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ON CERTAIN FOUR-DIMENSIONALALMOST KÄHLER MANIFOLDSBYW�ODZIMIERZ JELONEK (Kraków)Abstra
t. We study four-dimensional almost Kähler manifolds (M, g, J) whi
h admitan opposite almost Kähler stru
ture.0. Introdu
tion. V. Apostolov and T. Draghi
i [A-D℄ studied almostKähler 4-manifolds satisfying Gray's se
ond 
urvature 
ondition (G2). Theyproved that su
h manifolds admit an opposite Kähler stru
ture J su
hthat (M, g, J ) has J -invariant Ri

i tensor and symmetri
 ∗-Ri

i tensor.T. Oguro, K. Sekigawa and Y. Yamada [O-S-Y℄ proved that every stri
tlyalmost Kähler Einstein and weakly ∗-Einstein 4-manifold admit two 
om-plementary foliations and have to be Ri

i �at. Nurowski and Przanowski[N-P℄ gave expli
it examples of Einstein and weakly ∗-Einstein stri
tly al-most Kähler 4-manifolds. The examples admit two opposite almost Kählerstru
tures, one of whi
h is Kähler.A. Gray [G℄ introdu
ed the notion of A-manifolds. Davidov and Mu²ka-rov [D-M℄ gave examples of six-dimensional almost Kähler non-Kähler stru
-tures on the twistor bundle over self-dual Einstein manifolds with negatives
alar 
urvature. Davidov, Grant
harov and Mu²karov [D-G-M℄ proved thatthese examples areA-manifolds. These examples were generalized by Alexan-drov, Grant
harov and Ivanov [A-G-I℄ and later by the author [J-3℄. All theseexamples are proper A-manifolds and have Hermitian Ri

i tensor. On theother hand, A. Gray (see [G℄, [S-V℄) proved that every Kähler A-manifoldhas parallel Ri

i tensor. If we 
onsider almost Kähler manifolds then a sim-ilar result does not hold in general even if we assume that the Ri

i tensoris Hermitian.The aim of this note is to give a simple proof that every four-dimensionalalmost Kähler A-manifold with Hermitian Ri

i tensor has parallel Ri

itensor and to 
hara
terize 4-manifolds (M, g) admitting two opposite almost2000 Mathemati
s Subje
t Classi�
ation: 53C15, 53B20.Key words and phrases: almost Kähler manifold, almost Kähler stru
ture.The Editorial Committee apologizes to the author and readers for the unusually longdelay in the publi
ation of this paper. [7℄ 
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Kähler stru
tures. In parti
ular we prove that every stri
tly almost Kähler
4-manifold (M, g, J) with J-invariant Ri

i tensor and symmetri
 ∗-Ri

itensor admits an opposite almost Kähler stru
ture J . We also prove thatan almost Kähler surfa
e whose Ri

i tensor is Hermitian and has 
onstanteigenvalues admits an opposite almost Kähler stru
ture. In parti
ular everyKähler surfa
e whose Ri

i tensor has 
onstant eigenvalues admits an op-posite almost Kähler stru
ture. Our results are 
onne
ted with the questionof Blair and Ianu³ (see [B-I℄, [D-1℄): �Is it true that every four-dimensionalalmost Kähler 
ompa
t manifold with Hermitian Ri

i tensor is Kähler?�and with the Goldberg 
onje
ture (see [S-2℄).The present work was inspired by the example by Nurowski and Przanow-ski [N-P℄ of a stri
tly almost Kähler Einstein 4-manifold admitting an op-posite Kähler stru
ture and by the paper [O-S-Y℄ by Oguro, Sekigawa andYamada. After writing the paper the author has learned that similar resultswere obtained by Apostolov, Armstrong and Draghi
i in [A-A-D℄.1. Preliminaries. Let (M, g) be a smooth, 
onne
ted and orientedRiemannian manifold. For a tensor T (X1, . . . , Xk) we de�ne a tensor
∇T (X0, X1, . . . , Xk) by ∇T (X0, X1, . . . , Xk) = ∇X0

T (X1, . . . , Xk). By aKilling tensor on M we mean an endomorphism S ∈ End(TM) satisfyingthe following 
onditions:(a) g(SX, Y ) = g(X,SY ) for all X,Y ∈ TM ,(b) g(∇S(X,X), X) = 0 for all X ∈ TM .We also write S ∈ A if S is a Killing tensor. We 
all S a proper Killing tensorif ∇S 6= 0. A Riemannian manifold is 
alled an A-manifold (after Gray [G℄)if its Ri

i tensor is a Killing tensor. An A-manifold is 
alled proper if itsRi

i tensor is a proper Killing tensor.Let (M, g, J) be an almost Hermitian manifold. We say that (M, g, J) isan almost Kähler manifold if its Kähler form Ω(X,Y ) = g(JX, Y ) is 
losed(dΩ = 0). In the following we shall 
onsider four-dimensional almost Kählermanifolds (M, g, J). Su
h manifolds are always oriented and we 
hoose anorientation in su
h a way that Ω is a self-dual form (i.e. Ω ∈
∧+M). Theve
tor bundle of self-dual forms admits a de
omposition

(1.1)
∧+M = RΩ ⊕ LMwhere LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =

{Φ ∈
∧
M : Φ(JX, JY ) = −Φ(X,Y )}). The bundle LM is a 
omplex linebundle over M with the 
omplex stru
ture J de�ned by (JΦ)(X,Y ) =

−Φ(JX, Y ). For a four-dimensional almost Kähler manifold the 
ovariantderivative of the Kähler form Ω is lo
ally expressed by
(1.2) ∇Ω = α⊗ Φ− Jα⊗ JΦ
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where Jα(X) = −α(JX). The Ri

i tensor ̺ of an almost Hermitianmanifold (M, g, J) is said to be Hermitian (or J-invariant) if ̺(X,Y ) =
̺(JX, JY ) for all X,Y ∈ X(M). In what follows we shall 
onsider Killingtensors with two eigenvalues λ, µ. We denote by Dλ, Dµ the 
orrespondingeigendistributions Dλ = ker(S − λ Id) and Dµ = ker(S − µ Id).Let D be an oriented p-dimensional distribution in (M, g) and let
{E1, . . . , Ep} be an oriented orthonormal basis of D. Then the 
hara
ter-isti
 form of D is the p-form ω de�ned by ω(X1, . . . , Xp) = det(g(Ei, Xj)).A distribution D is 
alled involutive or a foliation if [X,Y ] ∈ Γ (D) for alllo
al se
tions X,Y ∈ Γ (D). A foliation D is 
alled minimal if every leaf of Dis a minimal submanifold of (M, g), i.e. the tra
e of its se
ond fundamentalform (the mean 
urvature) vanishes. Analogously if D is a p-dimensionaldistribution then its se
ond fundamental form α (not symmetri
 in general)is given by the formula

α(X,Y ) = ∇XY − π(∇XY ) for any X,Y ∈ Γ (D).A distribution D is 
alled minimal if trg′ α = 0 where g′ = g|D. In thefollowing we shall assume that all almost 
omplex stru
tures we 
onsider areorthogonal with respe
t to g, i.e. g(X,Y ) = g(JX, JY ) for all X,Y ∈ X(M).An almost Kähler 4-manifold (M, g, J) is said to have an opposite al-most Kähler stru
ture if it admits an orthogonal almost Kähler stru
ture Jwith anti-self dual Kähler form Ω. For any almost Hermitian 4-manifold thefollowing formula holds:
(1.3) 1

2(̺(X,Y )+̺(JX, JY ))− 1
2(̺∗(X,Y )+̺∗(Y,X)) = 1

4(τ−τ∗)g(X,Y )where ̺∗ is the ∗-Ri

i tensor de�ned by
(1.4) ̺∗(X,Y ) = 1

2 tr{Z 7→ R(X, JY )JZ}where R(X,Y )Z = ([∇X ,∇Y ] −∇[X,Y ])Z and τ∗ = trg ̺
∗.The �rst Chern 
lass of (M, g, J) is represented by the form γ de�ned by

(1.5) 8πγ = −φ+ 2ψwhere
φ(X,Y ) = tr(Z 7→ J∇XJ ◦ ∇Y JZ),(1.6)

ψ(X,Y ) = tr(Z 7→ R(X,Y )JZ).(1.7)Note that ψ(X,Y ) = −2̺∗(X, JY ). We denote by D the nullity distributionof (M, g, J) de�ned by D = {X ∈ TM : ∇XJ = 0}. For an almost Kählermanifold it follows from (1.2) that D is J-invariant and dimD = 2 in M0 =
{x ∈ M : ∇Jx 6= 0}. We shall 
all the nullity distribution integrable if D|M0is integrable.The 
urvature tensor R of a four-dimensional manifold (M, g) determinesan endomorphism R of the bundle ∧

M de�ned by g(R(X ∧ Y ), Z ∧W ) =
R(X ∧ Y, Z ∧W ) = −R(X,Y, Z,W ) = −g(R(X,Y )Z,W ). Note that ̺∗ =
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JR(Ω) and τ∗ = 2R(Ω,Ω). Set R∧

+ M = p∧
+ M ◦R|

∧
+ M . Then trR∧

+ M

= τ/4.2. Almost Kähler four-dimensional manifolds with HermitianRi

i tensor. We start by re
alling some properties of A-manifolds andKilling tensors (see [J-1℄, [J-2℄):
Theorem 1. Let S be a Killing tensor on (M, g) with exa
tly two eigen-values λ, µ and a 
onstant tra
e. Then λ and µ are 
onstant on M . Thedistributions Dλ, Dµ are both integrable if and only if ∇S = 0.
Corollary 2. Let (M, g) be an A-manifold whose Ri

i tensor ̺ hasexa
tly two eigenvalues λ, µ. Then λ and µ are 
onstant. The Ri

i tensor ̺is parallel if and only if both eigendistributions of ̺ are integrable.
Theorem 3. Let S be a self-adjoint (1, 1)-tensor (g(SX, Y ) = g(SY,X))with two 
onstant eigenvalues λ, µ. Then S is a Killing tensor �eld if andonly if

(2.1) ∇S(X,X) = 0for all X ∈ Dλ and all X ∈ Dµ, or equivalently , if ∇XX ∈ Γ (Da) for alllo
al se
tions X ∈ Γ (Da) where a ∈ {λ, µ}.We shall prove (
f. also [P-S℄):
Proposition 1. Let (M, g) be a four-dimensional A-manifold. Assumethat (M, g, J) is an almost Kähler manifold with Hermitian Ri

i tensor.Then either (M, g) is an Einstein spa
e, or (M, g, J) is a Kähler manifold.If (M, g) is not Einstein and is 
omplete then its 
overing spa
e is a produ
tof two Riemannian surfa
es of 
onstant 
urvature.Proof. Write ̺(X,Y ) = g(SX, Y ) where S is the Ri

i endomorphismof (M, g). Sin
e ̺(JX, JY ) = ̺(X,Y ) we have S ◦ J = J ◦ S. Hen
e S hasat most two eigenfun
tions, and sin
e (M, g) is an A-manifold, this meansthat either (M, g) is Einstein or S has exa
tly two 
onstant eigenvalues λ, µ,both of multipli
ity 2. Let Dλ, Dµ be the 
orresponding eigendistributions.They are both J-invariant. Let {E1, E2} be an orthonormal lo
al basis in Dλsu
h that JE1 = E2, and {E3, E4} be an orthonormal lo
al basis in Dµ su
hthat JE3 = E4. Sin
e S is a Killing tensor we have ∇XX ∈ Γ (Da) for all

X ∈ Γ (Da) where a ∈ {λ, µ}. Thus there exist smooth fun
tions α, β, γ, σsu
h that
∇E1

E1 = αE2, ∇E2
E2 = βE1, ∇E3

E3 = γE4, ∇E4
E4 = σE3.From the relations JE1 = E2, JE2 = −E1, JE3 = E4, JE4 = −E3 we get

∇J(E1, E1) + J(∇E1
E1) = ∇E1

E2,(2.2a)

∇J(E2, E2) + J(∇E2
E2) = −∇E2

E1,(2.2b)
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∇J(E3, E3) + J(∇E3
E3) = ∇E3

E4,(2.2c)

∇J(E4, E4) + J(∇E4
E4) = −∇E4

E3.(2.2d)Note that a four-dimensional almost Hermitian manifold (M, g, J) is al-most Kähler if and only if its Kähler form is 
o
losed (δΩ = 0) or equiv-alently if trg ∇J = 0. In dimension four an almost Hermitian manifold isalmost Kähler if and only if it is semi-Kähler. We have
(2.3) ∇J(JX, JY ) = −∇J(X,Y ).Note that from (2.3) we get
(2.4) ∇J(E1, E1) + ∇J(E2, E2) = 0.Consequently, summing up (2.2a) and (2.2b) we obtain [E1, E2] = −αE1 +
βE2. Analogously [E3, E4] = −γE3 + σE4. Thus the distributions Dλ, Dµare both integrable. From Theorem 1 it follows that the Ri

i tensor ̺ isparallel (∇̺ = 0) and Dλ, Dµ are both parallel. Thus (M, g) is lo
ally aprodu
t of two Riemannian surfa
es and J is one of the standard Kählerstru
tures on su
h a produ
t. If (M, g) is 
omplete and simply 
onne
ted thenfrom the de Rham theorem it follows that (M, g) is a produ
t of two (sim-ply 
onne
ted) 
omplete Riemannian surfa
es of 
onstant 
urvature. Thus
M = S(λ)× S(µ), H(λ)×H(µ), S(λ)× T̃ , S(λ)×H(µ), or T̃ ×H(µ) where
S(λ) = CP

1 is the 2-sphere of 
onstant se
tional 
urvature λ > 0, T̃ = R
2(here µ = 0) and H(µ) is the two-dimensional hyperboli
 spa
e of 
onstantse
tional 
urvature µ < 0. Hen
e the Riemannian 
overing of any 
ompletenon-Einstein 4-manifold (M, g) satisfying the above 
onditions is one of theseprodu
ts.From the proof of Proposition 1 we have

Corollary. Let (M, g, J) be a four-dimensional almost Kähler A-man-ifold with Hermitian Ri

i tensor. Then (M, g) has parallel Ri

i tensor.
Remark. Note that there are examples of Einstein non-Kähler almostKähler 4-manifolds (see [N-P℄). Hen
e the two 
ases in the statement ofour proposition are di�erent and really o

ur. Note also that there are ex-amples of almost Kähler four-dimensional A-manifolds with non-HermitianRi

i tensor (thus non-Kähler; Thurston's example is an almost Kähler A-manifold with non-parallel Ri

i tensor). Thus the hypothesis of HermitianRi

i tensor in Proposition 1 is ne
essary. Oguro and Sekigawa [O-S-1℄ gavean example of a stri
tly almost Kähler 4-manifold with parallel and non-Hermitian Ri

i tensor. L. Vanhe
ke informed the author that Proposition 1is also an easy 
onsequen
e of [P-S℄ and [J-1℄. The proof we have given inour parti
ular 
ase is mu
h simpler.Let us re
all the following well known fa
t.
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Proposition 2. A Riemannian 4-manifold (M, g) admits two (orthogo-nal) opposite almost Kähler stru
tures if and only if it admits two orthogonal ,two-dimensional oriented involutive and minimal foliations D1, D2 su
h that

TM = D1 ⊕D2. If ω1, ω2 are 
hara
teristi
 forms of the foliations D1, D2then Ω = ω1 + ω2 and Ω = ω1 − ω2 give rise to two opposite almost Kählerstru
tures J and J . An almost Kähler manifold (M, g, J) admits an oppositealmost Kähler stru
ture if and only if it admits two orthogonal J-invarianttwo-dimensional foliations, or equivalently , if it admits two J-invariant two-dimensional orthogonal minimal distributions. If (M, g) is 
omplete and ad-mits two opposite Kähler stru
tures then its 
overing spa
e is a produ
t oftwo Riemannian surfa
es (
omplex 
urves).Re
all that an almost Hermitian manifold (M, g, J) is said to satisfy
ondition (G3) of A. Gray if
(G3) R(JX, JY, JZ, JW ) = R(X,Y, Z,W )for all X,Y, Z,W ∈ X(M). Note that for every manifold satisfying (G3)we have R(LM) ⊂

∧+M , its Ri

i tensor ̺ is J-invariant and its
∗-Ri

i tensor is symmetri
. Indeed, sin
e R(j(X ∧ Y ), j(Z ∧ W )) =
R(X ∧ Y, Z ∧ W ) where j(X ∧ Y ) = JX ∧ JY , we have R(ker(j − id),
ker(j + id)) = 0. Sin
e ker(j − id) =

∧−M ⊕ RΩ and ker(j + id) = LM weget g(R(LM),
∧−M ⊕ RΩ) = 0. Consequently, R(LM) ⊂ LM ⊂

∧+M .In fa
t, the 
ondition R(LM) ⊂
∧+M holds if and only if the Ri

i ten-sor ̺ of (M, g) is J-invariant (see [D-2, p. 5 (i)℄), and an almost Hermitian

4-manifold (M, g, J) with J-invariant Ri

i tensor and symmetri
 ∗-Ri

itensor satis�es (G3). In [O-S-Y℄ it is proved that every Einstein and weakly
∗-Einstein stri
tly almost Kähler manifold has both distributions D and
D⊥ integrable. We shall show that this also holds in a more general situa-tion.
Proposition 3. Let (M, g, J) be an almost Kähler 4-manifold with Her-mitian Ri

i tensor. Assume that (M, g, J) has symmetri
 ∗-Ri

i tensorand that |∇J | 6= 0 on M . Then both distributions D,D⊥ are minimal folia-tions and (M, g) admits an opposite almost Kähler stru
ture J . Also D⊥ ⊂

ker d(τ∗ − τ) and the fun
tion |∇J | is 
onstant if and only if it is 
onstanton the leaves of the nullity foliation D.Proof. We start with a lemma:
Lemma A. Let (M, g) be a Riemannian 4-manifold and let D1, D2 be twotwo-dimensional orthogonal distributions. Let E1, E2 and E3, E4 be any lo
aloriented orthonormal bases of D1 and D2 respe
tively and let {θ1, θ2, θ3, θ4}be the dual 
o-basis. If there exists a positive fun
tion f su
h that d(fθ3∧θ4)

= 0 then D1 is integrable.
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We shall prove Lemma A later. From (1.3) it follows that ̺∗(X, JY ) =

̺(X, JY ) + 1
4(τ − τ∗)Ω. Note (see [S-1℄) that the form φ is equal to φ =

1
2 |∇J |

2θ1 ∧ θ2 where θ1, θ2 is a 
o-frame dual to any orthonormal orientedbasis {E1, E2} of D⊥. Sin
e ψ(X,Y ) = 2̺∗(X, JY ) and τ − τ∗ = −1
2 |∇J |

2,we have
8πγ = −1

2 |∇J |
2θ1 ∧ θ2 − 4̺∗(X, JY ) = 1

2 |∇J |
2θ3 ∧ θ4 − 4̺(X, JY )where {E3, E4} is an oriented basis of D, and {θ3, θ4} its dual 
o-basis. Sin
ethe Ri

i form ̺(X, JY ) is 
losed (see Prop. 4, p. 165 of [D-1℄ and its proof)it follows from dγ = 0 that d(1

2 |∇J |
2θ3 ∧ θ4) = 0. From Lemma A andProposition 2 we infer that D⊥ is a minimal foliation.Next we prove

Lemma B. Let (M, g, J) be an almost Kähler four-dimensional manifoldwhose 
urvature tensor R satis�es the 
ondition R(LM) ⊂
∧+M . Then theKähler form Ω of (M, g, J) is an eigenform of the positive Weyl tensor W+,i.e. W+Ω = λΩ for λ ∈ C∞(M) (or equivalently (M, g, J) has symmetri


∗-Ri

i tensor) if and only if the nullity distribution D is integrable.Proof. Note that it is enough to prove the lemma for (M0, g, J). Thuswe 
an assume that D is a two-dimensional J-invariant distribution. Let
{E3, E4} be a lo
al orthonormal basis in D su
h that E4 = JE3. Hen
e

∇E3
J = 0,(2.5a)

∇E4
J = 0.(2.5b)Consequently,

∇2
E4E3

J + ∇∇E4
E3
J = 0,(2.6a)

∇2
E3E4

J + ∇∇E3
E4
J = 0.(2.6b)Thus ∇2

E3E4
J −∇2

E4E3
J + ∇[E3,E4]J = 0. Hen
e

(2.7) R(E3, E4).J = −∇[E3,E4]J.Choose a lo
al orthonormal basis (for the details see [O-S-2℄) {E1, E2} of
D⊥ su
h that JE1 = E2 and
(Ω) ∇Ω = α(θ1 ⊗ Φ− θ2 ⊗ Ψ)where Φ = θ1 ∧ θ3 − θ2 ∧ θ4, Ψ = θ1 ∧ θ4 + θ2 ∧ θ3 and α equals − 1

2
√

2
|∇J |.From (2.7) we obtain

(2.8) R(E3, E4, JX, Y ) +R(E3, E4, X, JY ) = −∇[E3,E4]Ω(X,Y ).Consequently,
(2.9.a) R(E3 ∧E4, E2 ∧E3 + E1 ∧E4) = R(E3 ∧E4, Ψ) = αθ1([E3, E4]),

(2.9.b) R(E3 ∧E4, E1 ∧E3 − E2 ∧E4) = R(E3 ∧E4, Φ) = αθ2([E3, E4]).
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Write a = R(E3 ∧ E4, Ψ), b = R(E3 ∧ E4, Φ), c = R(E1 ∧ E2, Ψ), and
d = R(E1 ∧ E2, Φ). Note that the form Ω = E1 ∧ E2 − E3 ∧ E4 is anti-self-dual (Ω ∈

∧−M). Thus c − a = 0 = d − b. We also have R(Ω,Φ) = b + dand R(Ω,Ψ) = a+ c. Consequently,
(2.10) R(Ω,Φ) = 2b = 2αθ2([E3, E4]), R(Ω,Ψ) = 2a = 2αθ1([E3, E4]).It is 
lear that Ω is an eigenform of W+ if and only if R(Ω,Φ) = 0 =
R(Ω,Ψ). The last two equations are equivalent to the symmetry of the ∗-Ri

i tensor (they also mean that the 
omponent W+

2 of the positive Weyltensor vanishes).Consequently, both D and D⊥ are minimal foliations. The form Ω =
θ1 ∧ θ2 + θ3 ∧ θ4 is the Kähler form of the almost Kähler stru
ture J . Theform Ω = θ1∧θ2−θ3∧θ4 gives the opposite almost Kähler stru
ture J . Sin
eboth D and D⊥ are foliations it follows that d(θ3 ∧ θ4) = 0 and 
onsequently
d(|∇J |2) ∧ θ3 ∧ θ4 = 0. Sin
e df =

∑
Eifθi we have E1|∇J |

2 = E2|∇J |
2 = 0.Sin
e D⊥ ⊂ ker d|∇J |2 it follows that |∇J | is 
onstant if and only if D ⊂

ker d(|∇J |2), whi
h means that |∇J | is 
onstant on the leaves of the folia-tion D.Proof of Lemma A. We have
(2.11) df ∧ θ3 ∧ θ4 + fd(θ3 ∧ θ4) = 0.Write df =

∑
aiθi. Thus

(2.12) a1θ1 ∧ θ3 ∧ θ4 + a2θ2 ∧ θ3 ∧ θ4 = −f(dθ3 ∧ θ4 − θ3 ∧ dθ4).From (2.12) we infer that the di�erential ideal generated by θ3, θ4 is 
losedand 
onsequently the distribution D1 is integrable.We say that an almost Hermitian manifold (M, g, J) satis�es the se
ond
ondition (G2) of A. Gray if its 
urvature tensor R satis�es
(G2) R(X,Y, Z,W ) −R(JX, JY, Z,W )

= R(JX, Y, JZ,W ) +R(JX, Y, Z, JW )for all X,Y, Z,W ∈ X(M). It is known that an almost Kähler manifold
(M, g, J) satis�es (G2) if and only if its Ri

i tensor is J-invariant, the ∗-Ri

i tensor is symmetri
 and the 
omponentW+

3 of the positive Weyl tensorvanishes (i.e. RLM = a idLM where RLM = pLM ◦ R|LM and pLM is theorthogonal proje
tion pLM :
∧
M → LM). It is well known that any almostKähler manifold satisfying (G2) also satis�es (G3). On the other hand, wehave the following as an appli
ation of our previous results. The impli
ation�if (G2) then |∇J | is 
onstant� is proved in [A-D℄.

Proposition 4. Let (M, g, J) be an almost Kähler manifold with J-invariant Ri

i tensor and symmetri
 ∗-Ri

i tensor. Then (M, g, J) satis�es
ondition (G2) if and only if |∇J | is 
onstant on M .
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Proof. From the assumptions we have W+
2 = 0. We shall show that the
ondition W+

3 = 0 is equivalent to |∇J | being 
onstant. We 
an assume that
|∇J | 6= 0 on M . From Proposition 3 it follows that both distributions D,D⊥are minimal foliations. Let {E1, E2, E3, E4} be a lo
al orthonormal framesu
h that (Ω) holds. Then
(2.12) g(∇E1

JX, Y ) = αΦ(X,Y ), g(∇E2
JX, Y ) = −αΨ(X,Y ),

∇E3
J = 0, ∇E4

J = 0.Consequently,
g(R(E1, E3).JX, Y ) = −∇[E1,E3]Ω −E3αΦ− αp(E3)Ψ,(2.13a)

g(R(E1, E4).JX, Y ) = −∇[E1,E4]Ω −E4αΦ− αp(E4)Ψ,(2.13b)

g(R(E2, E3).JX, Y ) = −∇[E2,E3]Ω +E3αΨ − αp(E3)Φ,(2.13c)

g(R(E4, E2).JX, Y ) = −∇[E4,E2]Ω −E4αΨ + αp(E4)Φ,(2.13d)where the lo
al 1-form p is de�ned by p(X) = 1
2g(∇XΦ, Ψ). Sin
e R(LM)

⊂
∧+M it is 
lear that

g(R(E1, E3).JX, Y ) = g(R(E4, E2).JX, Y ),(2.14a)

g(R(E3, E2).JX, Y ) = g(R(E4, E1).JX, Y ).(2.14b)Consequently, from (2.13) and (2.14) we get
R(Φ, Ψ) = −2g(R(E1, E3).JE1, E3) = 2(E3α+ αθ1([E1, E3])),(2.15a)

R(Φ, Ψ) = −2g(R(E2, E3).JE3, E2) = 2(E3α+ αθ2([E2, E3])),(2.15b)

R(Φ,Φ) = −2g(R(E4, E2).JE3, E2) = −2(E4α− αθ2([E4, E2])),(2.15c)

R(Ψ, Ψ) = −2g(R(E1, E4).JE1, E3) = −2(−E4α−αθ1([E1, E4])).(2.15d)Sin
e D⊥ is a minimal foliation we have θ1([E1, E3]) + θ2([E2, E3]) = 0 and
θ1([E1, E4]) − θ2([E4, E2]) = 0. Thus from (2.15) we get R(Φ, Ψ) = 2E3αand R(Φ,Φ) −R(Ψ, Ψ) = −4E4α. Sin
e from Proposition 3 we have E1α =
E2α = 0 it follows that |∇J | is 
onstant if and only if R(Φ, Ψ) = 0 and
R(Φ,Φ) = R(Ψ, Ψ). The last two equalities are equivalent to the vanishingof the 
omponent W+

3 of the positive Weyl tensor W+.
Proposition 5. Let (M, g, J) be an almost Kähler manifold with Her-mitian Ri

i tensor and symmetri
 ∗-Ri

i tensor. Assume that |∇J | 6= 0on M . Then the opposite almost Hermitian stru
ture J determined by theminimal foliations D,D⊥ is almost Kähler. The distribution D⊥ is 
ontainedin the nullity distribution of J .Proof. The �rst part of the proposition is an immediate 
onsequen
e ofPropositions 2 and 3. We show that ∇XΩ = 0 for any X ∈ D⊥. Choose alo
al orthonormal frame {E1, . . . , E4} su
h that (Ω) holds. Note that (we
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write ∇Xθi = ωj

i (X)θj , Φ = θ1 ∧ θ3 + θ2 ∧ θ4, Ψ = θ1 ∧ θ4 − θ2 ∧ θ3)
∇(θ1 ∧ θ2) = 1

2{Φ(ω4
1 + ω3

2) + Ψ(ω1
3 + ω4

2) + Φ(−ω4
1 + ω3

2) + Ψ(−ω1
3 + ω4

2)}.Analogously
∇(θ3 ∧ θ4) = 1

2{Φ(ω4
1 + ω3

2) + Ψ(ω1
3 + ω4

2) − Φ(−ω4
1 + ω3

2) − Ψ(−ω1
3 + ω4

2)}.Note that ∇Ω = a ⊗ Φ + b ⊗ Ψ and ∇Ω = a′ ⊗ Φ + b′ ⊗ Ψ where withour assumptions a = αθ1 and b = −αθ2. On the other hand, a = ω4
1 + ω3

2,
b = ω1

3 + ω4
2 and

(2.16a) αθ1 = ω4
1 + ω3

2 , −αθ2 = ω1
3 + ω4

2 ,

(2.16b) a′ = −ω4
1 + ω3

2 , b′ = −ω1
3 + ω4

2.It is 
lear that D⊥ is in the nullity distribution of J if a′(E1) = a′(E2) = 0.Write Γ i
jk = ωi

j(Ek). Then a′(E1) = Γ 3
21 − Γ 4

11 and a′(E2) = Γ 3
22 − Γ 4

12. Notethat from (2.15a,b) we have
(2.17) Γ 3

11 = Γ 3
22 = 0and sin
e trR∧

+ M = τ/4 we have R(Φ,Φ) + R(Ψ, Ψ) = τ/2 − R(Ω,Ω) =

(τ − τ∗)/2 = −2α2, so that from (2.15
,d) we obtain
(2.18) Γ 4

11 = −Γ 4
22 = α/2.From (2.16a) we have

(2.19) Γ 4
11 + Γ 3

21 = α, Γ 3
22 + Γ 4

12 = 0.We infer from (2.18), (2.19) that Γ 4
11 = Γ 3

21 = α/2 and Γ 3
22 = Γ 4

12 = 0.Consequently, a′(E1) = a′(E2) = 0 and D⊥ is 
ontained in the nullity dis-tribution of J . It follows that in the set M ′
0 = {x : |∇J | 6= 0} the nullitydistribution of J is D⊥. From (2.7) we also get

(2.20) R(E3, E4).J = 0, R(E1, E2).J = 0.

Proposition 6. Let (M, g, J) be a four-dimensional almost Kähler man-ifold. Assume that (M, g, J) has Hermitian Ri

i tensor with 
onstant eigen-values. Then either (M, g) is Einstein, or (M, g, J) admits an opposite al-most Kähler stru
ture J su
h that (M, g, J ) has Hermitian Ri

i tensor. Onthe other hand , a 4-manifold with 
onstant s
alar 
urvature whi
h admitstwo opposite almost Kähler stru
tures with Hermitian Ri

i tensor is eitherEinstein or its Ri

i tensor has two 
onstant eigenvalues.Proof. We 
an assume that (M, g) has Ri

i tensor with exa
tly two
onstant eigenvalues λ, µ sin
e in the other 
ase it is Einstein. Let {E1, E2}be an orthonormal lo
al basis in Dλ su
h that JE1 = E2 and let {E3, E4} bean orthonormal lo
al basis in Dµ su
h that JE3 = E4; let {θ1, θ2, θ3, θ4} bea dual 
oframe. Re
all that every four-dimensional almost Kähler manifoldwith Hermitian Ri

i tensor has 
losed Ri

i form α(X,Y ) := ̺(JX, Y ) (see
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Prop. 4, p. 165 of [D-1℄ and its proof). Sin
e α = λθ1 ∧ θ2 + µθ3 ∧ θ4 weobtain
(2.21) λd(θ1 ∧ θ2) + µd(θ3 ∧ θ4) = 0.On the other hand, d(θ1∧θ2)+d(θ3∧θ4) = 0. Thus we infer from (2.21) that
d(θ1 ∧ θ2) = 0 = d(θ3 ∧ θ4), i.e. the 
hara
teristi
 forms of the distributions
Dλ, Dµ are both 
losed. The tensor ̺ is 
learly invariant with respe
t to thealmost Kähler stru
ture given by the form Ω = θ1 ∧ θ2 − θ3 ∧ θ4.Now assume that (M, g, J) is an almost Kähler manifold with Hermi-tian Ri

i tensor and 
onstant s
alar 
urvature whi
h admits an oppositealmost Kähler stru
ture J su
h that ̺ is also J -invariant. Let U = {x ∈M :
̺x has two eigenvalues}. Then U is an open set. Let λ, µ ∈ C∞(U) be eigen-fun
tions of ̺ in U . Choose a lo
al orthonormal frame {E1, E2, E3, E4}just as above. It is 
lear that J and J are given in U respe
tively by
Ω = θ1 ∧ θ2 + θ3 ∧ θ4 and Ω = θ1 ∧ θ2 − θ3 ∧ θ4. Thus both forms θ1 ∧ θ2 and
θ3 ∧ θ4 are 
losed. Sin
e α = λθ1 ∧ θ2 + µθ3 ∧ θ4 we obtain
(2.24) dλ ∧ θ1 ∧ θ2 + dµ ∧ θ3 ∧ θ4 = 0.Note that dλ =

∑4
i=1 aiθi and dµ =

∑4
i=1 biθi where ai = Eiλ and bi = Eiµ.From (2.12) we infer that

(2.25) a3θ3 ∧ θ1 ∧ θ2 + a4θ4 ∧ θ1 ∧ θ2 + b1θ1 ∧ θ3 ∧ θ4 + b2θ2 ∧ θ3 ∧ θ4 = 0.Thus a3 = a4 = b1 = b2 = 0. It follows that ∇λ ∈ Γ (Dλ) and ∇µ ∈ Γ (Dµ).Sin
e∇λ+∇µ = 0 it follows that λ and µ are 
onstant in U . Hen
e U = M .
Corollary. Assume that (M, g, J) is a Kähler 4-manifold whose Ri

itensor ̺ has two 
onstant eigenvalues. Then (M, g, J) admits an oppositealmost Kähler stru
ture J , and ̺ is J -invariant. The stru
ture J is Kählerif and only if (M, g) is lo
ally a produ
t of two Riemannian surfa
es of
onstant 
urvatures.A
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