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SOME q-ANALOGS OF CONGRUENCES
FOR CENTRAL BINOMIAL SUMS

BY

ROBERTO TAURASO (Roma)

Abstract. We establish q-analogs for four congruences involving central binomial
coefficients. The q-identities necessary for this purpose are shown via the q-WZ method.

1. Introduction. Recently, a number of papers have appeared con-
cerning congruences for central binomial sums (see the references). Here we
would like to draw the reader’s attention to one aspect of the matter which
has been partly neglected so far: q-analogs. In [5, 11], the authors identified
a first group of such congruences which have a q-counterpart. Among them
we mention: for any prime p > 2,
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where
( ·
·
)

denotes the Legendre symbol and all q-congruences are mod-
ulo [p]q. It has been conjectured in [5] that the first q-congruence holds
modulo [p]2q , and we claim that the same can be said for the third one.
However, in this short note, we are not going to refine these q-congruences.
Instead, we will present a few more examples of this phenomenon. More
precisely, we show that the congruences
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where p > 5 is a prime and Qp(2) = (2p−1 − 1)/p is the usual Fermat
quotient, have as q-analogs respectively
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where Qp(2; q) = ((−q; q)p−1−1)/[p]q. Proofs of (1)–(3) can be found in [12,
Theorem 3.1] ((2) appeared first in [10]).

We are optimistically hopeful that there are plenty of interesting q-
analogs to discover. For example, recently in [8], the authors proved that
for 0 < q < 1,
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By letting q → 1, it gives a well known series identity which happens to
have a congruence version: in [12] we showed that for any prime p > 3,
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Is there a q-analog for the above congruence?

2. Notations and preliminary results. The first two results of this
section yield a family of q-analogs of the classical congruence for the har-
monic sums: for any prime p > d + 2 where d is a positive integer,

Hp−1(d) :=

p−1∑
k=1

1

kd
≡
{

0 (mod p2) if d is odd,

0 (mod p) if d is even.
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This family depends on two integer parameters a, b and it concerns the sum
p−1∑
k=1

qbk

[ak]dq

where

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1.

Several special cases have already been discussed by numerous authors (see
[3, 4, 7, 9]). In particular, K. Dilcher [4] found a determinant expression in
the case when a = 1 and b ∈ {0, 1}. We point out that, in this paper, two
rational functions in q are congruent modulo [p]rq for r ≥ 1 if the numerator
of their difference is congruent to 0 modulo [p]rq in the polynomial ring Z[q]
and the denominator is relatively prime to [p]q.

Theorem 2.1. For any prime p > 2, if a, b, d are integers such that
a, d > 0, b ≥ 0 and gcd(a, p) = 1 then
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Let z = 1 + w. Then
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The following special cases are worth mentioning. By letting d = 1, 2, 3
in (7), we obtain these q-congruences which hold modulo [p]q:
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Theorem 2.2. Let b, b, a, d be non-negative integers such that ad = b +
b > 0. Then for any prime p > 2 such that gcd(a, p) = 1,
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Moreover, let b1, b1, b2, b2 be non-negative integers. If d1 = b1 + b1 > 0 and
d2 = b2 + b2 > 0 then
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and by (14) we get∑
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∑
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Hence the proof of (13) is complete.

By letting a = 1, d = 1 and b = 0 in (11), and by using (7), we easily
find [9, Theorem 1]: for any prime p > 3:
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+
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In a similar way, for a = 1, d = 3 and b = 1, (11) yields

p−1∑
k=1

qk + q2k

[k]3q
≡ (1− q)[p]q
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k=1

q2k
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In order to show the q-congruences stated in the introduction, we need
suitable q-identities. Such identities are not easy to find, but once they are
guessed correctly, hopefully they can be proved via the q-WZ method (see
for example [6, 13]).

For n ≥ k ≥ 0, a pair (F (n, k), G(n, k)) is called q-WZ pair if

F (n + 1, k)

F (n, k)
,

F (n, k + 1)

F (n, k)
,

G(n + 1, k)

G(n, k)
,

G(n, k + 1)

G(n, k)

are all rational functions of qn and qk, and

F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

Let

S(n) =
N−1∑
k=0

F (n, k).

Then

S(n + 1)− S(n) = F (n + 1, n) +
n−1∑
k=0

(F (n + 1, k)− F (n, k))

= F (n + 1, n) +

n−1∑
k=0

(G(n, k + 1)−G(n, k))

= F (n + 1, n) + G(n, n)−G(n, 0)

and, by summing over n from 0 to N − 1, we get the identity

(16)
N−1∑
k=0

F (N, k) =
N−1∑
n=0

(F (n + 1, n) + G(n, n))−
N−1∑
n=0

G(n, 0)

which can be considered as the finite form of [6, Theorem 7.3].
The q-identities we are interested in involve the Gaussian q-binomial

coefficients [
n

k

]
q

=

{
(q; q)n(q; q)−1k (q; q)−1n−k if 0 ≤ k ≤ n,

0 otherwise,

where (a; q)n =
∏n−1

j=0 (1−aqj) (note that
[
n
k

]
q

is a polynomial in q). The next

lemma allows us to reduce a special class of q-binomial coefficients modulo
a power of [p]q.
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Lemma 2.3. Let p be a prime and let a be a positive integer. For k =
1, . . . , p− 1 we have[

ap− 1

k

]
q

≡ (−1)kq−(k+1
2 )
(

1− a[p]q

k∑
j=1

1

[j]q

)
(mod [p]2q),(17)

[
p− 1 + k

k

]
q

≡ [p]q
[k]q

(
1 + [p]q

k−1∑
j=1

qj

[j]q

)
(mod [p]3q),(18)

[
p− 1 + k

k

]
q

[
p− 1

k

]−1
q

≡ (−1)kq(k+1
2 )[p]q

[k]q

·
(

1 +
[p]q
[k]q

+ [p]q

k−1∑
j=1

1 + qj

[j]q

)
(mod [p]3q).

(19)

Proof. Since [ap]q ≡ a[p]q (mod [p]2q), it follows that[
ap− 1

k

]
q

= (−1)kq−(k+1
2 )

k∏
j=1

(
1− [ap]q

[j]q

)

≡ (−1)kq−(k+1
2 )
(

1− a[p]q

k∑
j=1

1

[j]q

)
(mod [p]2q).

Moreover[
p− 1 + k

k

]
q

=
[p]q
[k]q

k−1∏
j=1

(
1 +

qj [p]q
[j]q

)
≡ [p]q

[k]q

(
1 + [p]q

k−1∑
j=1

qj

[j]q

)
(mod [p]3q).

Congruences (17) and (18) easily yield (19).

It should be noted that when p is an odd prime, by using (18) for k =
p− 1, we recover the q-congruence [3, (3.2)]:[

ap− 1

p− 1

]
q

≡ q−(p2)
(

1− a[p]q

p−1∑
j=1

1

[j]q

)
(20)

≡ q−(p2)
(

1− a[p]q(p− 1)(1− q)

2

)
≡ q(a−1)(

p
2) (mod [p]2q).

3. Proof of (4). By [2, (5.17)] (see [5, (4.1)] for a generalization), if n
is odd then

n∑
k=0

(−1)n−kq(n−k
2 )

(−q; q)k

[
n

k

]
q

[
2k

k

]
q

= 0.
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Hence for n = p we have

p−1∑
k=1

(−1)k−1q(p−k
2 )−(p2)

(−q; q)k[k]q

[
p− 1

k − 1

]
q

[
2k

k

]
q

=
1

(−q; q)p−1[p]q

(
(−q; q)p−1 − q−(p2)

[
2p− 1

p− 1

]
q

)
.

By (17) and (20) we get

p−1∑
k=1

qk

(−q; q)k[k]q

[
2k

k

]
q

≡
p−1∑
k=1

q−pk+k

(−q; q)k[k]q

[
2k

k

]
q

≡ (−q; q)p−1 − 1

(−q; q)p−1[p]q
≡ Qp(2; q) (mod [p]q),

and the first congruence is proved.
As regards the second one, we take

F (n, k) =
(−1)k

(−q; q)n[k + 1]q

[
n + k + 1

k + 1

]−1
q

and G(n, k) =
qn+1F (n, k)

1 + qn+1
.

This pair can be found in [1, Subsection 2.1] in connection with the irra-
tionality of the q-series

Lnq(2) :=
∞∑
k=1

(−1)k

qn − 1

for |q| 6∈ {0, 1}. Hence by (16) we obtain the identity

(21)
n∑

k=1

(−1)k(1 + qk + q2k)

(−q; q)k[k]q

[
2k

k

]−1
q

=
1

(−q; q)n

n∑
k=1

(−1)k

[k]q

[
n + k

k

]−1
q

−
n∑

k=1

qk

(−q; q)k[k]q
.

Let n = p− 1. Now by (17) and [7, (1.5)],

1

(−q; q)p−1

p−1∑
k=1

(−1)k

[k]q

[
n + k

k

]−1
q

≡
p−1∑
k=1

(−1)k

[p]q

(
1− [p]q

k−1∑
j=1

qj

[j]q

)

≡ −
p−1∑
k=1

(−1)k
k−1∑
j=1

qj

[j]q
≡ −

p−1∑
j=1

q2j−1

[2j − 1]q

≡ (p− 1)(1− q)

2
−

p−1∑
k=1

1

[j]q
+

(p−1)/2∑
k=1

1

[2j]q

≡ −Qp(2; q) (mod [p]q).
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By the q-binomial theorem,

n∑
k=0

[
n

k

]
q

k−1∏
j=0

(x− qj) = xn

and for n = p, x = −1 together with (17), we get

p−1∑
k=1

q−(k2)(−q; q)k−1
[k]q

≡
p−1∑
k=1

(−1)k−1(−q; q)k−1
[k]q

[
p− 1

k − 1

]
q

= −Qp(2; q).

Hence (see the dual congruence [7, (5.4)])

p−1∑
k=1

qk

(−q; q)k[k]q
≡

p−1∑
k=1

qp−k

(−q; q)p−k[p− k]q

≡
p−1∑
k=1

q−(k2)(−q; q)k−1
[k]q

≡ −Qp(2; q) (mod [p]q)

where we used

[p− k]q = −q−k[k]q and (−q; q)−1p−k ≡ q−(k2)(−q; q)k−1 (mod [p]q).

Therefore, by identity (21),

p−1∑
k=1

(−1)k(1 + qk + q2k)

(−q; q)k[k]q

[
2k

k

]−1
q

≡ −2Qp(2; q) (mod [p]q)

and we are done.

4. Proof of (5). Let

F (n, k) =
q−(k+1

2 )

[k + 1]q

[
n + k + 2

n + 1

]
q

[
n + 1

k + 1

]−1
q

,

G(n, k) = −qn+2(1− qk+1)(1− qn+1−k)F (n, k)

(1 + qn+2)(1− qn+2)2
.

Then (16) gives the identity

(22)
n∑

k=1

(1 + qk + q2k) q−(k2)

(1 + qk)2[k]q

[
2k

k

]
q

=
n∑

k=1

q−(k2)

[k]q

[
n + k

k

]
q

[
n

k

]−1
q

−
n∑

k=1

qk

[2k]q
.

Let n = p− 1. Then by (19) and (12), we obtain

p−1∑
k=1

q−(k2)

[k]q

[
p− 1 + k

k

]
q

[
p− 1

k

]−1
q

≡ [p]q

p−1∑
k=1

(−1)kqk

[k]2q
≡ 0 (mod [p]2q).
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Moreover, (11) and (9) imply that

p−1∑
k=1

qk

[2k]q
≡ −[p]q

p−1∑
k=1

qk

[2k]2q
≡ − [p]q(p

2 − 1)(1− q)2

24
(mod [p]2q),

and (5) follows easily from (22).

Note that by letting q → 1 in (22) we obtain the identity

3

4

n∑
k=1

1

k

(
2k

k

)
=

n∑
k=1

1

k

(
n + k

k

)(
n

k

)−1
− 1

2

n∑
k=1

1

k
,

which can be exploited to prove an improvement of [12, Theorem 4.2]:

p−1∑
k=1

1

k

(
2k

k

)
≡ −8

3
Hp−1(1) + 2p4Bp−5 (mod p5)

for any prime p > 3.

5. Proof of (6). By taking

F (n, k) =
(−1)kq−(k+1

2 )(1 + qk+1)

[k + 1]2q

[
n + k + 2

n + 1

]
q

[
n + 1

k + 1

]−1
q

,

G(n, k) =
qn+2(1− qk+1)2(1− qn+1−k)F (n, k)

(1 + qk+1)(1− qn+2)3
,

(16) yields the identity

(23)

n∑
k=1

(−1)k(1 + 3qk + q2k)q−(k2)

(1 + qk)[k]2q

[
2k

k

]
q

=
n∑

k=1

(−1)k(1 + qk)q−(k2)

[k]2q

[
n + k

k

]
q

[
n

k

]−1
q

−
n∑

k=1

qk

[k]2q
.

Let n = p− 1. Now by (19),

p−1∑
k=1

(−1)k(1 + qk)q−(k2)

[k]2q

[
p− 1 + k

k

]
q

[
p− 1

k

]−1
q

≡ [p]q

p−1∑
k=1

qk + q2k

[k]3q
+ [p]2q

p−1∑
k=1

qk + q2k

[k]4q

+ [p]2q
∑

1≤j<k≤p−1

(1 + qj)(qk + q2k)

[j]q[k]3q
(mod [p]3q).
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Then the q-congruence (6) follows from (23) by using (15) and

p−1∑
k=1

qk + q2k

[k]4q
≡ −

∑
1≤j<k≤p−1

(1 + qj)(qk + q2k)

[j]q[k]3q

≡ (1− q)4(p2 − 1)(p2 − 4)

360
(mod [p]q),

which is a straightforward application of (7) and (13).
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