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INDUCED MODULES OF STRONGLY GROUP-GRADED ALGEBRAS

BY

TH. THEOHARI-APOSTOLIDI and H. VAVATSOULAS (Thessaloniki)

Abstract. Various results on the induced representations of group rings are extended
to modules over strongly group-graded rings. In particular, a proof of the graded version
of Mackey’s theorem is given.

1. Introduction. Let G be a group and A = EBgeG Ay a strongly G-
graded ring that is an algebra over an artinian commutative ring R. For a
subgroup H of G we consider the ring

AH = @Ahv

heH
which is a strongly H-graded R-algebra. Let V be a left Ag-module and W
a left A-module.

In the first section of this paper we examine the properties of the injec-
tive hulls, projective covers and the functor Hom under the induction and
restriction functors.

In the second section we give the graded version of Mackey’s theorem.
A proof of this theorem was given by Boisen in [3] but the functions defined
there do not have the required properties.

The reader is referred to [1], [4] and [6] for basic facts and notation of
group representation theory, to [2] for background on modules over artinian
algebras, and to [7]—-[10] for graded rings theory.

2. Induction and restriction functors. Let G be a group and H a
subgroup of G of finite index. Let R be a commutative artinian ring and

A=EP4,
geG

a strongly G-graded R-algebra, that is, AjA, = Agy, for all g,h € G. More-
over, since AgA,-1 = Ay for all g in G, where 1 is the unity of G, there exist

elements aéi) € Ay, 5521 € Ay-1 and a positive integer n, depending on g
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such that
TLg )

(2.1) S aln?, =1,
i=1

Consider the strongly H-graded R-algebra Ag = @y Ap. If V is a left
Ag-module and W a left A-module we denote by V& = A®,4,, V the induced
A-module and by Wy the restriction of W viewed as a left Ag-module. We
denote by T" a left transversal of H in G. It is clear that

VE=P A ®a, V.
teT
Moreover we set V9 = A, @4, V for g € G. Note that V9 is a left
gHg—1-module.
Finally, for a ring S we denote by mod S the category of finitely generated

left S-modules. We recall that a left A-module W is H-projective if the exact
sequence of left A-modules

0—-X—-=Y—-W-—=0

A

for which the associated sequence of Ag-modules
0—-Xg—->Yy—-Wg—0

splits, is also a splitting sequence of A-modules. Equivalently, W is H-
projective if and only if W | (Wg) ([5]), where the notation X | Y means
that the module X is isomorphic to a direct summand of the module Y.
For a module V, we denote by I(V) and P(V) the injective hull and
projective cover of V', respectively.
Using the above notation we prove the following result, which is known
for group rings.

LEMMA 2.1. Let V be a left Ag-module, W a left A-module and o € G.
Then the following hold:

(i) I(VE) (resp. P(VY)) is isomorphic to a direct summand of [I(V)]¢
(resp. [P(V)]9).

(ii) I(Wg) (resp. P(Wpg)) is isomorphic to a direct summand of
LW)]u (resp. [P(W)]n).

(iii) If H <G, then [(V?) (resp. P(V?)) is isomorphic to a direct sum-
mand of [I(V)]? (resp. [P(V)]?).

(iv) If W is H-projective, then I(W) is isomorphic to a direct summand
of 1(Win)]E.

(v) P(W) is isomorphic to a direct summand of [P(Wg)] and P(W)
is isomorphic to a direct summand of {[P(W)]g}©.

Proof. We prove (iii). The proofs of the remaining statements are anal-
ogous to those in the group ring case (see [6, Ch. 1, Prop. 12.5]).
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Let H be a normal subgroup of G. Since the sequence

0—vLiw
is exact, so is .
0 V7 S IV,

where f? is the restriction of 1 ® f to V7, ie. f7(A\s ® v) = Ay @ f(v) for
As € Ay and v € V. Moreover, by [8, Section 3, Prop. 2], the module [I(V)]”
is also injective. Therefore for the first part of (iii) it remains to prove that
f7 is essential, that is, if X’ is any nonzero Ag-submodule of [I(V)]?, then
f7(Vo)yn X" # {0}. For this, let X be the Ag-submodule of I(V') generated
by the elements Ay, -1y, where Ag,-1 € Ag,-1 and

v 1%
Y= Z Af,k)x(k), with Z )\((,k) ®z® e X' veN.
k=1
Since f is essential, it follows from the relation f(V) N X # {0} that there
exists a nonzero element x € X such that x = f(v) for some nonzero v € V.
Since v # 0, there exists p € {1,...,n,} such that b @ v # 0, because
otherwise » 17 a @ %) v = 0, where a(zl, bY) are as in (2.1), and so
v = 0. Write

o,Vj

= Y A9 AW

Jj=1k=1

for some p € N, where )\() 1 € Apg-1 and 3,7, AP 06 e X7 for
je{l,...,0}. Then

o,
0 f70W @) = b @ f(v) Z b ARG @ ¢ (*k)©G)
j=1,k=1
and we get
1708 ®v) € X'N f7(V7) # {0},
This proves that f7 is essential and therefore I(V7) = [I(V)]°.
The second part of (iii) is proved analogously. m

THEOREM 2.2. Let H be a normal subgroup of G. Assume that the
Krull-Schmidt-Azumaya theorem holds in mod A. Then the following hold
for a left Ag-module Vand a left A-module W:

(1) I(VE) = [I(V)]9 and P(VY) = [P(V)]C as left A-modules.
) 10V 2 LV and PVE)) 2 (POt 0 et Ao
(iii) If W is H-projective then

I(Wg) =[IW)lg  and P(Wg) = [P(W)]u

as left Ag-modules.
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Proof. We will prove the injective hull case. The projective cover case is
analogous.

(i), (ii). It follows from Lemma 2.1(i),(ii), that there exist Z and Y in
mod A such that

(2.2) (Ve z=[1(V)),
(2.3) NVOYrl @Y = [I(VE)y.
Moreover, by Lemma 2.1(iii),
@4) V)= @uv) = @1 = (@) = 1[(v)sl
teT teT teT
Now, using (2.2) and (2.3), the relation (2.4) becomes
I(V)m © Zr = 1[(V)n)
and so
I[(V)rl @Y ® Zu 2 I[(VE)n).
By applying the Krull-Schmidt—Azumaya theorem to the above relation, it
follows that Y = Zy = 0, and parts (i) and (ii) of the theorem follow from
(2.2) and (2.3).
(iii) If W is H-projective, then there exists a A-module X such that
WX = (Wy)d.
Then, by (ii),
(2.5)  UW)lu ® [[(X)]u
= [I(W) & I(X)]y = IW & X))l = I(Wr)n = I((Wi)]n)
=I[(We X)y| =I(Wh ® Xu) = I(Wh) & (Xn).
Now, from Lemma 2.1(ii), there exist U and M in mod A such that
UW)]g =I(Wh)eU, [I(X)|lg=1(Xn) oM.
Combining the above relations with (2.5) and using the Krull-Schmidt—
Azumaya theorem, we deduce that U = M = 0, and (iii) follows. m

THEOREM 2.3. Let W be a left A-module and H a subgroup of G of
finite index. Then there exists an isomorphism

© : Hom, (W, A) — Homa, (Wx, An)

of right Ap-modules. This isomorphism is natural. In particular, if W is a
A-A-bimodule, then © is a A-Ag-bimodule isomorphism.

Proof. As W is a left A-module, Hom 4 (W, A) becomes a right A-module
under the rule (f - A\)(w) = f(w)\ for f € Homu(W,A), A € A and
w € W. Similarly Hom,, (Wg, Ap) becomes a right Ap-module. Let f €
Hom (W, A) and w € W. Then f(w) = > ,cp f(w)em for f(w) € Ay. We
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define

O : Hom, (W, A) — Homa, (Wg,Ag) by O(f)(w)= f(w)u.
It is easy to see that © is a right Agz-homomorphism. To prove that © is
onto, for each p € Hom,, (W, AH) we define

BW =4 by fiw) =3 af b w

teT 1
where agi) € /A; and bii,)l € A;-1 are as in (2.1). It is easy to see that
p € Homa (W, A). Moreover, O(n)(w) = p(w)g = p(w) for w € W. To
prove that @ is a monomorphism, let w € W and f € ker ©. Since
w):Zf( ZZ l)bl) w)tH,

teT teT 4

_ (@) _
for any g € T we get 0 = @(f)(bg,lw) = b 1f( )gr and hence f(w) =0,
for all w € W. The fact that @ is a A- AH homomorphism is proved by
straightforward calculations. =

COROLLARY 2.4. Let W be a left A-module and H a subgroup of G of
finite index. Then

EXtZ(W, /1) = EXt?lH<WH, /IH)
as abelian groups, for all n € N.

THEOREM 2.5. Let G be a group, H a subgroup of G of finite index and
V' a left Ap-module. Then

[Homy,, (V, AH)]G = HomA(VG, A)
as right A-modules. This isomorphism is natural.

Proof. Since Homy, (V, Ay) is a right Ag-module, it follows that each
element of [Hom,, (V, Ax)]¢ is of the form > et fi-1 ® A1 for some f;-1 €
Homy, (V, Ag) and A\;—1 € A;—1. We consider the map

A : [Homy,, (V, Ag)]¢ — Homs(VY, A)

defined by
A(Z fi-1® )\t,l) = f, where f(Z Ys @ vs> = ZZMsft*(Us)/\t*l
teT s€S s€S teT

for another set S of left transversals of H in G, us € As; and v, € V.
Let us prove that A is independent of the choice of T and S. Let T and
S’ be any two sets of left transversals of H in G. For any s’ € S’, there
exists a unique s € S and a unique hs € H such that s’ = sh,. Similarly
for any ¢ € T’, there exist unique t € T and ht € H such that ¢/ = thy.

Let Ay = >, A@Aﬁfﬁ and A\y-1 = ZJ)\J) )\ 1 for some Ay € Ay and
Ap—1 € Ayp—1, where )\g(f), )\g) € A, for x € G. Then
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f(Z Ay ®vs/) = f(zzxy ® AEQUS/)

s'eS’ i seS
=> 3 3 A0, vs M1 = D> > Ao frm1(vg) A1
i seSteT s'eS' teT
Moreover,
A(D i ®At~1)(zxs®vs) SN Y A A @A
teT j sESteT he
=3NS Afor () A(J,l =30 A fi () A
J sESteT seS teT

The map f is a A-homomorphism. Indeed, let g € G and ' = {gs : s € S}.
Then

TS A wn) =13 Mhs@n) =30 30 AAufir(wa)A

seS gses’ teT gseS’
= 2f (DA @w).
ses

We now prove that A is a A-homomorphism of right A-modules. Let
g € G, and consider the set {g~'t : t € T} of right transversals of H in G

and elements a;_)lt € Ay and b(_) 1, € A1y with Y7, ag_lt El)lg =1, as
in (2.1). If
p = Z fr1 @ N € [Homy,, (V, Ag)]%,
teT
then @ »
Ao =D > fri(dga ) @b,
i teT
and
Ag) (Z A @ v5> =3 S A agal? Db,
ses j teT seS
=33 Afer @)A A = [AG) A (D A @w).
teT seS seS

We now define the inverse of A. Let f € Homy(V®, A). Then f(1®v) €
A = @ AnAy—1 for v € V, and for each t € T there exists a unique

Jhe-1 € AgAy—1 such that
- Z -

teT
Let agi) € A; and bgi_)l € Ay-1 be as in (2.1). We define

. v (4)
fi,til,a V- AH, V= th_lat .
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Since f is a A-homomorphism it follows that, for x € Ay and v € V,

fA®@av)=zf(l®w)
and we get
fier = o fg,
because of the unique decomposition, and so f; ;-1 , is a Ag-homomorphism.
Now we define

¥ : Hom (VY A) — [Homy,, (V, Ax)]¢

=N fira @b

i teT

by

We remark that ¥ is independent of the choice of agi), b(l,) Indeed, let
ng) € Ay, d(J) € Ay—1 with
th d], =

as in (2.1). We have to show that
DD furra @bl =303 frewdh)
i teT J teT
Since the right hand side is equal to
S fredia 0,
i, teT
it is enough to note that, for all v € V,

fi,t*l Zf],t 1 d(jlat (v) & th 1at Zthf Ct])d(jlat)v

and the latter holds. Now we prove that ¥ is mdependent of the choice
of T. Let S be another set of left transversals of H in G. Then, for every
s € S, there exist unique elements t € T and h € H such that s = th, so
AgAy—1 = AgA,—1. Moreover, for v € V|

fA®w) Zth I—Zst voand fpa = fheas

teT teT

Let >, ’ysZ 0 l_)l =1, as in (2.1). We remark that, for f € Hom,(V, A) and

veV,
= Z Zfi,s*l,w(v) ® 5£221

i seS
PHDREFLLLELLESI I UL
j i SES i teT

It follows that ¥ is independent of the choice of T
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Finally, to prove that ¥ o A and A o ¥ are identity maps, let

2= fr-1 ® N1 € [Homa,, (V, Ag))®
teT

with f-1 € Homy,(V,Ax) and A-1 € Ay—1, and let A(z) = f
€ Hom(V¥, A). Then

LDOA ZZfzt1a®bt1

i teT

T = Zth*l : O\tflagi ) © bg )1’

i teT

Since

it is enough to note that

Zfz’,t—l th 1 (A= 1at Zth 1%1 th (V) A= 1at

teT teT teT teT
< Z(f;[fl—ftﬂ( JAi-1)a '=0 & Zthl—thl JAi-1,
teT teT teT

and the latter holds, since both sides are equal to f(1 ® v).
Let now f € Hom(V®, A) be such that f(1 ®v) = > ,cp fi,1 for
v € V. Then

Aow(f)(SEZSAsms): (ZZfztla@@b )(ZA ®vs>
:ZZZ)\Sfi,t—l,a vs) ,E 1 —ZZZ)\ i 1at bil

i seSteT i seSteT
Y Y M - YA en) - (T e,
seS teT ses seS

Finally, it is a routine matter to prove that A is a natural homomorphism. =

COROLLARY 2.6. Let V be a left Ag-module and H a subgroup of G of
finite index. Then
[Ext?, (V, Ap)]© = Ext}(VY, 4)
as additive groups, forn=1,2,....
THEOREM 2.7. Let G be a group, A a strongly G-graded ring, H a sub-
group of G of finite index and V a left Ag-module. Then there is an iso-

morphism
Hom,, (A, V) = V¢

of left A-modules, which is functorial with respect to homomorphisms
V-V,
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Proof. We remark that Hom,, (A,V) is a left A-module, by the rule
A f(z) = f(aX) for z, A € Aand f € Homy,, (A, V). Moreover, we can write

A=EPAnA,
teT

so an element A of A can be written as A = >, y;—1 with y,-1 € AgA;-1.
Hence -
o = S

with ,ug) € Ay, li )1 € A;-1 and ¢ running over a finite index set depending

on t. Usmg the above notation, we consider the map
©:VY = Homy, (A, V), v— O(v),
forv="7>3",cr M ®uv and Ay € Ay, vy € V, with O(v) : A — V defined by

(ZZ Fh, t 1) ZZM}H - 1/\tUt

teT 1 teT 1

It is easy to see that the definition of @ is independent of the decomposition
of y,—1

We prove that © is independent of the choice of T. Let S be another
set of left transversals of H in GG. Then for each ¢ € T there exist unique
elements s € S and h € H such that t = sh. Hence

Yp-1 € AHAt—1 = AHAS—l, and y-1 = Z u](ljs)lgj,)l and A= Z Z /Lgs)lgj,)l
J s€S j

where j runs over a finite index set depending on S. We now COHSlder the
element v = >, A\t ® v; of V&, We remark that )\, = YA l))\ , since

At € Ay = AgAy,, where )\gi) € As, )\g) € Ay and ¢ runs over a finite index

set depending on s. So
v= Z Z YO )\g)vt

sES i
and
=333 P AON v =Y i heen
seS j i teT

It is easy to see that ©(v) is a Ag-homomorphism.
Now we prove that © is a A-homomorphism. For g € G, A\, € A, and
v e VC, it is enough to prove that

O(Agv) = AgO(v), ie. O(A)(A) = O(V)(ANg).
Since gT' is another set of left transversals of H in G, let A = > w(g)—1



102 TH. THEOHARI-APOSTOLIDI AND H. VAVATSOULAS

with W(gt)—1 S AHAtflAgfl. Then

)‘gv = Z )\g)\t X Ve = Z )\gt X 'Ugt,
tel teT

where \g; = AgA; and vy = v, So

OAg0)(N) =D wign-1 A1Vt = Y W(gn-1Ag M = O(v)(AXg).
teT teT

We now define the map
@ : Homy,, (A, V) — VE, fHZZagi)®f(b§i_)1),

tel 1

where agi) and bl(ti,)1 are as (2.1). It is a routine matter to prove that @ is the

inverse of ©. m

3. Mackeys’s theorem for strongly graded rings. In this section we
prove Mackey’s theorem for strongly group-graded rings. In [3, Theorem 2.2],
Boisen has given a proof of the graded version of Mackey’s theorem, but the
map

U:V gy Bok =V Qry Roe @Rpyonr BK, v®xb—>2v®ai®bix,

he has constructed there does not have the required properties, because the
second tensor product is over Rgonx and not over Rygo. For another proof
of the graded version of Mackey’s theorem see [7, 3.7.3].

We use the notation of the previous sections. Let G be a group and let
X, Y be a pair of subgroups of GG, both of finite index in G. We denote by
X\G/Y the (X,Y) cosets XgY relative to the pair of subgroups X, Y. If
D = XaY is such a double coset, X¢ is the conjugate subgroup aXa .
Let

Y= ] s(x*nY)
SESy
for a finite subset S, of G. Then it is easy to see that

(3.6) YaX = U saX, for G = U YaX,
sESq aEA
where A is a complete set of representatives of double (X,Y) cosets in G
([4, 10.13]). If &« € G and V is a left Ax-module, it is clear that A, ®4, V
is a left Axo-module and so a left Axany-module.
In the following we write ® instead of ® 4, .

THEOREM 3.1 (Mackey’s theorem—graded version). Let G be a group,

A a strongly G-graded ring, X, Y a pair of subgroups of G of finite index
in G, and V a left Ax-module. Then there is an isomorphism of left Ay -
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modules
(VG)Y = @[(Aa ® V)Axamy]y7
acA
where the sum is taken over X\G/Y . The summands are independent of the
choice of the double coset representatives, in the sense that

[(Ada ® V) axany]” 2 (A5 0 V), 1"
as left Ay -modules whenever YaX =Y 3X.
Proof. Let G = J,cq YaX D =YaX for some a € A, and let

a) = @Asa@ﬂf.

SESa

xXBny

It is easy to see that V() is a left Ay-module, and

Ny =P V(i)

acA
as left Ay-modules. It is enough to prove that

[(Aa ® V)Axam/]y = V(a)

as left Ay-modules. Given y € Y, by (3.6), there exist x € X and s € S,
such that

(3.7) Yo = sa.
We define the Ay-homomorphism
F: (A0 @V)axany]” = V(a)
by the rule
F(AyA @Axany AaAx @) = AyAAaAx @ v

for \y € Ay, y € Y, A € Axony, Ao € Ao, Ax € Ax and v € V, and the
Ay-homomorphism

@ : V() = [(Aa @ V) ayany]”
by the rule
D(Asarx ®v) = Zagi) ®Axany ) @ b((jzlbgi,)l AsaAX U
2%
for y € Y, s € S defined by (3.7), ag) e A, bg,)l € Ay, a((l]) € Aa,

bg),l € Ay—1 asin (2.1), A\so € Aga, Ax € Ax and v € V. It is easy to see
that F' is a Ay-homomorphism.
Now we prove that the definition of @ is independent of the choice of

(l) b(_)1 a( 7 and b(l_1 Let

Za;(k)bl(k 1 and Za U V)l =

k



104

TH. THEOHARI-APOSTOLIDI AND H. VAVATSOULAS

as in (2.1). Then

s

Z ag) ® a(of) (] bgzl b(Ql )\saAXU
(2]

= Z a’s(k) & b;(i? ag)a(j) & b(j21 b<721 )\soa)\XU

1,5,k

= Z a/s(k) ® ag(f’) ® b;li)l b;(fgagi)ag)bgz bii,)l AsaAxV
i,5,k, v

= Z a's(k) ® a'CE”) ® bgl:)l b;@ AsaAXV.
kv

Finally, it is easy to see that the Ay-homomorphisms F' and @ are inverse

to each other. m
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