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THE EULER FUNCTION AND THE SUM OF DIVISORS FUNCTION

BY
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Abstract. Let H(n) = o(¢(n))/é(c(n)), where ¢(n) is Euler’s function and o(n)
stands for the sum of the positive divisors of n. We obtain the maximal and minimal
orders of H(n) as well as its average order, and we also prove two density theorems. In
particular, we answer a question raised by Golomb.

1. Introduction. Let ¢ be Euler’s function and let ¢ be the sum of
divisors function. The composition of the functions ¢ and ¢ has been the
object of several studies; see for instance Makowski and Schinzel [9], Pomer-
ance [11], Sandor [12], Ford [2], Luca and Pomerance [8]. In 1993, Golomb [3]
investigated the difference o(¢(n)) — ¢(o(n)) showing that it is both positive
and negative infinitely often, and asked what is the proportion of each.

In this paper, we answer this question of Golomb and more, by studying
the behavior of the quotient

o(¢(n))

¢(o(n))

In particular, we obtain the maximal and minimal orders of H(n), its average
order, and we also prove two density theorems.

H(n):=

Given any positive real number z we write log « for the maximum between
the natural logarithm of x and 1. If %k is a positive integer, we write log; x
for the kth iteration of the function log xz. Throughout this paper, p, ¢ and
r stand for prime numbers, while « stands for Euler’s constant. We also use
m(x) for the number of primes up to x and w(n) for the number of distinct
prime factors of n.
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2. Main results
THROREM 1. The mazimal order of H(n) is €*¥log3 n, that is,

H
lim sup (2n ) =,
n—oo logymn

THEOREM 2. There exists a positive constant & such that the minimal
order of H(n) is §/logyn, that is,
lim inf H(n)logy n = 4.
n—oo

Moreover § € [(1/40)e™7,2e77].

THEOREM 3. As z — oo,

1
— Z H(n) = co e log3 z + O(logg/2 x),
T

n<x
where
1 9(n)
= 1 — _—
co zggo xT Z o n)
n<x

3 1 (p—1P3X 1 >
=TI(1- - + : ~ 0.4578.
. < pp+1)  pp+1) p? ;pl—l

THEOREM 4. For each number u, 0 < u < 1, the asymptotic density of
the set of numbers n with
H(n) > ue*'login
exists, and this density function is strictly decreasing, varies continuously

with u, and is 0 when u = 1.

In particular, Theorem 4 shows that o(¢(n)) — ¢(c(n)) is positive for
most n, thus providing an answer to Golomb’s question.

THEOREM 5. The set {H (1), H(2),H(3),...} is dense in [0, 00).

3. Preliminary results

THEOREM A (Heath-Brown [6]). Let k and a be coprime positive in-
tegers. Then there exists a prime number p = a (modk) which satisfies

p= O(k’ll/Q).

REMARK. It has been shown by Alford, Granville and Pomerance [1]
that for most values of k, one can replace the constant 11/2 by 12/5 + ¢ for
any fixed € > 0. It can also be shown that if GRH holds, then the constant
11/2 can be replaced by 2 + ¢ for any fixed € > 0.
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THEOREM B (Pomerance [11]). There ezists a constant k > 0 such that,
for all positive integers n,
a(p(n))

n

REMARK. This statement relates to a long standing conjecture of Mako-
wski and Schinzel [9], which asserts that o(¢(n))/n > 1/2. Recently, Ford
[2] has shown that x > 1/39.4. Note also that the conjectured minimum 1/2
is attained when n is twice the product of the first Fermat primes, such as
n =2, 6, 30, 510, 131070 and 8589934590.

LEMMA 1 (Mertens’ theorem [11]). The estimate

(- 3) = o (o)

p<w

> K.

holds for large values of .

LEMMA 2. lim infM =e .
n—oo n
Proof. This result, which follows essentially from Mertens’ theorem, was
first obtained by Landau [7].

LEMMA 3. limsup o(n) =e".
n—oo nlog2n

Proof. This result also follows from Mertens’ theorem and was first ob-
tained by Gronwall [4].

LEMMA 4. There exists a positive constant ¢y such that for large real
numbers x, both ¢(n) and o(n) are divisible by all prime powers p* <
c1logy x/logs x for all positive integers n < x with O(x/log3 x) exceptions.

Proof. The above result for the case of the function ¢(n) is Lemma 2
in [8]. To prove the result for the function o(n), let m be an arbitrary positive

integer and write
1
S(xz,m) = -.
082 TXGST
m|(g+1)
From the Siegel-Walfisz theorem (see Theorem 5, Chapter I1.8 in Tenenbaum
[13]) and partial summation, it follows that there exist positive numbers ¢;
and zg such that the inequality

c1logy x
S(z,m) > ——==—
) = )
holds for z > xg and all m < logz. Let g(x) = ¢1 logy x/logs x. Using Brun’s
sieve, it follows that the set N, of numbers n < z which have no prime
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factor ¢ > logy x congruent to —1 modulo m satisfies

W <or [ (1—%)mxexp<—s<x,m>>,

log, x<g<log x
m|(g+1)

for some positive constant co. Assuming now that xg is chosen large enough
so that logz > g(z) for all x > zp, we see that if m = p® < g(x), then
(&Y Ccox Cox
Npe < < = .
S (S ) < expllogza)  logy
Summing up the above inequalities over all the O(g(z)/log g(x)) prime pow-
ers p® < g(x), we get
xg(x x
Z H N g9(z) < —.
log2 rlogg(z)  logiw
p*<g(z)
Finally, let M be the set of all positive integers n < x such that n is divisible
by the square of a prime ¢ > logy . Then

€T xT T
HM< Y S < <

2 b
Sl q log, z logs logs
where we used the fact that
1 1
(1) E - < )
syl J zlog z

Note now that if n < z is such that p® does not divide o(n) for some
p® < g(z), then either n is in M or n is in

U M,
pr<g(x)

and by the above estimates both these sets are of cardinality O(z/log3 x),
thereby completing the proof of Lemma 4.

LEMMA 5. Let x be a positive real number. Set

hg(n) = Z 1 and hy(n) = Z 1

pletm) P plo(n)
p>logy x p>logy x
Then
2 he( — d he(
(2) > hg(n ) < i > ) < 10g3x
n<x n<z

Proof. Clearly we have

T a:lo T zlog, T
Sasls Y Tl tinr sl

n<x q<lzx
plo(n) pl(a— 1)



EULER FUNCTION AND SUM OF DIVISORS FUNCTION 35

It now follows that

Zh¢(n)zz Z 1 < zlogyz Z 37’

n<zx p<x n<x p>log, (E
plé(n)
where we used (1) with z := log, x, thus establishing the first assertion in (2).
We use a similar argument to establish the second assertion in (2). First of
all, note that since w(n) < logx for all n < z provided z is large enough, it
follows that

1
he(n) < Z — < logz z,
i<logx v

where we used p; to denote the ith prime number. Let A7 be the set of
all positive integers n < x such that there exists a prime ¢ > log%x whose
square divides n. Then, by (1),

x
#N1 < =S L
q>§g2x ¢*> " logdzlog, x

3

Hence,

x
(3) Z ho(n) < #Niloggr < ————.
e logs xlog,
Now let A5 be the set of those n < z which are not in N7 and which are
divisible by a prime power ¢%, with a = |c3log, x| + 2, where c3 := 2/log 2.
For a fixed prime number ¢, the number of such numbers n is < z/¢%, and
therefore

which implies that

(4) Z he(n) < #Nzlogsr < ———
neNs o g?’x

Finally, let N3 be the set of positive integers n < z which do not belong to
either A7 or Na. If n € N3 and ¢% || n with a; > 1, then ¢ < logj = and
oy < log, , so that ¢® < exp(O(log3 x)). Hence o(¢%) < exp(O(log3 z)).
In particular, for large x, we have o(¢®) < log, x. Hence, if n € N3 and
p > logy x is a prime dividing o(n), then there exists a prime factor ¢ || n
of n such that p| (g + 1). Now the same argument used for the function h,
tells us that if p > log, x is a fixed prime, then

dooi< > —< xlogzx

plo(n) q<z
neEN3 pl(g+1)
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Therefore
zlog, x T
(6) D hem)< > - Z t< Y S <y
neN3 p>logy p\a(n) p>log, © 083
2 2

neNs

The second estimate (2) then follows from estimates (3)—(5), and the proof
of Lemma 5 is complete.

LEMMA 6. As z — oo,
n<x

where cg is the constant appearing in the statement of Theorem 3.

-

n

= cox + O(x3/4),
a(n)

/\

Proof. Given any number s with R(s) > 1 and letting ((s) stand for the
Riemann zeta function, we have

= 9(n)/o(n) s Qe O

_ p+ p°+pt+ p°+p“+p+
ZT—H<1+p—S+ 2 T +>
n=1 p

1 p—1 I;(pfl) 3p2(12)*1)
+1 P+l +pZtp+1
:C(S>|[<1—];>H(1+’;—s+p Pl P +>
p

2s 3s
» p p

p=1_ 1 172(10—1) _p-1 31?2(120—1) _ 102(1?—1)
_ C(S)H(l + p+1 + p°+p+1 p+1 + p°+p+p+1 p?+p+1 + >

S 25 35
» p p p
= ((s)R(s),
say. Expanding the product R(s) into a Dirichlet series, say
= a
n
R(S) = Z E?
n=1

we find that it converges absolutely in the half-plane R(s) > 3/4. Setting
= ¢(n)/o(n), we have b, =}, a4, and therefore

SRS D IIES WK EEIOF RO 9)

n<x n<z d|n n<lz d<z d<z
_ R(l)x—i—O(avZ |Cij|) +o(y |ady).
d>x d<z

Since

a
> laal = 37 el it — o3/

d<z d<z
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e aal  ~ Jadl 1 Jaal
ad ad s /4 ad (z~ /4
Z d Z d3/4 d1/4 - Z d3/4 )’
d>z d>z

it follows that
> 20— R)e + 0,

n<z
which completes the proof of Lemma 6, since R(1) = cy.

LEMMA 7. There exists a constant cq such that the set of positive integers
n < x with w(d(n)) > cqlogs = contains at most O(x/logsx) elements. The
same holds when the ¢ function is replaced by the o function.

Proof. First let D; be the set of all n < z such that k = w(n) > 3elog, .
A well-known result of Hardy and Ramanujan (see [5]) asserts that
x 1 1

#{n <x: w(n) = k’} < @ . m : (103;233 + O(l))k_ )

an inequality which together with Stirling’s formula implies that

x elogyz + O(1)\** < 1
log = k-1 logx 2k-1

since k —1 > 3eloglogx — 1 and «x is assumed to be large. Thus,

T 1
#D1 = #{n <x:w(n)>3elogy ) < log = gﬁ

#{n<z:wh) =k} <

log x logg T

Assume now that Ds is the set of all n < x which are divisible by the square
of a prime p > logZ . Then

#Dy < Z

lo z
p>log3 ac 82

Let D3 be the set of those n < x which are divisible by a prime number p
such that w(p — 1) > b:= |e?logy x|. Then

s 2 peanp(s ) cop ()

p<z E>b T MNge<z k>b
w(p—1)=b
1 x x
Lz — L =<K — e
k b 2
; 2 2 logz  logsx

where we used the facts that ¢ > 2 and 2¢° > e. Let D4 be the set of those
n < x which are divisible by a prime number p such that w(p + 1) > b. The
same argument as above shows that

#Dy € ——
logg x
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Let D5 be the set of those n < x which do not belong to D1 U Dy U D3 U Dy
and such that there exists a prime power p® | n, where a = |c3logs x|, where
c3 = 2/log 2. By an argument similar to the one used in the proof of Lemma 5,

we get
o

dt
#D5<x2—<<—+x§—<< < —5—.
p>2 ta 20 10g2 €T
Put D =DyUDyUD3UD4UDs. Assume that n € D. Writing m for the
largest square-full divisor of n, we note that

om)<m<om <m’<( [[ »

p<logz

c3logg x
) T exp(2c3 logs x logy x) =: T(x)

for large x by the prime number theorem. Hence,

max{w($(m)), w(o(m))} < ~EL)

—=~ Y < log2x.
log, T'(x) Slogz T

Since clearly
max{w(p(n/m)),w(c(n/m))} < 3eblogy x < 3e®logs .,
it follows that
max{w(¢(n)),w(o(n))} < logiz,
where we also used the obvious fact that m and n/m are coprime. Let ¢4 be

the constant implied in the last Vinogradov symbol above. Noticing that D
contains O(z/(log, )?) elements, the conclusion of Lemma 7 follows.

4. The maximal order of H(n). We will show that for n sufficiently
large,
(6) H(n) < (1+0(1))e* logsn.
Then clearly the proof of Theorem 1 will follow if we can also show the
following result.

CrLAIM. There exists an infinite sequence of integers n for which H(n) is
bounded below by (1 + o(1)) €*¥ log3 n.

To prove (6), first observe that it follows from Lemma 2 that

(7) a(p(n)) < (14 o(1))e?d(n)logy d(n) < (14 o(1))e” nlogyn.
On the other hand, it follows from Lemma 1 that

b(n) > (1+ (1)) <"

logyn’

so that
® oot = (1 ol) £ > (1 o)

Combining (7) and (8), we obtain (6).

logon’
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Hence, in order to complete the proof of Theorem 1, it remains to prove
our Claim. So let = be a large integer, and let P and ) be the smallest
primes such that

P=1(modM(z)) and Q= -1 (mod M (z)),
where M (z) = LCM[L,2,...,z], and set
n=PQ.
From the prime number theorem, it is clear that
M(z) = e(Ho)e o G20
say. Hence, from Theorem A, it follows that
11z

P el  Q«we' sothat n=PQ < e**.

Thus, n < e?3* for large z. For this particular integer n, we have, since

¢(n) = (P -1)(Q - 1),

a(¢(n) _ <1+l+i+...+i>
$(n) pap||(Pg>(Q—1> Py "

11 1
> 1+—+—+~-+—>
H ( p P

p
por ]| (P-1) b
1
> I] (1+ + = +- +ZE>
p/@p<m

where each exponent (3, is the unique positive integer satisfying PP < z
< pP*1. Therefore,

o ST ) T+ 0(5) )

p<z pﬁpgx
However,
1 1 m(x)
IL (10 =eofo( X 7)) =erlo (%)}
pr <z pr<z

1
:1+O< >
log x

Using this in (9), we deduce that, by Lemma 1,

(10) JE;b(g;)) (T4 o H p (I14+o0(1))e” log .

p<x
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On the other hand, o(n) = (P + 1)(Q + 1), so that

p(a(n)) 1 1
(1) 220 1--) < 1— -
o(n) p<P+11_>I<Q+1>< b ) p|<1111>< P )

(DI e

p<z

where we used Lemma 1.
Gathering (10) and (11), we get
o(n) 2 2
12 Hn) - —= > (14 0(1))e*" log” .
(12) (n) () (1+0(1))
Since by our choice of n, we have exp{(1 + o(1))z} < n < exp{23zx}, it
follows that (1 + o(1))z < logn < 23z and therefore logy n = logz + O(1),
which means that (12) can be replaced by
o(n) 2 2
13 H(n) - ——= > (1+0(1))e*" logs n.
(13) (n) ) (1+0(1)) >

Observing now that, for large = (that is, large P and @),

on) _ (P+D@+1)
— = ]_ + o] ]. 5
o~ P W
we conclude that our Claim follows immediately from (13), since then by

varying x one obtains infinitely many such integers n. The proof of Theorem 1
is thus complete.

5. The minimal order of H(n). It follows from Theorem B and Lem-
ma 3 that, for n sufficiently large,

a(¢(n)) n_ o (A+ol)e™

> d
voan o(n) — log, n

Combining these with the trivial inequality o(n)/¢(o(n)) > 1, we immedi-
ately get
o(n) n
o) o)
To complete the proof of Theorem 2, we shall use an argument developed
by Makowski and Schinzel in [9].
Let = be large and let N(z) = Hp<z p. Moreover let g be the smallest
prime number exceeding xlog z, and choose n = N(x)?"!, so that

¢(n) = N(2)"*¢(N(x)) = [ ] p™,

p<z

(14) H(n)logyn = U(¢7§n)) . -logyn > e k.
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where o, = ¢ — 2+, and ~, > 0 is such that p? || ¢(N(z)). We then have

ap+1
~Ieom =175
p<z p<x
e (6(n) "o
o(op(n pirTh —
15 - — (14 0(1))e"1
(15) o~ L mgmy = @+ oetloga
by Lemma 1.

On the other hand, again by Lemma 1,

60 (1) g oy
(16) — _p]:[x<1 p) = (1+0(1)) Toss:
Combining (15) and (16), we obtain
- o(on)) _ ololn) 0w _ |

We now examine the expression

(18) 115

p<m

Fix a prime p < x and set

where, for each ¢ = 1,...,t, 7; = r;(p) is a prime and 3; = B;(p) a positive
integer. We then have p? = 1 (modr;) for each positive integer i < ¢, and
by Fermat’s Little Theorem it follows easily that 7; = 1 (modq) (for if not,
then from p? =1 (modr;) it would follow that p = 1 (modr;), which would
lead to the conclusion that (p? —1)/(p — 1) and p — 1 have a common factor
ri > 1, which is impossible because (p? — 1)/(p — 1) is congruent modulo
p — 1 to the prime ¢ > p — 1). Hence

-1
R N > ¢,
p—1
which, since ¢ > xlogx, implies that
log
(19) < 18
log q

From this it follows that
o(E) o 1
(20) W:H(l——)>exp{ 227’1}
p—1 =1 =1

where we used the fact that 1 — 2z > 2% for all z in (0,1/4). Since it
follows from (19) that there are at most ¢ such primes r; in the arithmetic
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progression 1 mod q, we have

It follows that

1> Mz H1 (1—%) zexp{—4@}zl+o(l),

oy = 11
7| ]
for some p<x

since we have chosen ¢ > zlogx and since m(z) < z/logz. We have thus
established that

dolm) |
() =1+o0(1).
It now follows from Lemma 1 that
¢lo(n)) _ ¢la(n)) a(n) _ o 1 1
(21) n  on) w4t (1))p< (1 Tt pql)
= (1+o(1))H{<1+p%1 <1+o ]% )}

p<x

)
= (1 +0(1))¢” (log ) exp (O< ;i
(

= (14 o(1))e?(log z) exp (O
Combining (17) and (21), we get
oon) _n_ e

n ¢(a(n)

It remains to estimate the size of n. Recall that, by our choice of n and g,
we have

n=(TIr)"" = expl(1+o(1))ag} = exp{(1 +o(1))a oz},

p<zx

(22) H(n) =

so that (1 + o(1))z?logz = logn, from which we easily obtain

— (14 0(1)) 2logn

logyn’
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which yields
1
logz = 5 (14 0(1))logy n.

Substituting this in (22), we obtain

H(n) = (1+0(1))%7

from which we may conclude that there exist infinitely many integers n such
that

H(n)logan = (14 o0(1))2e™".

The proof of Theorem 2 is completed by combining this last result with (14)
and taking into account the remark following the statement of Theorem B
concerning the improved lower bound for k.

6. The mean value of H(n). We use the method developed in [8]. Let
My(x) be the least common multiple of all prime powers p* < g(x), where
g(x) = c1logy x/logs x and c¢; is the constant of Lemma 4. Moreover, let
A=A(zx) ={n:x <n <z and My(n)|ged(¢(n),o(n))}. Then

(23) %@26“0&1:(14—0( ! )) (n € A).

(n logs

(This follows from inequality (37) in [8].) Using the same method and then
applying Lemma 1, we get

2 “ot) o) (1)

o) = M) AU

< (140t (n e A)
~ logg logs © " '

Combining (23) and (24) yields

(25) H(n) > A1) 08T <1+O( : ))

o(n) e~V /logs x logs

= o st (1))

for n € A. It follows that

(26) > H(n)> Y H(n)>e*"logia (1 +O<10;3$>> > %

n<x n<x n<x

neA neA

~—
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Now using Lemma 4 to estimate the size of [1,z]\ A and using the fact that
¢(n) < o(n) for all n, we get, by Lemma 6,

Z¢ Z¢ —#A)=§<:%+O( z )

logz z
nGA
x
=cox+ O .
’ (10&% w)
Combining this with (26) yields
(27) Z H(n) > co e zlogs x + O(xlogy x).
n<zx

It remains to obtain the corresponding upper bound for )" _ H(n). To
do so, we first observe that we only need to consider those integers n €
[z, z], since it follows from Theorem 1 that

(28) S H(n) = O(Valog o).
n<ya

Consider now the set

B=B(x)= {n:\/E<n§:U, hg(n) < \/lolgﬁ’ he(n) < \/lolg?}’

and given a positive integer n € B, write ¢(n) = ny - ng, where

ny = H p and N9 = H p

PP |lp(n) pP||p(n)
p<log, x p>logy x

so that, by Lemma 1,

(29) %zﬂ(H%Jp-'ﬂ%)-H<1+%+-~+i>

per
P\nl P\"2

< (e"loggz + O(1)) - exp(O(hg(n)))

1
= (e"loggz + O(1)) - expq O 4pt
oy + 01) - {0 ) Hap
=e"loggz + O(y/logzx) (n € B).
On the other hand, given n € B and writing o(n) = my - ma, where

my = H p*? and mgy = H p?

p°P|lo(n) pP|lo(n)
p<log, = p>logy @
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we get, by a similar argument,

(30) ‘75570( Eg)) _ qﬁs;nl) _ ¢§ZL2)

i (0 0(n)) (o)

_ 15;33 <1 + O(@)) (n € B).

Gathering (29) and (30), we obtain

(31) H(n) < %ehlog%a}<l+0<

from which it follows that

orz)) <O

(32) %:; H(n) < e log2 o (1+0(\/101g?>> %g f(_:g

3/2

< gz logh o + O(xlogy ~ x).

It remains to consider the contribution of those integers n € [\/z, 2| which
do not belong to the set 5. The set of these numbers is contained in Cy UCy,
where, given f € {¢,0}, we write C; for the set of those numbers n € [\/z, z]
such that hy(n) > 1/4/logz x. Lemma 5 shows that

> Z hf #Cf

lOg nEC’f \% 10g3 $
so that
(33) #Cp < x/+/loggx  for f=¢and f =o0.

We now call upon Lemma 7. Let D be the exceptional set mentioned in
that lemma. Since by Theorem 1, H(n) < log3n, it follows that

(34) > H(n)=
neD

We now let € be the set of those n < x which are not in D. Thus, by Lemma 7,
if n € &, then w(p(n)) and w(o(n)) are both O(log3 ). In particular, for
large x, we have

1
max{hy(n), hy(n)} < Y -<L
log, :L’<p<log% T

Hence, writing ¢(n) = nj - ng and o(m) = my - mg as previously, we find
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that for n € &,

UEZEES)): 11 <1+1+"'+%> 11 <1+1+...+L>

e Qp
ap”nl p p papan b b

< H (1 + —> exp(O(hg(n)) < logg

p<logy
and
) )
> p<££2x<1 — %) exp(—he(n)) > logs z,

from which we may conclude that H(n) < logix for all n € €. Finally,
recall that by (33), the set of those n € C, UC, is of cardinality at most

O(z/+/logs x), and therefore that
Z H(n) < Inag({H(n)} “H(CyUC,) K :Elogg/ x,
ne

nE(CyUCs)NE
which together with (28), (32) and (34) shows that
(35) Z H(n) < e*corlogiz + O(x logg/2 x).
n<x

Combining (27) and (35) completes the proof of Theorem 3.

7. The first density theorem for H(n). Here, we follow essentially
an argument used in [8]. In view of (25) and (31), both inequalities
P(n)
H > (1 1)) —=
(n) > (1-+0(1) 25
(n)
o(n)
hold on a set of density 1. Therefore, on a set of density 1,

H(n) = (1+0(1))e*"login %.

e*log3 n,

H(n) < (1+o0(1)) e*7login

Since ¢(n)/o(n) has a continuous distribution function (see Exercises 2
and 3 of Chapter III.2 in Tenenbaum [13]), the proof of Theorem 4 is com-
plete.

8. The second density theorem for H(n). Fix § € (0,00) and let =
be a very large positive real number. We shall now construct a finite set R
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of primes larger than 2% with

1 751 751
H(H—) c <w_17w+1>_
R T 2 2

To construct R, let r; < r9 < --- be all the primes > 2%° and let k be the
largest positive integer such that

k
.
H(l N i) < e 510gx‘
X T 2
=1
Observe that by the maximality of £ and the fact that

.2 €ldlogx
The1 > T1 > 27 > —

for all z sufficiently large, we get
ﬁ(l N i) c <e”510g:13’ e’dlogx n 1>.
palie} T 2 2

Hence, we can take R = {r; : i =1,...,k+ 1}. Note that since

k+1
H (1 + f) = exp(logy 741 — logy 71 + 0(1)) > exp(logy 7x+1 — 3log z),
i=1 ¢

it follows that ri.1 < e for large x, for if not, then r; > er4/2, in which

case
k

1
H <1 + r_> > exp(logy i, —logy r1+0(1)) > exp(logz) = = >
i=1 ’
which contradicts the definition of k.
We now let y be a parameter that depends on x with z :=logy y > ri41.

eV logx

1
2 +h

This inequality is fulfilled if we choose log,y > 6x4, which in turn holds if
logsy > x* Then let P be the set of all primes p < y such that p = 13
(mod72), p=1+r; (modr?) foralli = 1,...,k + 1, and both p — 1 and
p + 1 are coprime to all primes r < z which are > 5 and do not belong
to R. Observe that the above conditions certainly put p in an arithmetic
progression a (modb), where

k+1

b=T72]] 7,
i=1
and a = 13 (mod72) and a =1+ 7; (modr?) fori=1,...,k+ 1.

Now let
T:= H 7,

5<r<z
ré€R
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and, for each d|T, let
A(d) := {aq (modbd) : d|a? — 1 and ay = a (modb)},
so that #.A(d) = 2@(4).
By the principle of inclusion and exclusion, the cardinality of the set P
of primes is none other than

> ud) D w(y;aq,bd),
AT aq€A(d)

where, as usual, 7(y; s, t) stands for the number of primes p < y satisfying
p = s (modt). Observing that bT < [, 7% < e20+o(1)z < 32 < y1/3 we
get, by the Bombieri—Vinogradov theorem,

P L () ol

5<r<z
réR
Since
2™() = exp(O(log, y/logz y)) = (logy)*,
while
6(b) < []r?* < exp(3logy y) = log*y,
r<z
and since
(- =) > end-5 21 s exp{—2l0glog s} = —
1 P r—1 b 8108 _log2z
r<z r<z
1
> )
~ logy

it follows that

m(y) ( 2 > < y ) m(y) y
Pp=_—2 1- +0 > > .
o(b) 591_[9 r—1 log’y/) = log'y = log®y
réR

Finally, let P’ be the subset of those primes p € P such that neither w(p—1)
nor w(p + 1) is larger than e?log, y. From the estimates due to Hardy and
Ramanujan (see |[5] and the proof of Lemma 7), we know that

Yy 1
#{n<y:wn)>elogyy} < oo s Z =1 (logy y + O(1))*
k>e?logy y )
<5 LS <w>k
o8y k>e?logy y

Yy r Y
Slogy 27y O<log5y>’



EULER FUNCTION AND SUM OF DIVISORS FUNCTION 49

because e?log2 + 1 > 5. Thus,

Y
log” y
In particular, P’ is non-empty for large y. Select P in P’ and let n = N(z)P,
where N(z) = [[,.,p. Then ¢(n) = 12¢(N(z)) - (P — 1)/12, o(n) =
20(N(x))-(P+1)/2,and (P—1)/12 is coprime to 4¢(N(x)), while (P+1)/2
is coprime to 20(N(x)). The arguments from the proof of Theorem 2 now
immediately show that

a(¢(n)) _ o(12N(z)) o((P —1)/12)

H#P' >

6(n) 12N(z) (P -1)/12

(1 0( ) (1Y) T (1t )

1 e'dlogx 1
pu— ’y - —_— . p—
e 10g2m<1+0<10gm>) 5 exp(O( (PEI) r))

r>z

Noting that P — 1 has no more than e? log, y prime factors, it follows easily
that

. 1 logsy +21o
Yoie R em(tmprim)
" r logz y
r|(P-1) log, y<r<log, ylog3 y
r>z
1o log x 1
< g4 Y g <

logs y x4 logx

agzz(nT;)) _ “3;_5 log? x(l + O(lo;l“))

By similar arguments, we get

W) S i (e ols)

r<z

This means that

It follows that
2l
(36) o(¢(n)) = Qlogw(l%—O( L ))
n 2 log x

As we obtained (17) in the proof of Theorem 2, we also get, handling the
case of P+ 1 as we did for P — 1,
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47 ¢lo(n)) _1¢(c(N(z))) o((P+1)/2)

(37) o(n) 2 o(N@) (P+1)/2
5(volig)) I (-7)
-5(+ (i)

Finally,

(38) 051”) = JSVN(S;)) : P; L 671oga;(1 +O<10;x>)'

Gathering (37) and (38) yields

(39)

- 100( )

Combining (36) and (39), we obtain

e’dlogx 2 1 1
w0 = =32 g (- ols)) - (ol

Since z is arbitrary, we see that J is a cluster point of { H(n)},>1, as claimed.
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