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ON CERTAIN FOUR-DIMENSIONAL
ALMOST KAHLER MANIFOLDS

BY

WLODZIMIERZ JELONEK (Krakéw)

Abstract. We study four-dimensional almost K&hler manifolds (M, g, J) which admit
an opposite almost Kéahler structure.

0. Introduction. V. Apostolov and T. Draghici [A-D] studied almost
Kahler 4-manifolds satisfying Gray’s second curvature condition (G2). They
proved that such manifolds admit an opposite Kéhler structure J such
that (M, g,J) has J-invariant Ricci tensor and symmetric *Ricci tensor.
T. Oguro, K. Sekigawa and Y. Yamada [O-S-Y] proved that every strictly
almost Kahler Einstein and weakly #-Einstein 4-manifold admit two com-
plementary foliations and have to be Ricci flat. Nurowski and Przanowski
[N-P| gave explicit examples of Einstein and weakly *-Einstein strictly al-
most Kéhler 4-manifolds. The examples admit two opposite almost Kéahler
structures, one of which is Kéhler.

A. Gray |G| introduced the notion of A-manifolds. Davidov and Muska-
rov [D-M] gave examples of six-dimensional almost Kéhler non-Kéahler struc-
tures on the twistor bundle over self-dual Einstein manifolds with negative
scalar curvature. Davidov, Grantcharov and Muskarov [D-G-M] proved that
these examples are A-manifolds. These examples were generalized by Alexan-
drov, Grantcharov and Ivanov [A-G-I] and later by the author [J-3]. All these
examples are proper A-manifolds and have Hermitian Ricci tensor. On the
other hand, A. Gray (see |G|, [S-V]) proved that every Ké&hler .A-manifold
has parallel Ricci tensor. If we consider almost Kahler manifolds then a sim-
ilar result does not hold in general even if we assume that the Ricci tensor
is Hermitian.

The aim of this note is to give a simple proof that every four-dimensional
almost Kéahler A-manifold with Hermitian Ricci tensor has parallel Ricci
tensor and to characterize 4-manifolds (M, g) admitting two opposite almost
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Kahler structures. In particular we prove that every strictly almost Kéhler
4-manifold (M, g,J) with J-invariant Ricci tensor and symmetric *-Ricci
tensor admits an opposite almost Kahler structure J. We also prove that
an almost Kahler surface whose Ricci tensor is Hermitian and has constant
eigenvalues admits an opposite almost Kéhler structure. In particular every
Kahler surface whose Ricci tensor has constant eigenvalues admits an op-
posite almost Kéahler structure. Our results are connected with the question
of Blair and lanug (see [B-I], [D-1]): “Is it true that every four-dimensional
almost Kéahler compact manifold with Hermitian Ricci tensor is K&hler?”
and with the Goldberg conjecture (see [S-2]).

The present work was inspired by the example by Nurowski and Przanow-
ski [N-P| of a strictly almost Kahler Einstein 4-manifold admitting an op-
posite Kéhler structure and by the paper [O-S-Y| by Oguro, Sekigawa and
Yamada. After writing the paper the author has learned that similar results
were obtained by Apostolov, Armstrong and Draghici in [A-A-D].

1. Preliminaries. Let (M, g) be a smooth, connected and oriented
Riemannian manifold. For a tensor 7T(Xi,...,X;) we define a tensor
VT(Xo,Xl, e ,Xk) by VT(Xo,Xl, cee ,Xk) = VXOT(Xl, ey Xk) By a
Killing tensor on M we mean an endomorphism S € End(7T'M) satisfying
the following conditions:

(a) g(SX,Y)=g(X,S8Y) for all X,Y € TM,
(b) g(VS(X,X),X) =0 for all X € TM.

We also write S € A if S is a Killing tensor. We call S a proper Killing tensor
if V.S # 0. A Riemannian manifold is called an A-manifold (after Gray [G])
if its Ricci tensor is a Killing tensor. An A-manifold is called proper if its
Ricci tensor is a proper Killing tensor.

Let (M, g,J) be an almost Hermitian manifold. We say that (M, g, J) is
an almost Kdhler manifold if its Kahler form 2(X,Y) = g(JX,Y) is closed
(df2 =0). In the following we shall consider four-dimensional almost Kéhler
manifolds (M, g,J). Such manifolds are always oriented and we choose an
orientation in such a way that (2 is a self-dual form (i.e. 2 € ATM). The
vector bundle of self-dual forms admits a decomposition

(1.1) ANTM =R & LM

where LM denotes the bundle of real J-skew-invariant 2-forms (i.e. LM =
{Pe ANM : P(JX,JY) = —P(X,Y)}). The bundle LM is a complex line
bundle over M with the complex structure J defined by (J®)(X,Y) =
—®(JX,Y). For a four-dimensional almost Kahler manifold the covariant
derivative of the K&hler form {2 is locally expressed by

(1.2) VR2=a®d—Ja® Jd
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where Ja(X) = —a(JX). The Ricci tensor p of an almost Hermitian
manifold (M, g, J) is said to be Hermitian (or J-invariant) if o(X,Y) =
o(JX,JY) for all X,Y € X(M). In what follows we shall consider Killing
tensors with two eigenvalues A, u. We denote by D), D,, the corresponding
eigendistributions Dy = ker(S — AId) and D, = ker(S — p1d).

Let D be an oriented p-dimensional distribution in (M, g) and let
{E\1,...,Ep} be an oriented orthonormal basis of D. Then the character-
istic form of D is the p-form w defined by w(Xy,...,X,) = det(g9(E;, X;)).

A distribution D is called involutive or a foliation if [X,Y] € I'(D) for all
local sections X,Y € I'(D). A foliation D is called minimal if every leaf of D
is a minimal submanifold of (M, g), i.e. the trace of its second fundamental
form (the mean curvature) vanishes. Analogously if D is a p-dimensional
distribution then its second fundamental form o (not symmetric in general)
is given by the formula

a(X,Y)=VxY —n(VxY) forany X,Y € I'(D).

A distribution D is called minimal if try o0 = 0 where ¢’ = gip- In the
following we shall assume that all almost complex structures we consider are
orthogonal with respect to g, i.e. g(X,Y) = g(JX,JY) for all X, Y € X(M).

An almost Kéahler 4-manifold (M, g, J) is said to have an opposite al-
most Kihler structure if it admits an orthogonal almost Kihler structure J
with anti-self dual Kihler form (2. For any almost Hermitian 4-manifold the
following formula holds:

(1.3)  3(e(X,Y)+o(JX, JY))=5(c"(X,Y)+0" (Y. X)) = (7-7")g(X.Y)
where 0" is the *-Ricci tensor defined by
(1.4) o'(X,Y)=3tr{Z — R(X,JY)JZ}

where R(X,Y)Z = ([Vx,Vy] = V[xy])Z and 7" = try 0".
The first Chern class of (M, g, J) is represented by the form ~ defined by

(1.5) 8y = —¢ + 29

where

(1.6) o(X,)Y)=tr(Z— JVxJoVyJZ),
(1.7) V(X,Y)=tr(Z — R(X,Y)JZ).

Note that ¢(X,Y) = —2p*(X, JY). We denote by D the nullity distribution
of (M,g,J) defined by D = {X € TM : VxJ = 0}. For an almost Kéhler
manifold it follows from (1.2) that D is J-invariant and dimD = 2 in My =
{x € M : VJ, # 0}. We shall call the nullity distribution integrable if Dy,
is integrable.

The curvature tensor R of a four-dimensional manifold (), g) determines
an endomorphism R of the bundle A M defined by g(R(X AY),ZAW) =
R(XANY,ZANW)=—-R(X,Y,Z, W) = —g(R(X,Y)Z,W). Note that o* =
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j’R/(f) and 7 = 2R (2, £2). Set Rp+ s =Pp+m © Ryp+ - Then trR 4,
=7/4.

2. Almost Kihler four-dimensional manifolds with Hermitian
Ricci tensor. We start by recalling some properties of A-manifolds and
Killing tensors (see [J-1], [J-2]):

THEOREM 1. Let S be a Killing tensor on (M, g) with exactly two eigen-
values A\, i and a constant trace. Then \ and p are constant on M. The
distributions Dy, D, are both integrable if and only if V.S = 0.

COROLLARY 2. Let (M,g) be an A-manifold whose Ricci tensor o has
exactly two eigenvalues A, . Then A and p are constant. The Ricci tensor o
18 parallel if and only if both eigendistributions of o are integrable.

THEOREM 3. Let S be a self-adjoint (1,1)-tensor (g(SX,Y) = g(SY, X))
with two constant eigenvalues A\, . Then S is a Killing tensor field if and
only if
(2.1) VS(X,X) =0
for all X € Dy and all X € D,,, or equivalently, if VxX € I'(Dg) for all
local sections X € I'(D,) where a € {\, p}.

We shall prove (cf. also [P-S]):

PROPOSITION 1. Let (M, g) be a four-dimensional A-manifold. Assume
that (M,g,J) is an almost Kdhler manifold with Hermitian Ricci tensor.
Then either (M, g) is an Finstein space, or (M,g,J) is a Kahler manifold.
If (M, g) is not Finstein and is complete then its covering space is a product
of two Riemannian surfaces of constant curvature.

Proof. Write o(X,Y) = g(SX,Y) where S is the Ricci endomorphism
of (M, g). Since o(JX,JY) = o(X,Y) we have So J = J o S. Hence S has
at most two eigenfunctions, and since (M, g) is an A-manifold, this means
that either (M, g) is Einstein or S has exactly two constant eigenvalues A, y,
both of multiplicity 2. Let Dy, D, be the corresponding eigendistributions.
They are both J-invariant. Let {Eq, E2} be an orthonormal local basis in D),
such that JE; = Es, and {E3, E4} be an orthonormal local basis in D, such
that JFE3 = Ejy. Since S is a Killing tensor we have VxX € I'(D,) for all
X € I'(D,) where a € {\, u}. Thus there exist smooth functions «, 3,7, 0
such that

VElEl = O[EQ, VE2E2 = ,BEl, VE3E3 = ’YE4, VE4E4 = UEg.
From the relations JE| = Eo, JEy = —Fy, JE3 = Ey, JE, = —F3 we get
(2.2) VJ(EL B+ J(Vg B = Vi, Bs,

(2.2}3) VJ(EQ, EQ) + J(VE‘QEQ) = —VEQEl,
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(2.2¢) VJ(Es, E3) + J(Vi, Bs) = Vi, Ea,
(2.2d) VJ(E4, E4) + J(VE4E4) = —VE4E3.

Note that a four-dimensional almost Hermitian manifold (M, g, J) is al-
most Kéhler if and only if its Kéhler form is coclosed (§£2 = 0) or equiv-
alently if tr, VJ = 0. In dimension four an almost Hermitian manifold is
almost Kahler if and only if it is semi-K&hler. We have

(2.3) VJI(JX,JY) = —VJ(X,Y).
Note that from (2.3) we get
(2.4) VJ(El,El) + VJ(EQ,EQ) =0.

Consequently, summing up (2.2a) and (2.2b) we obtain [Eq, E2] = —aFE; +
BE,. Analogously [E3, E4] = —vE3 + oE,. Thus the distributions Dy, D,,
are both integrable. From Theorem 1 it follows that the Ricci tensor p is
parallel (Vo = 0) and Dy, D,, are both parallel. Thus (M, g) is locally a
product of two Riemannian surfaces and J is one of the standard Kéhler
structures on such a product. If (M, g) is complete and simply connected then
from the de Rham theorem it follows that (M, g) is a product of two (sim-
ply connected) complete Riemannian surfaces of constant curvature. Thus
M = S(\) x S(p), HA) x H(u), S(\) x T, S(\) x H(u), or T x H(u) where
S(\) = CP! is the 2-sphere of constant sectional curvature A > 0, T = R?
(here p = 0) and H (p) is the two-dimensional hyperbolic space of constant
sectional curvature p < 0. Hence the Riemannian covering of any complete
non-Einstein 4-manifold (M, g) satisfying the above conditions is one of these
products. =

From the proof of Proposition 1 we have

COROLLARY. Let (M,g,J) be a four-dimensional almost Kihler A-man-
ifold with Hermitian Ricci tensor. Then (M, g) has parallel Ricci tensor.

REMARK. Note that there are examples of Einstein non-K&hler almost
Kahler 4-manifolds (see [N-P]). Hence the two cases in the statement of
our proposition are different and really occur. Note also that there are ex-
amples of almost Kéhler four-dimensional A-manifolds with non-Hermitian
Ricci tensor (thus non-Kéahler; Thurston’s example is an almost Kéhler A-
manifold with non-parallel Ricci tensor). Thus the hypothesis of Hermitian
Ricci tensor in Proposition 1 is necessary. Oguro and Sekigawa [O-S-1] gave
an example of a strictly almost Kéahler 4-manifold with parallel and non-
Hermitian Ricci tensor. L. Vanhecke informed the author that Proposition 1
is also an easy consequence of [P-S| and [J-1]. The proof we have given in
our particular case is much simpler.

Let us recall the following well known fact.
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PROPOSITION 2. A Riemannian 4-manifold (M, g) admits two (orthogo-
nal) opposite almost Kahler structures if and only if it admits two orthogonal,
two-dimensional oriented involutive and minimal foliations Dy, Dy such that
TM = D1 ® Ds. If w1, wy are characteristic forms of the foliations D1, Do
then 2 = w1 + wy and 2 = wi — wy give Tise to two opposite almost Kihler
structures J and J. An almost Kihler manifold (M, g, J) admits an opposite
almost Kdhler structure if and only if it admits two orthogonal J-invariant
two-dimensional foliations, or equivalently, if it admits two J-invariant two-
dimensional orthogonal minimal distributions. If (M, g) is complete and ad-
mits two opposite Kdahler structures then its covering space is a product of
two Riemannian surfaces (complexr curves).

Recall that an almost Hermitian manifold (M, g,J) is said to satisfy
condition (G3) of A. Gray if

(Gs) R(JX,JY,JZ,JW) = R(X,Y, Z,W)

for all X,Y,Z, W € X(M). Note that for every manifold satisfying (G3)
we have R(LM) C A" M, its Ricci tensor o is J-invariant and its
*-Ricci tensor is symmetric. Indeed, since R(j(X A Y),j(Z A W)) =
R(X NY,Z NW) where j(X ANY) = JX A JY, we have R(ker(j — id),
ker(j +1id)) = 0. Since ker(j —id) = A~ M @ RS2 and ker(j +id) = LM we
get g(R(LM), N~ M @ Rf2) = 0. Consequently, R(LM) ¢ LM c \T M.
In fact, the condition R(LM) C AT M holds if and only if the Ricci ten-
sor p of (M, g) is J-invariant (see [D-2, p. 5 (i)]), and an almost Hermitian
4-manifold (M, g,J) with J-invariant Ricci tensor and symmetric *-Ricci
tensor satisfies (G3). In [O-S-Y] it is proved that every Einstein and weakly
x-Einstein strictly almost K&hler manifold has both distributions D and
DL integrable. We shall show that this also holds in a more general situa-
tion.

PROPOSITION 3. Let (M, g,J) be an almost Kdhler 4-manifold with Her-
mitian Ricci tensor. Assume that (M,g,J) has symmetric x-Ricci tensor
and that |V.J| # 0 on M. Then both distributions D, D+ are minimal folia-
tions and (M, g) admits an opposite almost Kéihler structure J. Also D+ C
kerd(7* — 7) and the function |V.J| is constant if and only if it is constant
on the leaves of the nullity foliation D.

Proof. We start with a lemma:

LEMMA A. Let (M, g) be a Riemannian 4-manifold and let D1, D2 be two
two-dimensional orthogonal distributions. Let Ev, Es and Es, E4 be any local
oriented orthonormal bases of D1 and Dy respectively and let {01,02,03,04}
be the dual co-basis. If there exists a positive function f such that d(f03N\0y)
= 0 then Dy s integrable.
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We shall prove Lemma A later. From (1.3) it follows that o*(X,JY) =
o(X,JY) + 2(7 — 7*)§2. Note (see [S-1]) that the form ¢ is equal to ¢ =
%\VJ ]201 A B2 where 61,605 is a co-frame dual to any orthonormal oriented
basis {E1, B2} of DL, Since ¢(X,Y) = 20*(X,JY) and 7 — 7% = —§|VJ|%,
we have

87y = —3|VJ[?01 A by — 40" (X, JY) = 3|VJ|*05 A 04 — 4o(X, TY)
where {F3, E4} is an oriented basis of D, and {63, 0,4} its dual co-basis. Since
the Ricci form o(X, JY') is closed (see Prop. 4, p. 165 of [D-1] and its proof)
it follows from dy = 0 that d(3|VJ[?05 A 64) = 0. From Lemma A and
Proposition 2 we infer that D+ is a minimal foliation.

Next we prove

LEMMA B. Let (M,g,J) be an almost Kdhler four-dimensional manifold
whose curvature tensor R satisfies the condition R(LM) C N M. Then the
Kihler form §2 of (M, g,J) is an eigenform of the positive Weyl tensor W,
i.e. WHQ2 = A2 for X € C®°(M) (or equivalently (M,g,J) has symmetric
x-Ricci tensor) if and only if the nullity distribution D is integrable.

Proof. Note that it is enough to prove the lemma for (Mo, g, J). Thus
we can assume that D is a two-dimensional J-invariant distribution. Let
{E3, E4} be a local orthonormal basis in D such that E4 = JFE3. Hence

(2.5a) ViJ =0,

(2.5Db) Vg,J=0.
Consequently,

(2.6a) Vi) + Vg, =0,
(2.6b) Vi) + Vv, e = 0.
Thus V%3E4J — V%4E3J + Vig;,e,J = 0. Hence
(2.7) R(E3, Eq).J = =V g, g,

Choose a local orthonormal basis (for the details see [O-S-2|) {E4, E2} of
D+ such that JE| = F5 and

() VR2=a(01 P —0,0V¥)

where @ = 01 AO3 — 03 AN Oy, W =01 A Oy+ 05 A O3 and  equals —$|VJ|.
From (2.7) we obtain

(28)  R(Es,Es,JX,Y)+ R(Es, By, X, JY) = Vg, 52X, Y).
Consequently,

(2.9.0)  R(E3 A By, By A B3 + By A Ey) = R(E3 A Ey, W) = a1 ([E3, Ed)),
(2.9b)  R(Es3 A Ey, By A Es — By A Ey) = R(E3 A Eq, &) = afs(|Es, E4)).
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Write a = R(E3 A Eq,¥), b = R(Es A E4,P), ¢ = R(E1 A E2, W), and
d = R(E1 A E3,®). Note that the form 2 = E; A Ey — E3 A Ej is anti-self-
dual (2 € A~ M). Thus ¢ —a = 0 = d — b. We also have R(£2,®) = b+ d
and R(£2,¥) = a + c¢. Consequently,

(210) R(Q,@) =2b= 2@02([E3, E4]), R(Q,W) =2a = 2@01([E3, E4])

It is clear that (2 is an eigenform of W if and only if R(2,9) = 0 =
R(£2,¥). The last two equations are equivalent to the symmetry of the -
Ricci tensor (they also mean that the component VV2+ of the positive Weyl
tensor vanishes). m

Consequently, both D and D' are minimal foliations. The form 2 =
01 N 05 + 63 A B4 is the Kéhler form of the almost Kéahler structure J. The
form 2 = 01 Ay — 05 A0, gives the opposite almost Kihler structure J. Since
both D and D+ are foliations it follows that d(f3 A 64) =0 and consequently
d(‘VJP) A 603 A 68y=0. Since df = Z FE; f0; we have E1’VJ’2 = EQ’VJ‘Q =0.
Since D+ C kerd|V.J|? it follows that |V.J| is constant if and only if D C
ker d(|V.J|?), which means that |V.J| is constant on the leaves of the folia-
tion D. =

Proof of Lemma A. We have

(2.11) df NO3 N0y + fd(03 N 0s) = 0.
Write df = ) a;6;. Thus
(2.12) a101 ANO3 AN OBy + as0s NO3 N0y = —f(d93 Ay — 03 N d94)

From (2.12) we infer that the differential ideal generated by 03,6, is closed
and consequently the distribution D; is integrable. =

We say that an almost Hermitian manifold (M, g, J) satisfies the second
condition (G2) of A. Gray if its curvature tensor R satisfies
(GQ) R(X,Y,Z,W)—R(JX,JY,Z,W)

=R(UJX,Y,JZ W)+ R(JX,Y, Z, JW)

for all X,Y,Z, W € X(M). It is known that an almost Kéahler manifold
(M,g,J) satisfies (G2) if and only if its Ricci tensor is J-invariant, the -
Ricci tensor is symmetric and the component W?j' of the positive Weyl tensor
vanishes (i.e. Rpy = aidpy where Rpy = pra o R|LM and prps is the
orthogonal projection prar : A\ M — LM). It is well known that any almost
Kahler manifold satisfying (G3) also satisfies (G3). On the other hand, we
have the following as an application of our previous results. The implication
“if (G2) then |V.J| is constant” is proved in [A-D].

PROPOSITION 4. Let (M,g,J) be an almost Kdhler manifold with J-

invariant Ricci tensor and symmetric x-Ricci tensor. Then (M, g, J) satisfies
condition (G2) if and only if |VJ| is constant on M.
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Proof. From the assumptions we have W;‘ = 0. We shall show that the
condition W3Jr = 0 is equivalent to |V.J| being constant. We can assume that
|VJ| # 0 on M. From Proposition 3 it follows that both distributions D, D+
are minimal foliations. Let {E1, Ea, F3, E4} be a local orthonormal frame
such that (£2) holds. Then
(2.12) 9(Ve,JX,)Y)=ad(X,)Y), ¢g(VgJX,Y)=—-a¥(X,Y),

Ve, J=0, Vg J=0.
Consequently,
(2.13&) ( ( ) ) _V[E1,E3}Q - Ego@ - Ozp(Eg)W,
(2.13b)  g(R(E1, Ey).JX,Y) = =V (g, g, — Esa® — ap(E4)Y,
(2.13¢)  g(R(E2, E3).JX,Y) = =V g, g, + E3a¥ — ap(E3)9,
(2.13d) g(R( ). )= ~V(By,E) 2 — Esa¥ + ap(Ey)d

where the local 1-form p is defined by p(X) = 1g(Vx®,¥). Since R(LM)
C AT M it is clear that

(2.14a) g(R(Ey, E3).JX,Y) = g(R(Ey, E2).JX,Y),
(2.14b) g(R(Eg,,Eg).JX, Y) :g(R(E4,E1).JX, Y)

Consequently, from (2.13) and (2.14) we get

(2.15&) 'R(@, LD) 2g( (El,Eg) JEl,Eg)
(2.15b)  R(P,¥) = —29(R(E», E3).JE3, E3)
(215C) R(@, @) = —2g( (E4, Ez) JEg, EQ) —2(E40é - Oé@z([E4, E2]))

(215d) R(W, J’) = —2g(R<E1,E4).JE1,E3) - (—E4Q—@(91([E1,E4])).
Since D+ is a minimal foliation we have 61 ([E1, E3]) + 02([E2, F3]) = 0 and
01([Ev, E4]) — 02([E4, E2]) = 0. Thus from (2.15) we get R(P,¥) = 2E3«
and R(®,P) — R(¥,¥) = —4E4a. Since from Proposition 3 we have Eja =
E>a = 0 it follows that |V.J| is constant if and only if R(®,¥) = 0 and

R(P,P) = R(¥,¥). The last two equalities are equivalent to the vanishing
of the component W?f of the positive Weyl tensor W+. =

2(Esa + aby ([Eq, E3))),
2(E3a+ abs([Ea, E3))),

PROPOSITION 5. Let (M, g,J) be an almost Kéhler manifold with Her-
mitian Ricci tensor and symmetric x-Ricci tensor. Assume that |VJ| # 0
on M. Then the opposite almost Hermitian structure J determined by the
minimal foliations D, DL is almost Kihler. The distribution D+ is contained
in the nullity distribution of J.

Proof. The first part of the proposition is an immediate consequence of
Propositions 2 and 3. We show that Vx{2 = 0 for any X € D+. Choose a
local orthonormal frame {Ej,..., E4} such that (£2) holds. Note that (we
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write Vx0; = w!(X)0j, & =01 A O3+ 02 Ay, W =01 A0y — 02 A O3)

V(01 NbOy) = %{@(w% + wg) + W(w% + wé) + Qg(—w% + wg) + @(—wé + w%)}.
Analogously

V(03 A 60s) = ${D(w] + wd) + V(w3 + wy) — B(—wi + wd) — ¥(—w3 + wy)}.
Note that V2 = a @ @+ b @ V¥ and V2 = a' @ & + b @ ¥ where with
our assumptions a = afl; and b = —afy. On the other hand, a = w% + wg’,
b=wi+w] and

(2.16a) by = wi+ Wl —abh =wi +uws,

(2.16b) d =—wi4wd V=-wltwi

It is clear that D= is in the nullity distribution of .J if a'(F;) = a/(Fs) = 0.
Write F;’k = Wi(Ex). Then o' (Ey) = Iy, — Iy and o/ (Ey) = I', — I'fy. Note
that from (2.15a,b) we have

(2.17) I3 =r3=0

and since tr R+, = 7/4 we have R(®,P) + R(V,¥) = 7/2 = R(£2,2) =
(1 —7%)/2 = —20a2, so that from (2.15¢,d) we obtain

(2.18) Il =TIy =a/2.
From (2.16a) we have

We infer from (2.18), (2.19) that I} = I, = a/2 and Iy, = I, = 0.
Consequently, a’(E;) = a'(F) = 0 and D+ is contained in the nullity dis-
tribution of J. It follows that in the set M} = {z : [VJ| # 0} the nullity
distribution of .J is D+. From (2.7) we also get

(2.20) R(Es,Ey).J =0, R(E1,E).J=0.u

PROPOSITION 6. Let (M, g,J) be a four-dimensional almost Kdhler man-
ifold. Assume that (M, g, J) has Hermitian Ricci tensor with constant eigen-
values. Then either (M, g) is Einstein, or (M,g,J) admits an opposite al-
most Kdihler structure J such that (M, g,J) has Hermitian Ricci tensor. On
the other hand, a 4-manifold with constant scalar curvature which admits
two opposite almost Kdhler structures with Hermitian Ricci tensor is either
FEinstein or its Ricct tensor has two constant eigenvalues.

Proof. We can assume that (M, g) has Ricci tensor with exactly two
constant eigenvalues A, u since in the other case it is Einstein. Let {E1, Ea}
be an orthonormal local basis in Dy such that JE; = E5 and let {E3, F4} be
an orthonormal local basis in D), such that JE3 = Ey; let {01, 02,03,04} be
a dual coframe. Recall that every four-dimensional almost Kahler manifold
with Hermitian Ricci tensor has closed Ricci form a(X,Y) := o(JX,Y) (see
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Prop. 4, p. 165 of [D-1] and its proof). Since o = A\0; A O3 + pbs A 04 we
obtain

(2.21) )\d(@l VAN 92) + /Ld(eg A 94) = 0.

On the other hand, d(6; A62)+d(03A64) = 0. Thus we infer from (2.21) that
d(01 N\ 63) =0 =d(03 A 0y), i.e. the characteristic forms of the distributions
D), D, are both closed. The tensor g is clearly invariant with respect to the
almost Kahler structure given by the form 2 = 61 A s — 03 A Oy4.

Now assume that (M, g, J) is an almost Kahler manifold with Hermi-
tian Ricci tensor and constant scalar curvature which admits an opposite
almost Kihler structure J such that g is also J-invariant. Let U = {z € M :
0, has two eigenvalues}. Then U is an open set. Let A\, u € C*°(U) be eigen-
functions of ¢ in U. Choose a local orthonormal frame {E, Es, E3, E4}
just as above. It is clear that J and J are given in U respectively by
Q2 =0,N0+603 N0 and 2 = 6; Ay — 03 A 64. Thus both forms 6; A6y and
03 N 04 are closed. Since v = A01 A 03 + pbs A 04 we obtain

(2.24) AANOLNOs +du ANO3s ANy = 0.

Note that d\ = E?Zl a;0; and dy = Z?:l b;0; where a; = E;\ and b; = E;pu.
From (2.12) we infer that

(2.25) azf3 AN Oy N Oy + as0s NO1 NOs +b1601 ANO3 A Oy + baby A3 ABy = 0.

Thus agz = a4 = by = by = 0. It follows that VA € I'(D)) and Vi € I'(D,,).
Since VA+Vu = 0 it follows that A and p are constant in U. Hence U = M. u

COROLLARY. Assume that (M, g, J) is a Kihler 4-manifold whose Ricci
tensor o has two constant eigenvalues. Then (M, g,J) admits an opposite
almost Kdhler structure J, and o is J-invariant. The structure J is Kahler
if and only if (M,g) is locally a product of two Riemannian surfaces of
constant curvatures.
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