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Abstract. Let 3 be a complete set of Sylow subgroups of a group G. A subgroup H
of G is called 3-permutably embedded in G if every Sylow subgroup of H is also a Sylow
subgroup of some 3-permutable subgroup of GG. By using this concept, we obtain some
new criteria of p-supersolubility and p-nilpotency of a finite group.

1. Introduction. Throughout this paper, all groups considered are fi-
nite. Let G be a group. 7(G) denotes the set of all prime divisors of |G|. If
7 is a set of primes then an integer n is called a m-number if all its prime
divisors belong to 7, and 7’ is the complement of 7 in the set P of all primes.

Recall that O,(G) is the maximal normal 7-subgroup of G, and F(G),
the Fitting subgroup of G, is the maximal nilpotent normal subgroup of G.
Let p be a prime divisor of G. Then F},(G) is the maximal p-nilpotent normal
subgroup of G. The reader is referred to Guo [8] or Robinson [17] for all
unexplained terminology and notations.

A subgroup A of a group G is said to permute with a subgroup B if AB =
BA. A subgroup H of G is called quasinormal [15] or permutable [6] in G if H
permutes with all subgroups of G. If H permutes with all Sylow subgroups
of G, then H is called s-permutable in G [11]. After [I1], 5], permutability of
subgroups was extensively studied (cf. [2, [4, 16]). More recently, in [19], by
discussing weakly s-permutable subgroups of given order, some interesting
results were obtained and many known results were generalized.

In [1], a set 3 is called a complete set of Sylow subgroups of G, or a
complete Sylow set of G, if for each prime p € 7(G), 3 contains exactly one
Sylow p-subgroup of GG, and a subgroup H of G is said to be 3-permutable
in G if H permutes with every member of 3. By using the 3-permutability
of some primary subgroups of given order, certain classes of groups were
characterized (cf. [Il, 14]). A subgroup U of a group G is called a normally
embedded subgroup of G if every Sylow subgroup of U is also a Sylow sub-
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group of some normal subgroup of G (cf.[7]). If every Sylow subgroup of U
is a Sylow subgroup of some permutable subgroup of G, then U is called
a permutably embedded subgroup [3]. Along these lines, we will discuss sub-
groups in which every Sylow subgroup is also a Sylow subgroup of some
3-permutable subgroup of G and we introduce the following definition.

DEFINITION 1.1. Let 3 be a complete set of Sylow subgroups of a group G.
A subgroup H of G is called 3-permutably embedded in G if every Sylow
subgroup of H is also a Sylow subgroup of some 3-permutable subgroup

of G.

It is easy to see that all Sylow subgroups of a group G are 3-permutably
embedded in G for any complete set 3 of Sylow subgroups of G. But if
G is not nilpotent, then there must be some Sylow subgroups which are
not 3-permutable in G. The following example shows that subgroups which
are 3-permutably embedded but not 3-permutable in GG are not necessarily
Sylow subgroups, even in a soluble group.

ExaMpPLE 1.2. Let G = Sy be the symmetric group of degree 4. Then
G has a Sylow 2-subgroup Go = {(1), (12)(34), (13)(24), (14)(23), (14), (23),
(1243),(1342)} and a Sylow 3-subgroup Gz = ((123)). Choose 3 = {G2, G3}
and H = ((12)). Then H is not 3-permutable in G since it does not permute
with Gy in 3. Let U = ((123),(12)) = S3. Then it is easy to verify that
U is 3-permutable in G, and H is a Sylow 2-subgroup of U. Hence H is
3-permutably embedded in G.

Let H be a subgroup of a group G. Then a subgroup T of G is called a
supplement of H in G if HT' = G. The role of supplements of some subgroups
in a group was often studied together with the permutability of subgroups
(cf. [9, 19]). In view of this, we shall prove the following main theorems of
this paper:

THEOREM A. Let G be a p-soluble group and 3 a complete Sylow set
of G. Assume that G has a normal subgroup N with p-supersoluble quo-
tient. If every maximal subgroup of a Sylow p-subgroup of F,(N) either is
3-permutably embedded in G or has a p-supersoluble supplement in G, then
G is p-supersoluble.

THEOREM B. Let G be a p-soluble group and 3 a complete Sylow set
of G. Assume that G has a normal subgroup N with p-supersoluble quotient
and let P be a Sylow p-subgroup of Fy,(N). If every cyclic subgroup of order p
or 4 (when P is a non-abelian 2-group) of P either is 3-permutably embedded
in G or has a p-supersoluble supplement in G, then G is p-supersoluble.

Note that if (p — 1, |G|) = 1, then G is p-supersoluble if and only if it is
p-nilpotent. In fact, if G is p-nilpotent, then G is certainly p-supersoluble.
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Conversely, if G is p-supersoluble and (p — 1,|G|) = 1, then any pd-chief
factor H/K of G is cyclic of order p and so Aut(H/K) is of order p — 1.
Since G/Cg(H/K) is isomorphic to a subgroup of Aut(H/K), the order
of G/Cq(H/K) is a divisor of p — 1. It follows from (p — 1,|G|) = 1 that
G/Cq(H/K) = 1. Hence every pd-chief factor H/K of G is central and so G
is p-nilpotent. Considering this, if (p—1, |G|) = 1 in Theorem A or B, we can
also obtain a criterion of p-nilpotency of G. Moreover, if (p? — 1,|G|) = 1,
we can obtain

THEOREM C. Let G be a p-soluble group and 3 a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient
and let P be a Sylow p-subgroup of F,(N). If (p? — 1,|G|) = 1 and every
subgroup of order p* of P either is 3-permutable in G or has a p-nilpotent
supplement in G, then G is p-nilpotent.

2. Preliminaries. In this section, we shall give some elementary proper-
ties of 3-permutably embedded subgroups, and for the sake of easy reference,
we shall also cite some useful known results from the literature.

Let N be a normal subgroup of G, and 3 a complete Sylow set of G.
Following [1], we shall denote by 3N the following set of subgroups of G:

3N ={GpN | G, € 3},
by 3N/N the following set of subgroups of G/N:
3N/N = {G,N/N | G, € 3},
and by 3 N N the following set of subgroups of G:
3NN={G,NN|Gpe 3}
Clearly, 3N /N and 3NN are complete Sylow sets of G/N and N respectively.

LEMMA 2.1. Let H and K be subgroups of a group G, and 3 a complete
set of Sylow subgroups of G. Then the following hold:

(i) if H 1is 3-permutably embedded in G, and K is permutable in G,
then HK is 3-permutably embedded in G;

(ii) of H is 3-permutably embedded in G, and K is normal in G, then
HK/K is 3K /K -permutably embedded in G/K;

(iii) if K is normal in G, and K C H, then H is 3-permutably embedded
in G if and only if H/K is 3K /K -permutably embedded in G/K ;

(iv) of H is 3-permutably embedded in G, and K is normal in G, then
H N K is 3-permutably embedded in G;

(v) if H is 3-permutably embedded in G, and K is subnormal in G, then
HN K is 3N K-permutably embedded in K.

Proof. (i) For any p € n(H), let U be a 3-permutable subgroup of G with
a Sylow p-subgroup P; which is also a Sylow p-subgroup of H. Then for any
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Q@ € 3, both U and K permute with @) and hence UKQ = UQK = QUK.
Thus UK is 3-permutable in G. To complete the proof of (i), we show that
some Sylow p-subgroup of UK is also a Sylow p-subgroup of HK. Let P be
a Sylow p-subgroup of HK with P, C P and P» a Sylow p-subgroup of K
contained in P. Then

|HK| _ [H||K[|P N P

PP [H N K[|PL] | P

is a p/-number and so P = P;P,. By the same argument, |[UK|/|P| =
|[UK|/| PP is a p’-number and so P is a Sylow p-subgroup of UK. Thus
(i) holds.

(ii) is a direct corollary of (i) and (iii).

(iii) Assume that H is 3-permutably embedded in G. For any p € w(H),
let U be a 3-permutable subgroup of G with a Sylow p-subgroup P which
is also a Sylow p-subgroup of H. Then UQ = QU for any subgroup @ in 3
and it follows that

(UK/K)(QK/K) =UQK/K = QUK/K = (QK/K)(UK/K).

Thus UK/K is 3K/K-permutable in G/K. It is easy to see that PK/K is
a Sylow p-subgroup of both H/K and U/K. By the definitions, we conclude
that H/K is 3K /K-permutably embedded in G/K.

Conversely, assume that H/K is 3K /K-permutably embedded in G/K.
For any p € n(H/K), let U/K be a 3K/K-permutable subgroup of G/K
with a Sylow p-subgroup L/K which is also a Sylow p-subgroup of H/K.
Then for any Sylow subgroup QK/K € 3K/K, (U/K)(QK/K) =
(QK/K)(U/K), and thus UQ = (UK)Q = U(QK) = (QK)U = QU.
Hence U is 3-permutable in G. Let P be a Sylow p-subgroup of L. Then
L = PK and |L : P| is a p/-number and hence |U : P| = |U : L||L : P)|
is a p’-number. It follows that P is a Sylow p-subgroup of U. By the same
argument, one can prove that P is also a Sylow p-subgroup of H. Thus H
is 3-permutably embedded in G.

(iv) For any p € n(H), let U be a 3-permutable subgroup of G with a
Sylow p-subgroup which is also a Sylow p-subgroup of H. Then UQ = QU
for any subgroup @ in 3.

We claim that U N K is 3-permutable in G. It is sufficient to prove that
(UNK)Q =UQNKQ for any Q € 3. Clearly, (UNK)Q CUQNKQ =
(UNKQ)Q. Since

UNKQ|=[UlKQI/IUKQ| = [U[|K[|QIUK NQ|/(IKNQIUKI|Q])

and [UNK|=|U| |K|/|UK]|, we see that [UNKQ|/|[UNK|=|UKNQ|/|KNQ|
is a g-number, where ¢ is the unique prime divisor of |Q|. It follows that
IUQNKQ|/|(UNK)Q)| is a g-number. But @ is a Sylow g-subgroup of G. So
IUQNKQ|/|(UNK)Q| must be a ¢-number. Hence |(UNK)Q| = [UQNKQ)|.
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It follows that (U N K)Q = UQ N KQ is a subgroup of G and hence U N K
is 3-permutable in G, proving our claim.

Let P be a Sylow p-subgroup of both H and U. Then PNK = PNUNK
is a Sylow p-subgroup of UNK since UNK is normal in U. Similarly, PNK is
also a Sylow p-subgroup of HNK, and this shows that HNK is 3-permutably
embedded in G.

(v) By induction, we may assume that K is normal in G. Let H; = HNK.
By (iv), Hj is 3-permutably embedded in G. For any p € w(H;), let U be a
3-permutable subgroup of G with a Sylow p-subgroup which is also a Sylow
p-subgroup of Hi; by the argument in (iv), we can also assume that U C K.
Then for any Q € 3, UQ = QU and hence U(QNK) =UQNK = (QNK)U.
So U is 3N K-permutable in K. Therefore, H = HNK is 3N K-permutably
embedded in K.

LEMMA 2.2. Let H be a p-subgroup of G, and L/K an abelian chief
factor of G. Assume that 3 is a complete Sylow set of G, and H is 3-
permutably embedded in G. If there is a Sylow p-subgroup Gy, of G such that
HNL<G),, then H either covers or avoids L/K.

Proof. By Lemma the hypotheses of the lemma still hold on G/K.
So, by induction on |G|, we may assume that K = 1 and hence L is minimal
normal in G. Since H is a 3-permutably embedded p-subgroup of G, there
is a 3-permutable subgroup U of G with a Sylow p-subgroup H. Since L is
abelian, L is primary. If L is not a p-group then clearly L is avoided by H.
Assume L is a p-group. Let G4 be any element in 3. Then UG, = G,U.
Assume G is not a p-group. Then H is also a Sylow p-subgroup of UG and
so HNL = LNUG,<UG,. By the choice of G, we see that |G : Ng(HNL)|
is a p-number. On the other hand, H N L < G, for some Sylow p-subgroup
Gp. So HNL 4G and hence H N L = L or 1 by the minimality of L. Thus
H covers or avoids L, and the lemma follows.

LEMMA 2.3 ([8, 1.8.1]). Let N be a normal subgroup of a group G such
that N/N N ®(Q) is p-nilpotent. Then N is also p-nilpotent.

We use Soc(G) to denote the product of all minimal normal subgroups
of G.

LEMMA 2.4 ([18, 3.13]). Let N < K < Soc(G) where N, K QG. Then
there is a normal subgroup T of G such that K = N x T.

LeEMMA 2.5 ([9 Lemma 3.1]). Let N and L be normal subgroups of a
group G such that P/L is a Sylow p-subgroup of NL/L, and M/L is a
mazimal subgroup of P/L. If P, is a Sylow p-subgroup of PN N, then P, is
a Sylow p-subgroup of N such that D = M NN N P, is a mazimal subgroup
of Py, and M = LD.
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Recall that the generalized Fitting subgroup F*(G) of a group G is the
maximal quasinilpotent normal subgroup of G, and if G is soluble then
F*(G) = F(G) is the Fitting subgroup of G. Let i be the class of all
supersoluble groups. Then the U-hypercenter Z2 (G) of a group G is the
maximal normal subgroup in which all G-chief factors are cyclic.

LEMMA 2.6 ([I13, Lemma 2.17]). Let G be a group and E a normal sub-
group of G. If F*(E) C Z%4(G), then E C Z% (G).

3. Proof of Theorem A. Assume that Theorem A is false and let G
be a counterexample with minimal order.

We first show that the hypotheses of the theorem still hold on the quo-
tient group G/®, where & = &(G) is the Frattini subgroup of G. Consider
F/® = F,(N®/®). Then FF = FNN® = (F'N N)®. Since F/P is a p-
nilpotent normal subgroup of G/®, F is a p-nilpotent normal subgroup of
G by Lemma Hence FFN' N < Fp(N). On the other hand, because
Fy(N)/Fp(N)N® = F,(N)®/P < F,(N®/P), we have F,,(N) C F. Conse-
quently, F N N = F,(N) and therefore

F)(N®/®) = F/® = (F N N)®/® = F,(N)®/P.

Now let P/® be a Sylow p-subgroup of F/®, let M/® be a maximal
subgroup of P/®, and let P, be a Sylow p-subgroup of PN F,(N). Then, by
Lemma P, is a Sylow p-subgroup of F,,(N), and L = M N F,(N) N P,
is a maximal subgroup of P,. By our hypotheses, L either is 3-permutably
embedded in G or has a p-supersoluble supplement 7" in G. By Lemma
2.5] again, we have M = ®L. If L is 3-permutably embedded in G, then,
by Lemma Lo/® is 3&/P-permutably embedded G /P, and so M /P =
L®/P is 3¢ /P-permutably embedded in G/®. If L has a p-supersoluble sup-
plement 7" in G, then T'®/® is also a p-supersoluble supplement of L®/® in
G/®. Thus, the group G/® has a normal subgroup N&/& such that each
maximal subgroup of every Sylow p-subgroup of F,(N®/®) = F,(N)®/P
either is 3@ /d-permutably embedded in G/® or has a p-supersoluble sup-
plement in G/®. Because (G/®)/(N®/P) = G/NP = (G/N)/(N®/N) is a
p-supersoluble group, we see that the hypotheses of the theorem still hold
on G/9.

If & # 1, then |G/®| < |G|, and so G/® is p-supersoluble by the choice
of G. Hence G is p-supersoluble by [10, VI, 9.3]. This contradicts our as-
sumption on G. Hence ¢(G) = 1. Analogously, we can prove that Oy (G) =1
and hence

F)(G) =0,(G)=F(G) =Ry x -+ x Ry

by [6, A, 10.6], where Ry,...,R; are the minimal normal subgroups of G.
Clearly, Fj,(N) = F(N) = N N F(G) and hence F(N) itself is its Sylow
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p-subgroup. Let P be the Sylow p-subgroup of G contained in 3, and M; be
a maximal subgroup of R;, ¢ =1,...,t, normal in P. Assume that for some
index i, we have |M;| # 1. Also, assume that R; Z N. Then NR;/N is a
p-chief factor of the p-supersoluble group G/N and so |[NR;/N]| is a prime.
But R; 2 NR;/N, and we see that M; = 1. This contradiction shows that
R; < N. By using Lemma we see that F'(N) = R; x D for some normal
subgroup D of G. Let M = M;D. Since |F(N) : M| =|R; : M;| =p, M is a
maximal subgroup of F(N) = F,(N). If M is 3-permutably embedded in G,
then so is M NR; = M; by Lemma[2.1[iv). Applying Lemma [2.2] we deduce
that M; covers or avoids R;. But clearly M; < R;, so M; avoids R;. Thus
|M;| =1 and |R;| = p. This contradiction shows that M is not 3-permutably
embedded in G, and hence by our hypotheses, M has a p-supersoluble sup-
plement T in G. Since R; N'T is normal in both T and F(N), we have
RNT<G=MT=F(N)T.

If R,NT # 1, then R; C T and hence G = MT = DT. So, G/D =
DT/D = T/TND is a p-supersoluble group. This implies that R; = R;D/D
is a group of prime order. This is a contradiction.

Now, assume that R; N7T = 1. Without loss of generality, we can assume
that i = 1. Recall that F(N) =Ry x --- X R, = Ry x D.

If n=1,then M = My < Ry. Hence G = MT = R{T. Since Ri1NT =1,
|R1| =|G:T|=|MT :T| <|M| < |Ry], a contradiction.

Suppose that n = 2 and F(N) = R; X Ry. If Ry < T, then TM =
TM, = G, and hence |G : T| < |Mi| < |Ri|]. But RiT = G, and so
|G : T| = |Ry|. This contradiction shows that Ry € T. On the other hand, if
RiRoNT =1, then, by G = TM1 Ry = TR Ro, we have |G : T| = |R1| ‘R2|
But from TM; Ry = G, we derive that |G : T| < |M;||R2| < |Ri||R2|, a
contradiction.

Hence A = Ri{RoNT # 1. Since Ry Rs is an abelian group, A = Ry RoNT
is clearly a normal subgroup of G. Let R be a minimal normal subgroup of
G contained in A. Since Ry LT, Ro £ T and R < T, we see that R # Ry,
and R 75 RQ. Hence F(N) = R1R2 = RRQ, and so F(N)/R2 = R1 = R.
Analogously, we can prove that R1 = Rs. We also note that A = ANR1 Ry =
ANRIR=R(ANR;) = R. Hence

Gl = T|[RiRy| _ [T||Ra] | Ry
|T N Ry Ry |R|

and so |G : T| = |Ry|.

Let E = RiT. Assume that £ # G. Then |G : T| = |E : T||G : E|
> |Ry|, a contradiction. Hence E = G = RiT, and so G/R; = T/RiNT
is a p-supersoluble group. But RoR;/R; is a minimal normal p-subgroup in
G/R; and so |Rz| = |R1| = p. This contradiction shows that n > 3.

= [T[|Ral,
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Assume that A £ T for every minimal normal subgroup A of G contained
in Ry -+ R,,. Then, evidently, TNRy - -+ R, = 1, and hence |G : TRy - - - R, | <
|Mi|. It is clear that TRy --- R,, # G. But RiTRy--- R, = G, and we have
|G : TRy --- R,| = |R1]|, a contradiction.

Hence, there is a minimal normal subgroup 4A; in G such that A; <T'N
Ry --- R,,. We note that since ("5 Ry -+ Ri—1Rit1--- R, = 1, there exists
an index ¢ such that Re--- R;_1RiRi11-- Ry, = Ry  Ri_1A1Rj1 -+ Ry,
Thus we may suppose, without loss of generality, that there is an index
2 < i < n such that Ro,...,R; < T and that for every minimal normal
subgroup As of G contained in R;y1 - R,, we have Ay £ T. This implies
that TN Rjy1--- Ry = 1.

Now let A3 = RiR;+1--- R, N T. Assume that As = 1. Then, since
G = TR1 ce Rn = TRlRZ‘+1 c 'Rn, we have |G : T| = |R1’ |Ri+1‘ ce ‘Rn’
On the other hand, as G = TMiRs--- R, = TMiR;11--- Ry,, we have
|G : T| <|Mi||Rit1]---|Rnl|, a contradiction. Consequently, Ag # 1.

Let L be a minimal normal subgroup of G contained in As. Since L < T,
we have L g Ri—i—l ce Rn But L < RlRi+l ce Rn, therefore LRi—i—l s Rn ==
RiR;y1--- Ry, and so

G=TRiRy---R,=Rs---RTR1R;jy1-- Ry, =Ro---R/,TLR;11--- R,
=Ry RiTRi11-- Ry,
Hence G/Ry-- R, = T/(TNRe---R,) = T/T N D is a p-supersoluble
group. This implies that Ry = R1Ry--- R,/R2--- R, is a group of prime
order; however, this is a contradiction. Hence, every group R; has a prime
order for i = 1,...,t and so F*(N) = F(N) = F,(N) C Z%(G), where 4 is
the formation of all supersoluble groups. Now, by Lemma N C Z4(G).

Therefore, G is p-supersoluble since G/N is. This contradiction completes
the proof.

4. Proofs of Theorems B and C

Proof of Theorem B. Assume that the theorem is not true. Via the fol-
lowing steps, we shall prove the theorem assuming that G is a counterex-
ample of minimal order.

(1) Op(G) =1 and so F(N) = F(N) = P is a p-group.

Since N is normal in G, Oy (N) C Oy (G) and so

Fp(NOp (G))/Op(G) = Fp(N)Op(G)/Op (G) = POp(G)/Op (G).
Let H/O,(G) be a cyclic subgroup of PO,/ (G)/O,(G) of order p or 4 (when
POy (G)/Oy(G) = P is a nonabelian 2-group). Then H = (H N P)Oy (G)
and H N P is cyclic of order p or 4. By hypotheses, H N P either is 3-
permutably embedded in G or has a p-supersoluble supplement 7" in G.
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If HNP is 3-permutably embedded in G, then by Lemmal[2.1} H/O, (G)
= (H N P)Oy(GQ)/Oy(G) is 30y (G)/Op(G)-permutably embedded in
G /Oy (G); if HN P has a p-supersoluble supplement 7" in G, then, clearly,
Oy (G) C T and T/Oy (G) is a p-supersoluble supplement of H/Oy(G) in
GOy (G).

Assume Oy (G) # 1. Then |G/Oy(G)| < |G| and hence G/O,(G) is
p-supersoluble by the choice of G. But this induces that G is p-supersoluble,
a contradiction. Hence Op(G) = 1 and so O,y (IN) = 1. Therefore, Fj,(N) =
POy (N) =P = F(N), proving (1).

(2) Let L be a minimal normal subgroup of G. Then L is of order p.

If L ¢ N then LN/N is a minimal normal subgroup of a p-supersoluble
group G/N. Since Oy (G) =1, L =2 LN/N is cyclic of order p. Assume that
L C N. Recall that N is p-soluble. Again as Oy (G) = 1, L is a p-group.
Assume Gy, is the Sylow p-subgroup of G' lying in 3. Then L < G|, and
LN Z(Gp) # 1. Choose x to be an element of order p in L N Z(G)) and let
H = (z). Then H < G). Also, by the hypotheses, H either is 3-permutably
embedded in G or has a p-supersoluble supplement 7" in G.

Assume that H has a p-supersoluble supplement T in G. Then G =
HT = LT. Since L is minimal normal in G, LC T or LNT =1.1f LCT
then G = LT = T is p-supersoluble, a contradiction.I f L N7T = 1, then
|L|=|G:T|=|HT:T|<|H|<|L|. So L = H is cyclic.

Assume that H is 3-permutably embedded in G. Then H covers or avoids
L by Lemma But HN L = H # 1 by the choice of H, so H covers L.
This means that L = H is cyclic of order p.

(3) Every G-chief factor L/K in P is of prime order.

Assume that there exists a G-chief factor L/K in P which is not of prime
order. Then by (2), K # 1. Choose a G-chief factor L/K in P such that
|L/K| is not a prime but |X/Y| is a prime for all chief factors X/Y of G
with [ X < |L].

Let W = Nxcx Ca(X/Y), where X/Y is a G-chief factor. Then, by [6,
A, (12.3)], all elements in W of p’-order act trivially on K since they act
trivially on each G-chief factor of K. Let C' = Cq(K).

Assume L ¢ C. If L C KC, then LNC/K NC = L/K is a chief
factor of G. By the choice of L/K, |L/K| = |LNC/K NC| is a prime, a
contradiction. If L ¢ KC, then it is easy to see that LC/K = L/K x KC/K
and therefore, all p’-elements in C act trivially on L/K. It follows that
all p/-elements in W act trivially on L/K. Hence W C Cg(L/K). Since
G/W =G/Nxcx Ca(X/Y) is an abelian group of exponent dividing p — 1
and W C Cg(L/K), G/Cq(L/K) is an abelian group of exponent dividing
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p — 1. Since L/K is G-irreducible, L/K is of prime order by [20] I, Lemma
1.3], a contradiction.

Now assume that L C C. Then K C Z(L). Let a, b be elements of order
pin L. Suppose p > 2 or P is abelian. Then (ab)? = aPbP[b, a]?P~1/2 = 1.
Hence the product of elements of order p is still of order p and therefore
2 ={a€ L|aP =1} is a subgroup of L.

If 2 C K, then all elements of W with p’-order act trivially on every
element of L of order p since they act trivially on K. It follows from [I0)]
IV, Satz 5.12] that all elements in W of p/-order act trivially on L. Thus
W C Cq(L/K) and, as in the above argument, L/K is of prime order, a
contradiction.

If 2 ¢ K, then L = K. Choose an element a in 2\ K such that
(a)K/K C L/IKNZ(Gp/K). Let H = (a). If H has a p-supersoluble supple-
ment 7" in G, then H K /K has a p-supersoluble supplement TK/K in G/K.
Thus G/K = (HK/K)(TK/K) = (L/K)(TK/K). Since L/K is minimal
normal in G/K and is abelian, either L/ K NTK/K =1or L/K CTK/K
and TK/K = G/K.

If L/JK NUK/K = 1, then |L/K| = |G/K : TK/K| = |HTK/K -
TK/K| < |H| = p. It follows that L/K is cyclic of order p, which contradicts
the choice of L/K.

If L)K C TK/K = G/K, then L/K is cyclic since L/K is minimal
normal p-subgroup of G/K and G/K = TK/K = T/TNK is p-supersoluble.
Assume that H is 3-permutably embedded in G. Then H covers or avoids
L/K by Lemma Clearly, H does not avoid L/K by the choice of H.
Hence H covers L/K and so L/K = (HNL)K/K = HK/K is cyclic, a
contradiction. This implies that every G-chief factor in P is cyclic. By a
similar argument, we can show that every G-chief factor in P is cyclic when
P is a nonabelian 2-group. Hence (3) holds.

(4) Final contradiction.

It follows directly from (3) that F(N) = P C Z%(G) and hence N C
Z% (G) by Lemma Therefore, G is p-supersoluble since G/N is. This is
the final contradiction proving the theorem.

Proof of Theorem C. Assume that the theorem is not true and let G be
a counterexample of minimal order. Then

(1) Op(G) =1 and F,(N) = P = F(N).
This can be proved in the same way as step (1) in the proof of Theorem B.

(2) Let R be a minimal normal subgroup of G contained in N. Then R
is cyclic of order p and R C Z(G).
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By (1), R is a p-group. Assume that |R| > p?. Then R has a proper
subgroup H of order p? and H is normal in some Sylow p-subgroup of G.
By the hypotheses, H either is 3-permutably embedded in G or has a p-
nilpotent supplement 7" in G. If H is 3-permutably embedded in G, then H
covers or avoids R by Lemma This is impossible by the choice of H. So
H has a p-nilpotent supplement 7 in G. Thus G = HT = RT. Since R is
an abelian normal subgroup of G, we have RNT < G. Then the minimality
of R shows that RNT = Ror 1.If RNT =Rthen RCT and G =T is
p-nilpotent, contrary to the choice of G. If RNT =1, then |R| = |G : T| =
|HT : T| < |H| < |R|, a contradiction.

Assume that |R| = p?. Then |Aut R| = (p? — 1)(p? — p). Since G/Cq(R)
is isomorphic to some subgroup of Aut R and (|G|,p? — 1) = 1, G/Cg(R)
is a p-group. Now, applying [8, Lemma 1.7.11], we find that G/Cg(R) =1
and so R C Z(G). Thus |R| = p. The inclusion R C Z(G) can be obtained
directly from (|G|,p? — 1) =1 and |R| = p.

(3) p=2 and P is nonabelian.

If ®(N) =1 then F(N) = Soc(N) is a product of some minimal normal
subgroups of G. By (1), we have F(N) C Z%(G). Hence, by Lemma
G is p-supersoluble since G/N is p-nilpotent. But since (|G|, p?> —1) =1, G
p-supersoluble means G is p-nilpotent. Assume @(N) # 1 and choose R to
be a minimal normal subgroup of G' contained in ¢(N). Then Fj,(N/R) =
F(N/R) = F(N)/R. For any subgroup H/R of order p in F(N)/R, H is of
order p?. By the hypotheses, H either is 3-permutably embedded in G or
has a p-nilpotent supplement T in G. If H is 3-permutably embedded in G,
then by Lemma[2.1, H/R is 3R/R-permutably embedded in G/R. If H has
a p-nilpotent supplement 7" in G, then TR/R is a p-nilpotent supplement of
H/Rin G/R. Thus, if p > 2 or P is abelian, then the hypotheses of Theorem
B hold and hence G is p-supersoluble. Therefore, G is p-nilpotent because
(|G|, p?> — 1) = 1. Thus p = 2 and P is nonabelian.

(4) Let H be a subgroup of P of order 4. If H is cyclic or R C H, where
R is as in (2), then H is 3-permutably embedded in G.

By our hypotheses, H either is 3-permutably embedded in G or has a p-
nilpotent supplement in G. Assume (4) is not true and let T be a p-nilpotent
supplement of H in G. If H is cyclic, then H = (z) for some x € P of
order 4. Clearly, T # G. Let M be a maximal subgroup of G contained T.
Since 22 € ®(P) C &(G), 2> € M and hence H N M = (x?). It follows that
|G : M| =|HT : M| = |HM : M| = 2. Thus M is normal in G. Again as
HNM = (22) C &(G), the group M/®(G) = T®(G)/P(G) = T/T N&(G)
is p-nilpotent and so is M by [8, Lemma 1.8.1]. But Oy (M) C Oy (G) =1
by (1), so M is a p-group and hence so is G since |G : M| = p = 2,
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a contradiction. If R C H then R C Z(G) and by the same argument as
above, we can also obtain a contradiction. Thus (4) holds.

(5) Assume that q # p is a prime divisor of |G| and let Q be a Sylow
q-subgroup of G in 3. Then Q C Cg(z) for any element x of order 2 or 4
in P.

Assume |z| = 4 and let H = (z). Then, by (4), H is 3-permutably
embedded in G. Let U be a 3-permutable subgroup of G with a Sylow
2-subgroup H. Then UQ = QU is a subgroup of G. Clearly H is also a
Sylow 2-subgroup of UQ. Since H is cyclic, UQ is 2-nilpotent and hence
2’'-closed. On the other hand, since H = PNUQ <UQ, we see that UQ is
2-closed. Thus H C Z(UQ) and Q C Cg(z).

Assume |z| = 2. Let H = R(z). By a similar argument we also obtain
Q@ C Cg(x) and thus (5) holds.

(6) Final contradiction.

Let 2 = (x| |x| = 2 or 4). Then @ acts trivially on {2 by (5) and hence
acts trivially on P by [10, IV, Satz 5.12]. Thus @ C Cg(P). Since G/N is p-
nilpotent, G/N is p/-closed. Let M /N be the normal p-complement of G/N.
Then M 4G and Q C M. We claim that F,(M) = F(M) = F(N) = P.
Since Oy (M) C Oy (G) =1, we have Oy (M) =1 and so F,(M) = F(M) =
Op(M). Tt follows that F,(M) C N since M/N is a p'-group. Therefore,
Fy(M)=F(M) C F(N) = Fy(N) C F,(M) and our claim holds. But this
implies that Q@ € M NCq(P) = Cy(P) C P = F,(N), a contradiction. This
shows that G is a p-group and so it is nilpotent, contrary to the choice of G.
Therefore Theorem C holds.

5. Some corollaries. In this section, we give some corollaries which
can be obtained from our theorems.

Let p be a prime and G a group. As we know, if (p — 1,|G|) = 1, then
G is p-nilpotent if and only if G is p-supersoluble. The following corollaries
can be obtained directly from Theorems A and B:

COROLLARY 5.1. Let G be a p-soluble group and 3 a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient. If
(p—1,|G|) =1 and every mazimal subgroup of a Sylow p-subgroup of F,(N)
either is 3-permutable in G or has a p-nilpotent supplement in G, then G is
p-nilpotent.

COROLLARY 5.2. Let G be a p-soluble group and 3 a complete Sylow set
of G. Assume that G has a normal subgroup N with p-nilpotent quotient.
If (p — 1,|G|) = 1 and every subgroup of order p or 4 (when p = 2 and a
Sylow p-subgroup of F,(N) is nonabelian) of F,(N) either is 3-permutably
embedded in G or has a p-nilpotent supplement in G, then G is p-nilpotent.
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By similar arguments to the proofs of Theorems A and B, we can obtain
respectively:

COROLLARY 5.3. Let G be a soluble group and 3 a complete Sylow set
of G. Then G 1is supersoluble if and only if every mazimal subgroup of every
Sylow subgroup of F(G) either is 3-permutable in G or has a supersoluble
supplement in G.

COROLLARY 5.4. Let G be a soluble group and 3 a complete Sylow set
of G. Then G is supersoluble if and only if every cyclic subgroup of prime
order or of order 4 of every Sylow subgroup of F(G) either is 3-permutable
in G or has a supersoluble supplement in G.

Some known results can also be deduced from our theorems.

COROLLARY 5.5 ([16]). Let G be a soluble group. If all maximal sub-
groups of Sylow subgroups of F(G) are normal in G, then G is supersoluble.

COROLLARY 5.6 ([2]). Let G be a group and E a soluble normal subgroup
of G with supersoluble quotient G/E. Suppose that all maximal subgroups of
any Sylow subgroup of F(E) are s-permutable in G. Then G is supersoluble.

COROLLARY 5.7 ([4]). Let G be a soluble group with a normal subgroup E
such that G/ E is supersoluble. If all mazimal subgroups of Sylow subgroups
of F(E) are S-quasinormally embedded in G, then G is supersoluble.
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