H/K) is isomorphic to a subgroup of Aut(H/K), the order
of G/CG(H/K) is a divisor of p − 1. It follows from (p − 1, |G|) = 1 that
G/CG(H/K) = 1. Hence every pd-chief factor H/K of G is central and so G
is p-nilpotent. Considering this, if (p−1, |G|) = 1 in Theorem A or B, we can
also obtain a criterion of p-nilpotency of G. Moreover, if (p2 − 1, |G|) = 1,
we can obtain

Theorem C. Let G be a p-soluble group and Z a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient
and let P be a Sylow p-subgroup of Fp(N). If (p2 − 1, |G|) = 1 and every
subgroup of order p2 of P either is Z-permutable in G or has a p-nilpotent
supplement in G, then G is p-nilpotent.

2. Preliminaries. In this section, we shall give some elementary proper-
ties of Z-permutably embedded subgroups, and for the sake of easy reference,
we shall also cite some useful known results from the literature.

Let N be a normal subgroup of G, and Z a complete Sylow set of G.
Following [1], we shall denote by ZN the following set of subgroups of G:

ZN = {GpN | Gp ∈ Z},
by ZN/N the following set of subgroups of G/N :

ZN/N = {GpN/N | Gp ∈ Z},
and by Z ∩N the following set of subgroups of G:

Z ∩N = {Gp ∩N | Gp ∈ Z}.
Clearly, ZN/N and Z∩N are complete Sylow sets ofG/N andN respectively.

Lemma 2.1. Let H and K be subgroups of a group G, and Z a complete
set of Sylow subgroups of G. Then the following hold:

(i) if H is Z-permutably embedded in G, and K is permutable in G,
then HK is Z-permutably embedded in G;

(ii) if H is Z-permutably embedded in G, and K is normal in G, then
HK/K is ZK/K-permutably embedded in G/K;

(iii) if K is normal in G, and K ⊆ H, then H is Z-permutably embedded
in G if and only if H/K is ZK/K-permutably embedded in G/K;

(iv) if H is Z-permutably embedded in G, and K is normal in G, then
H ∩K is Z-permutably embedded in G;

(v) if H is Z-permutably embedded in G, and K is subnormal in G, then
H ∩K is Z ∩K-permutably embedded in K.

Proof. (i) For any p ∈ π(H), let U be a Z-permutable subgroup of G with
a Sylow p-subgroup P1 which is also a Sylow p-subgroup of H. Then for any
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Q ∈ Z, both U and K permute with Q and hence UKQ = UQK = QUK.
Thus UK is Z-permutable in G. To complete the proof of (i), we show that
some Sylow p-subgroup of UK is also a Sylow p-subgroup of HK. Let P be
a Sylow p-subgroup of HK with P1 ⊆ P and P2 a Sylow p-subgroup of K
contained in P . Then

|HK|
|P1P2|

=
|H| |K| |P1 ∩ P2|
|H ∩K| |P1| |P2|

is a p′-number and so P = P1P2. By the same argument, |UK|/|P | =
|UK|/|P1P2| is a p′-number and so P is a Sylow p-subgroup of UK. Thus
(i) holds.

(ii) is a direct corollary of (i) and (iii).
(iii) Assume that H is Z-permutably embedded in G. For any p ∈ π(H),

let U be a Z-permutable subgroup of G with a Sylow p-subgroup P which
is also a Sylow p-subgroup of H. Then UQ = QU for any subgroup Q in Z
and it follows that

(UK/K)(QK/K) = UQK/K = QUK/K = (QK/K)(UK/K).

Thus UK/K is ZK/K-permutable in G/K. It is easy to see that PK/K is
a Sylow p-subgroup of both H/K and U/K. By the definitions, we conclude
that H/K is ZK/K-permutably embedded in G/K.

Conversely, assume that H/K is ZK/K-permutably embedded in G/K.
For any p ∈ π(H/K), let U/K be a ZK/K-permutable subgroup of G/K
with a Sylow p-subgroup L/K which is also a Sylow p-subgroup of H/K.
Then for any Sylow subgroup QK/K ∈ ZK/K, (U/K)(QK/K) =
(QK/K)(U/K), and thus UQ = (UK)Q = U(QK) = (QK)U = QU .
Hence U is Z-permutable in G. Let P be a Sylow p-subgroup of L. Then
L = PK and |L : P | is a p′-number and hence |U : P | = |U : L| |L : P |
is a p′-number. It follows that P is a Sylow p-subgroup of U . By the same
argument, one can prove that P is also a Sylow p-subgroup of H. Thus H
is Z-permutably embedded in G.

(iv) For any p ∈ π(H), let U be a Z-permutable subgroup of G with a
Sylow p-subgroup which is also a Sylow p-subgroup of H. Then UQ = QU
for any subgroup Q in Z.

We claim that U ∩K is Z-permutable in G. It is sufficient to prove that
(U ∩K)Q = UQ ∩KQ for any Q ∈ Z. Clearly, (U ∩K)Q ⊆ UQ ∩KQ =
(U ∩KQ)Q. Since

|U ∩KQ| = |U | |KQ|/|UKQ| = |U | |K| |Q| |UK ∩Q|/(|K ∩Q| |UK| |Q|)
and |U∩K|= |U | |K|/|UK|, we see that |U∩KQ|/|U∩K|= |UK∩Q|/|K∩Q|
is a q-number, where q is the unique prime divisor of |Q|. It follows that
|UQ∩KQ|/|(U ∩K)Q| is a q-number. But Q is a Sylow q-subgroup of G. So
|UQ∩KQ|/|(U∩K)Q|must be a q′-number. Hence |(U∩K)Q| = |UQ∩KQ|.
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It follows that (U ∩K)Q = UQ ∩KQ is a subgroup of G and hence U ∩K
is Z-permutable in G, proving our claim.

Let P be a Sylow p-subgroup of both H and U . Then P ∩K = P ∩U ∩K
is a Sylow p-subgroup of U∩K since U∩K is normal in U . Similarly, P∩K is
also a Sylow p-subgroup of H∩K, and this shows that H∩K is Z-permutably
embedded in G.

(v) By induction, we may assume that K is normal in G. Let H1 = H∩K.
By (iv), H1 is Z-permutably embedded in G. For any p ∈ π(H1), let U be a
Z-permutable subgroup of G with a Sylow p-subgroup which is also a Sylow
p-subgroup of H1; by the argument in (iv), we can also assume that U ⊆ K.
Then for any Q ∈ Z, UQ = QU and hence U(Q∩K) = UQ∩K = (Q∩K)U .
So U is Z∩K-permutable in K. Therefore, H1 = H∩K is Z∩K-permutably
embedded in K.

Lemma 2.2. Let H be a p-subgroup of G, and L/K an abelian chief
factor of G. Assume that Z is a complete Sylow set of G, and H is Z-
permutably embedded in G. If there is a Sylow p-subgroup Gp of G such that
H ∩ LEGp, then H either covers or avoids L/K.

Proof. By Lemma 2.1, the hypotheses of the lemma still hold on G/K.
So, by induction on |G|, we may assume that K = 1 and hence L is minimal
normal in G. Since H is a Z-permutably embedded p-subgroup of G, there
is a Z-permutable subgroup U of G with a Sylow p-subgroup H. Since L is
abelian, L is primary. If L is not a p-group then clearly L is avoided by H.
Assume L is a p-group. Let Gq be any element in Z. Then UGq = GqU .
Assume Gq is not a p-group. Then H is also a Sylow p-subgroup of UGq and
so H∩L = L∩UGqEUGq. By the choice of Gq, we see that |G : NG(H∩L)|
is a p-number. On the other hand, H ∩ LEGp for some Sylow p-subgroup
Gp. So H ∩ LEG and hence H ∩ L = L or 1 by the minimality of L. Thus
H covers or avoids L, and the lemma follows.

Lemma 2.3 ([8, 1.8.1]). Let N be a normal subgroup of a group G such
that N/N ∩ Φ(G) is p-nilpotent. Then N is also p-nilpotent.

We use Soc(G) to denote the product of all minimal normal subgroups
of G.

Lemma 2.4 ([18, 3.13]). Let N ≤ K ≤ Soc(G) where N,K E G. Then
there is a normal subgroup T of G such that K = N × T .

Lemma 2.5 ([9, Lemma 3.1]). Let N and L be normal subgroups of a
group G such that P/L is a Sylow p-subgroup of NL/L, and M/L is a
maximal subgroup of P/L. If Pp is a Sylow p-subgroup of P ∩N, then Pp is
a Sylow p-subgroup of N such that D = M ∩N ∩ Pp is a maximal subgroup
of Pp, and M = LD.



90 W. YAN ET AL.

Recall that the generalized Fitting subgroup F ∗(G) of a group G is the
maximal quasinilpotent normal subgroup of G, and if G is soluble then
F ∗(G) = F (G) is the Fitting subgroup of G. Let U be the class of all
supersoluble groups. Then the U-hypercenter ZU

∞(G) of a group G is the
maximal normal subgroup in which all G-chief factors are cyclic.

Lemma 2.6 ([13, Lemma 2.17]). Let G be a group and E a normal sub-
group of G. If F ∗(E) ⊆ ZU

∞(G), then E ⊆ ZU
∞(G).

3. Proof of Theorem A. Assume that Theorem A is false and let G
be a counterexample with minimal order.

We first show that the hypotheses of the theorem still hold on the quo-
tient group G/Φ, where Φ = Φ(G) is the Frattini subgroup of G. Consider
F/Φ = Fp(NΦ/Φ). Then F = F ∩ NΦ = (F ∩ N)Φ. Since F/Φ is a p-
nilpotent normal subgroup of G/Φ, F is a p-nilpotent normal subgroup of
G by Lemma 2.3. Hence F ∩ N ≤ Fp(N). On the other hand, because
Fp(N)/Fp(N) ∩ Φ ∼= Fp(N)Φ/Φ ≤ Fp(NΦ/Φ), we have Fp(N) ⊆ F . Conse-
quently, F ∩N = Fp(N) and therefore

Fp(NΦ/Φ) = F/Φ = (F ∩N)Φ/Φ = Fp(N)Φ/Φ.

Now let P/Φ be a Sylow p-subgroup of F/Φ, let M/Φ be a maximal
subgroup of P/Φ, and let Pp be a Sylow p-subgroup of P ∩Fp(N). Then, by
Lemma 2.5, Pp is a Sylow p-subgroup of Fp(N), and L = M ∩ Fp(N) ∩ Pp
is a maximal subgroup of Pp. By our hypotheses, L either is Z-permutably
embedded in G or has a p-supersoluble supplement T in G. By Lemma
2.5 again, we have M = ΦL. If L is Z-permutably embedded in G, then,
by Lemma 2.1, LΦ/Φ is ZΦ/Φ-permutably embedded G/Φ, and so M/Φ =
LΦ/Φ is ZΦ/Φ-permutably embedded in G/Φ. If L has a p-supersoluble sup-
plement T in G, then TΦ/Φ is also a p-supersoluble supplement of LΦ/Φ in
G/Φ. Thus, the group G/Φ has a normal subgroup NΦ/Φ such that each
maximal subgroup of every Sylow p-subgroup of Fp(NΦ/Φ) = Fp(N)Φ/Φ
either is ZΦ/Φ-permutably embedded in G/Φ or has a p-supersoluble sup-
plement in G/Φ. Because (G/Φ)/(NΦ/Φ) ∼= G/NΦ ∼= (G/N)/(NΦ/N) is a
p-supersoluble group, we see that the hypotheses of the theorem still hold
on G/Φ.

If Φ 6= 1, then |G/Φ| < |G|, and so G/Φ is p-supersoluble by the choice
of G. Hence G is p-supersoluble by [10, VI, 9.3]. This contradicts our as-
sumption on G. Hence Φ(G) = 1. Analogously, we can prove that Op′(G) = 1
and hence

Fp(G) = Op(G) = F (G) = R1 × · · · ×Rt
by [6, A, 10.6], where R1, . . . , Rt are the minimal normal subgroups of G.
Clearly, Fp(N) = F (N) = N ∩ F (G) and hence F (N) itself is its Sylow
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p-subgroup. Let P be the Sylow p-subgroup of G contained in Z, and Mi be
a maximal subgroup of Ri, i = 1, . . . , t, normal in P . Assume that for some
index i, we have |Mi| 6= 1. Also, assume that Ri 6⊆ N. Then NRi/N is a
p-chief factor of the p-supersoluble group G/N and so |NRi/N | is a prime.
But Ri ∼= NRi/N , and we see that Mi = 1. This contradiction shows that
Ri ≤ N. By using Lemma 2.4, we see that F (N) = Ri×D for some normal
subgroup D of G. Let M = MiD. Since |F (N) : M | = |Ri : Mi| = p, M is a
maximal subgroup of F (N) = Fp(N). If M is Z-permutably embedded in G,
then so is M ∩Ri = Mi by Lemma 2.1(iv). Applying Lemma 2.2, we deduce
that Mi covers or avoids Ri. But clearly Mi < Ri, so Mi avoids Ri. Thus
|Mi| = 1 and |Ri| = p. This contradiction shows that M is not Z-permutably
embedded in G, and hence by our hypotheses, M has a p-supersoluble sup-
plement T in G. Since Ri ∩ T is normal in both T and F (N), we have
Ri ∩ T EG = MT = F (N)T .

If Ri ∩ T 6= 1, then Ri ⊆ T and hence G = MT = DT . So, G/D =
DT/D ∼= T/T ∩D is a p-supersoluble group. This implies that Ri ∼= RiD/D
is a group of prime order. This is a contradiction.

Now, assume that Ri∩T = 1. Without loss of generality, we can assume
that i = 1. Recall that F (N) = R1 × · · · ×Rn = R1 ×D.

If n = 1, then M = M1 < R1. Hence G = MT = R1T . Since R1∩T = 1,
|R1| = |G : T | = |MT : T | ≤ |M | < |R1|, a contradiction.

Suppose that n = 2 and F (N) = R1 × R2. If R2 ≤ T , then TM =
TM1 = G, and hence |G : T | ≤ |M1| < |R1|. But R1T = G, and so
|G : T | = |R1|. This contradiction shows that R2 6≤ T . On the other hand, if
R1R2 ∩ T = 1, then, by G = TM1R2 = TR1R2, we have |G : T | = |R1| |R2|.
But from TM1R2 = G, we derive that |G : T | ≤ |M1| |R2| < |R1| |R2|, a
contradiction.

Hence ∆ = R1R2∩T 6= 1. Since R1R2 is an abelian group, ∆ = R1R2∩T
is clearly a normal subgroup of G. Let R be a minimal normal subgroup of
G contained in ∆. Since R1 6≤ T , R2 6≤ T and R ≤ T , we see that R 6= R1,
and R 6= R2. Hence F (N) = R1R2 = RR2, and so F (N)/R2

∼= R1
∼= R.

Analogously, we can prove that R1
∼= R2. We also note that ∆ = ∆∩R1R2 =

∆ ∩R1R = R(∆ ∩R1) = R. Hence

|G| = |T | |R1R2|
|T ∩R1R2|

=
|T | |R1| |R2|
|R|

= |T | |R1|,

and so |G : T | = |R1|.
Let E = R1T . Assume that E 6= G. Then |G : T | = |E : T | |G : E|

> |R1|, a contradiction. Hence E = G = R1T , and so G/R1
∼= T/R1 ∩ T

is a p-supersoluble group. But R2R1/R1 is a minimal normal p-subgroup in
G/R1 and so |R2| = |R1| = p. This contradiction shows that n ≥ 3.
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Assume that∆ 6≤ T for every minimal normal subgroup∆ ofG contained
inR2 · · ·Rn. Then, evidently, T∩R2 · · ·Rn = 1, and hence |G : TR2 · · ·Rn| ≤
|M1|. It is clear that TR2 · · ·Rn 6= G. But R1TR2 · · ·Rn = G, and we have
|G : TR2 · · ·Rn| = |R1|, a contradiction.

Hence, there is a minimal normal subgroup ∆1 in G such that ∆1 ≤ T ∩
R2 · · ·Rn. We note that since

⋂n
i=2R2 · · ·Ri−1Ri+1 · · ·Rn = 1, there exists

an index i such that R2 · · ·Ri−1RiRi+1 · · ·Rn = R2 · · ·Ri−1∆1Ri+1 · · ·Rn.
Thus we may suppose, without loss of generality, that there is an index
2 ≤ i < n such that R2, . . . , Ri ≤ T and that for every minimal normal
subgroup ∆2 of G contained in Ri+1 · · ·Rn, we have ∆2 6≤ T . This implies
that T ∩Ri+1 · · ·Rn = 1.

Now let ∆3 = R1Ri+1 · · ·Rn ∩ T . Assume that ∆3 = 1. Then, since
G = TR1 · · ·Rn = TR1Ri+1 · · ·Rn, we have |G : T | = |R1| |Ri+1| · · · |Rn|.
On the other hand, as G = TM1R2 · · ·Rn = TM1Ri+1 · · ·Rn, we have
|G : T | ≤ |M1| |Ri+1| · · · |Rn|, a contradiction. Consequently, ∆3 6= 1.

Let L be a minimal normal subgroup of G contained in ∆3. Since L ≤ T ,
we have L 6≤ Ri+1 · · ·Rn. But L ≤ R1Ri+1 · · ·Rn, therefore LRi+1 · · ·Rn =
R1Ri+1 · · ·Rn, and so

G = TR1R2 · · ·Rn = R2 · · ·RiTR1Ri+1 · · ·Rn = R2 · · ·RiTLRi+1 · · ·Rn
= R2 · · ·RiTRi+1 · · ·Rn.

Hence G/R2 · · ·Rn ∼= T/(T ∩ R2 · · ·Rn) = T/T ∩ D is a p-supersoluble
group. This implies that R1

∼= R1R2 · · ·Rn/R2 · · ·Rn is a group of prime
order; however, this is a contradiction. Hence, every group Ri has a prime
order for i = 1, . . . , t and so F ∗(N) = F (N) = Fp(N) ⊆ ZU

∞(G), where U is
the formation of all supersoluble groups. Now, by Lemma 2.6, N ⊆ ZU

∞(G).
Therefore, G is p-supersoluble since G/N is. This contradiction completes
the proof.

4. Proofs of Theorems B and C

Proof of Theorem B. Assume that the theorem is not true. Via the fol-
lowing steps, we shall prove the theorem assuming that G is a counterex-
ample of minimal order.

(1) Op′(G) = 1 and so Fp(N) = F (N) = P is a p-group.

Since N is normal in G, Op′(N) ⊆ Op′(G) and so

Fp(NOp′(G))/Op′(G) = Fp(N)Op′(G)/Op′(G) = POp′(G)/Op′(G).

Let H/Op′(G) be a cyclic subgroup of POp′(G)/Op′(G) of order p or 4 (when
POp′(G)/Op′(G) ∼= P is a nonabelian 2-group). Then H = (H ∩ P )Op′(G)
and H ∩ P is cyclic of order p or 4. By hypotheses, H ∩ P either is Z-
permutably embedded in G or has a p-supersoluble supplement T in G.
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If H∩P is Z-permutably embedded in G, then by Lemma 2.1, H/Op′(G)
= (H ∩ P )Op′(G)/Op′(G) is ZOp′(G)/Op′(G)-permutably embedded in
G/Op′(G); if H ∩ P has a p-supersoluble supplement T in G, then, clearly,
Op′(G) ⊆ T and T/Op′(G) is a p-supersoluble supplement of H/Op′(G) in
G/Op′(G).

Assume Op′(G) 6= 1. Then |G/Op′(G)| < |G| and hence G/Op′(G) is
p-supersoluble by the choice of G. But this induces that G is p-supersoluble,
a contradiction. Hence Op′(G) = 1 and so Op′(N) = 1. Therefore, Fp(N) =
POp′(N) = P = F (N), proving (1).

(2) Let L be a minimal normal subgroup of G. Then L is of order p.

If L * N then LN/N is a minimal normal subgroup of a p-supersoluble
group G/N . Since Op′(G) = 1, L ∼= LN/N is cyclic of order p. Assume that
L ⊆ N . Recall that N is p-soluble. Again as Op′(G) = 1, L is a p-group.
Assume Gp is the Sylow p-subgroup of G lying in Z. Then L E Gp and
L ∩ Z(Gp) 6= 1. Choose x to be an element of order p in L ∩ Z(Gp) and let
H = 〈x〉. Then H EGp. Also, by the hypotheses, H either is Z-permutably
embedded in G or has a p-supersoluble supplement T in G.

Assume that H has a p-supersoluble supplement T in G. Then G =
HT = LT . Since L is minimal normal in G, L ⊆ T or L ∩ T = 1. If L ⊆ T
then G = LT = T is p-supersoluble, a contradiction.I f L ∩ T = 1, then
|L| = |G : T | = |HT : T | ≤ |H| ≤ |L|. So L = H is cyclic.

Assume that H is Z-permutably embedded in G. Then H covers or avoids
L by Lemma 2.2. But H ∩ L = H 6= 1 by the choice of H, so H covers L.
This means that L = H is cyclic of order p.

(3) Every G-chief factor L/K in P is of prime order.

Assume that there exists a G-chief factor L/K in P which is not of prime
order. Then by (2), K 6= 1. Choose a G-chief factor L/K in P such that
|L/K| is not a prime but |X/Y | is a prime for all chief factors X/Y of G
with |X| < |L|.

Let W =
⋂
X⊆K CG(X/Y ), where X/Y is a G-chief factor. Then, by [6,

A, (12.3)], all elements in W of p′-order act trivially on K since they act
trivially on each G-chief factor of K. Let C = CG(K).

Assume L * C. If L ⊆ KC, then L ∩ C/K ∩ C ∼= L/K is a chief
factor of G. By the choice of L/K, |L/K| = |L ∩ C/K ∩ C| is a prime, a
contradiction. If L * KC, then it is easy to see that LC/K = L/K×KC/K
and therefore, all p′-elements in C act trivially on L/K. It follows that
all p′-elements in W act trivially on L/K. Hence W ⊆ CG(L/K). Since
G/W = G/

⋂
X⊆K CG(X/Y ) is an abelian group of exponent dividing p− 1

and W ⊆ CG(L/K), G/CG(L/K) is an abelian group of exponent dividing
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p− 1. Since L/K is G-irreducible, L/K is of prime order by [20, I, Lemma
1.3], a contradiction.

Now assume that L ⊆ C. Then K ⊆ Z(L). Let a, b be elements of order
p in L. Suppose p > 2 or P is abelian. Then (ab)p = apbp[b, a]p(p−1)/2 = 1.
Hence the product of elements of order p is still of order p and therefore
Ω = {a ∈ L | ap = 1} is a subgroup of L.

If Ω ⊆ K, then all elements of W with p′-order act trivially on every
element of L of order p since they act trivially on K. It follows from [10,
IV, Satz 5.12] that all elements in W of p′-order act trivially on L. Thus
W ⊆ CG(L/K) and, as in the above argument, L/K is of prime order, a
contradiction.

If Ω * K, then L = ΩK. Choose an element a in Ω \ K such that
〈a〉K/K ⊆ L/K∩Z(Gp/K). Let H = 〈a〉. If H has a p-supersoluble supple-
ment T in G, then HK/K has a p-supersoluble supplement TK/K in G/K.
Thus G/K = (HK/K)(TK/K) = (L/K)(TK/K). Since L/K is minimal
normal in G/K and is abelian, either L/K ∩ TK/K = 1 or L/K ⊆ TK/K
and TK/K = G/K.

If L/K ∩ UK/K = 1, then |L/K| = |G/K : TK/K| = |HTK/K :
TK/K| ≤ |H| = p. It follows that L/K is cyclic of order p, which contradicts
the choice of L/K.

If L/K ⊆ TK/K = G/K, then L/K is cyclic since L/K is minimal
normal p-subgroup of G/K and G/K = TK/K ∼= T/T∩K is p-supersoluble.
Assume that H is Z-permutably embedded in G. Then H covers or avoids
L/K by Lemma 2.2. Clearly, H does not avoid L/K by the choice of H.
Hence H covers L/K and so L/K = (H ∩ L)K/K = HK/K is cyclic, a
contradiction. This implies that every G-chief factor in P is cyclic. By a
similar argument, we can show that every G-chief factor in P is cyclic when
P is a nonabelian 2-group. Hence (3) holds.

(4) Final contradiction.

It follows directly from (3) that F (N) = P ⊆ ZU
∞(G) and hence N ⊆

ZU
∞(G) by Lemma 2.6. Therefore, G is p-supersoluble since G/N is. This is

the final contradiction proving the theorem.

Proof of Theorem C. Assume that the theorem is not true and let G be
a counterexample of minimal order. Then

(1) Op′(G) = 1 and Fp(N) = P = F (N).

This can be proved in the same way as step (1) in the proof of Theorem B.

(2) Let R be a minimal normal subgroup of G contained in N . Then R
is cyclic of order p and R ⊆ Z(G).
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By (1), R is a p-group. Assume that |R| > p2. Then R has a proper
subgroup H of order p2 and H is normal in some Sylow p-subgroup of G.
By the hypotheses, H either is Z-permutably embedded in G or has a p-
nilpotent supplement T in G. If H is Z-permutably embedded in G, then H
covers or avoids R by Lemma 2.2. This is impossible by the choice of H. So
H has a p-nilpotent supplement T in G. Thus G = HT = RT . Since R is
an abelian normal subgroup of G, we have R∩ T EG. Then the minimality
of R shows that R ∩ T = R or 1. If R ∩ T = R then R ⊆ T and G = T is
p-nilpotent, contrary to the choice of G. If R ∩ T = 1, then |R| = |G : T | =
|HT : T | ≤ |H| < |R|, a contradiction.

Assume that |R| = p2. Then |AutR| = (p2 − 1)(p2 − p). Since G/CG(R)
is isomorphic to some subgroup of AutR and (|G|, p2 − 1) = 1, G/CG(R)
is a p-group. Now, applying [8, Lemma 1.7.11], we find that G/CG(R) = 1
and so R ⊆ Z(G). Thus |R| = p. The inclusion R ⊆ Z(G) can be obtained
directly from (|G|, p2 − 1) = 1 and |R| = p.

(3) p = 2 and P is nonabelian.

If Φ(N) = 1 then F (N) = Soc(N) is a product of some minimal normal
subgroups of G. By (1), we have F (N) ⊆ ZU

∞(G). Hence, by Lemma 2.6,
G is p-supersoluble since G/N is p-nilpotent. But since (|G|, p2 − 1) = 1, G
p-supersoluble means G is p-nilpotent. Assume Φ(N) 6= 1 and choose R to
be a minimal normal subgroup of G contained in Φ(N). Then Fp(N/R) =
F (N/R) = F (N)/R. For any subgroup H/R of order p in F (N)/R, H is of
order p2. By the hypotheses, H either is Z-permutably embedded in G or
has a p-nilpotent supplement T in G. If H is Z-permutably embedded in G,
then by Lemma 2.1, H/R is ZR/R-permutably embedded in G/R. If H has
a p-nilpotent supplement T in G, then TR/R is a p-nilpotent supplement of
H/R in G/R. Thus, if p > 2 or P is abelian, then the hypotheses of Theorem
B hold and hence G is p-supersoluble. Therefore, G is p-nilpotent because
(|G|, p2 − 1) = 1. Thus p = 2 and P is nonabelian.

(4) Let H be a subgroup of P of order 4. If H is cyclic or R ⊆ H, where
R is as in (2), then H is Z-permutably embedded in G.

By our hypotheses, H either is Z-permutably embedded in G or has a p-
nilpotent supplement in G. Assume (4) is not true and let T be a p-nilpotent
supplement of H in G. If H is cyclic, then H = 〈x〉 for some x ∈ P of
order 4. Clearly, T 6= G. Let M be a maximal subgroup of G contained T .
Since x2 ∈ Φ(P ) ⊆ Φ(G), x2 ∈ M and hence H ∩M = 〈x2〉. It follows that
|G : M | = |HT : M | = |HM : M | = 2. Thus M is normal in G. Again as
H ∩M = 〈x2〉 ⊆ Φ(G), the group M/Φ(G) = TΦ(G)/Φ(G) ∼= T/T ∩ Φ(G)
is p-nilpotent and so is M by [8, Lemma 1.8.1]. But Op′(M) ⊆ Op′(G) = 1
by (1), so M is a p-group and hence so is G since |G : M | = p = 2,
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a contradiction. If R ⊆ H then R ⊆ Z(G) and by the same argument as
above, we can also obtain a contradiction. Thus (4) holds.

(5) Assume that q 6= p is a prime divisor of |G| and let Q be a Sylow
q-subgroup of G in Z. Then Q ⊆ CG(x) for any element x of order 2 or 4
in P .

Assume |x| = 4 and let H = 〈x〉. Then, by (4), H is Z-permutably
embedded in G. Let U be a Z-permutable subgroup of G with a Sylow
2-subgroup H. Then UQ = QU is a subgroup of G. Clearly H is also a
Sylow 2-subgroup of UQ. Since H is cyclic, UQ is 2-nilpotent and hence
2′-closed. On the other hand, since H = P ∩ UQ E UQ, we see that UQ is
2-closed. Thus H ⊆ Z(UQ) and Q ⊆ CG(x).

Assume |x| = 2. Let H = R〈x〉. By a similar argument we also obtain
Q ⊆ CG(x) and thus (5) holds.

(6) Final contradiction.

Let Ω = 〈x | |x| = 2 or 4〉. Then Q acts trivially on Ω by (5) and hence
acts trivially on P by [10, IV, Satz 5.12]. Thus Q ⊆ CG(P ). Since G/N is p-
nilpotent, G/N is p′-closed. Let M/N be the normal p-complement of G/N .
Then M E G and Q ⊆ M . We claim that Fp(M) = F (M) = F (N) = P .
Since Op′(M) ⊆ Op′(G) = 1, we have Op′(M) = 1 and so Fp(M) = F (M) =
Op(M). It follows that Fp(M) ⊆ N since M/N is a p′-group. Therefore,
Fp(M) = F (M) ⊆ F (N) = Fp(N) ⊆ Fp(M) and our claim holds. But this
implies that Q ⊆M ∩CG(P ) = CM (P ) ⊆ P = Fp(N), a contradiction. This
shows that G is a p-group and so it is nilpotent, contrary to the choice of G.
Therefore Theorem C holds.

5. Some corollaries. In this section, we give some corollaries which
can be obtained from our theorems.

Let p be a prime and G a group. As we know, if (p − 1, |G|) = 1, then
G is p-nilpotent if and only if G is p-supersoluble. The following corollaries
can be obtained directly from Theorems A and B:

Corollary 5.1. Let G be a p-soluble group and Z a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient. If
(p−1, |G|) = 1 and every maximal subgroup of a Sylow p-subgroup of Fp(N)
either is Z-permutable in G or has a p-nilpotent supplement in G, then G is
p-nilpotent.

Corollary 5.2. Let G be a p-soluble group and Z a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient.
If (p − 1, |G|) = 1 and every subgroup of order p or 4 (when p = 2 and a
Sylow p-subgroup of Fp(N) is nonabelian) of Fp(N) either is Z-permutably
embedded in G or has a p-nilpotent supplement in G, then G is p-nilpotent.
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By similar arguments to the proofs of Theorems A and B, we can obtain
respectively:

Corollary 5.3. Let G be a soluble group and Z a complete Sylow set
of G. Then G is supersoluble if and only if every maximal subgroup of every
Sylow subgroup of F (G) either is Z-permutable in G or has a supersoluble
supplement in G.

Corollary 5.4. Let G be a soluble group and Z a complete Sylow set
of G. Then G is supersoluble if and only if every cyclic subgroup of prime
order or of order 4 of every Sylow subgroup of F (G) either is Z-permutable
in G or has a supersoluble supplement in G.

Some known results can also be deduced from our theorems.

Corollary 5.5 ([16]). Let G be a soluble group. If all maximal sub-
groups of Sylow subgroups of F (G) are normal in G, then G is supersoluble.

Corollary 5.6 ([2]). Let G be a group and E a soluble normal subgroup
of G with supersoluble quotient G/E. Suppose that all maximal subgroups of
any Sylow subgroup of F (E) are s-permutable in G. Then G is supersoluble.

Corollary 5.7 ([4]). Let G be a soluble group with a normal subgroup E
such that G/E is supersoluble. If all maximal subgroups of Sylow subgroups
of F (E) are S-quasinormally embedded in G, then G is supersoluble.
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