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Abstract. Let N represent the positive integers and N0 the non-negative integers.
If b ∈ N and Γ is a multiplicatively closed subset of Zb = Z/bZ, then the set HΓ =
{x ∈ N | x + bZ ∈ Γ} ∪ {1} is a multiplicative submonoid of N known as a congruence

monoid. An arithmetical congruence monoid (or ACM ) is a congruence monoid where
Γ = {a} consists of a single element. If HΓ is an ACM, then we represent it with the
notation M(a, b) = (a + bN0) ∪ {1}, where a, b ∈ N and a2 ≡ a (mod b). A classical 1954
result of James and Niven implies that the only ACM which admits unique factorization
of elements into products of irreducibles is M(1, 2) = M(3, 2). In this paper, we examine
further factorization properties of ACMs. We find necessary and sufficient conditions for an
ACM M(a, b) to be half-factorial (i.e., lengths of irreducible factorizations of an element
remain constant) and further determine conditions for M(a, b) to have finite elasticity.
When the elasticity of M(a, b) is finite, we produce a formula to compute it. Among our
remaining results, we show that the elasticity of an ACM M(a, b) may not be accepted
and show that if an ACM M(a, b) has infinite elasticity, then it is not fully elastic.

1. Introduction and definitions. The notion of unique factorization
plays a central role in the basic study of number theory and algebra. While
the ring Z[

√
−5] is a traditional example of a non-unique factorization

domain, simpler examples of non-unique factorization can be constructed
using multiplicative monoids. For instance, the celebrated Hilbert monoid
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(see [7], [17] and [20])

1 + 4N0 = {1, 5, 9, 13, 17, 21, . . .}
fails to have the unique factorization property since 441 = 21 · 21 = 9 · 49
and 9, 21 and 49 are all irreducible in 1 + 4N0. Notice that an element x is
irreducible in 1+4N0 if and only if x is prime in N or x = p1p2 where p1 and p2

are primes in N which are congruent to 3 modulo 4. Using this fact, it is easy
to argue that 1+4N0, while not a factorial monoid, does satisfy the following
condition: if x ∈ 1+4N0 can be written as x = p1 · · · pt = q1 · · · qk with each
pi and qj irreducible in 1 + 4N0, then k = t. In general, an atomic monoid
(i.e., one in which each non-unit possesses a factorization into irreducibles)
which satisfies the prior factorization property is called half-factorial .

Various properties relating to non-unique factorizations in integral do-
mains and monoids have recently been studied in the literature (see [14]
for a detailed study of these properties). The 1 + 4N0 example sparked our
interest in studying these properties in “Hilbert-like” monoids, and the re-
mainder of this paper is devoted to this investigation. We use N to represent
the positive integers and N0 the non-negative integers. Let b ∈ N and Γ be
a multiplicatively closed subset of Zb = Z/bZ. The set

HΓ = {x ∈ N | x + bZ ∈ Γ} ∪ {1}
is a multiplicative submonoid of N known as a congruence monoid . A general
discussion of this construction (which can be generalized to any integral
domain R) can be found in both [12] and [14]. The papers [17] and [20]
contain proofs that a congruence monoid HΓ ⊆ N is factorial if and only if
there exists an b ∈ N with

HΓ = {m ∈ N | gcd(m, b) = 1}.
An arithmetical congruence monoid (or ACM ) is a congruence monoid
where Γ = {a} consists of a single element (hence, the non-units of HΓ

form an arithmetic sequence). If HΓ is an ACM, then we represent it with
the notation M(a, b) where a, b ∈ N, and a2 ≡ a (mod b). Note that here we
are actually setting

M(a, b) = (a + bN0) ∪ {1} = {a + kb | k ∈ N0} ∪ {1}.
Before describing the contents of this article in greater detail, we will

review some basic notions and definitions from the theory of non-unique
factorizations [14]. Let M be a commutative cancellative monoid and sup-
pose that M• represents the set of non-units of M . The irreducibles (or
atoms) of M are denoted by A(M). Hence, when considering ACMs, we
have

A(M(a, b))

= {x ∈ M(a, b) | x = rs with r, s ∈ M(a, b) implies r = 1 or s = 1}.
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If every element of M• can be written as a product of elements from A(M),
then M is called atomic. Given an element x ∈ M•, suppose that

(∗) x = p1 · · · pt = q1 · · · qk

where each pi and qj is in A(M). The monoid M is factorial if for every
x ∈ M• and factorization of the form (∗), we have t = k and there ex-
ists a permutation σ of {1, . . . , t} such that pi and qσ(i) are associates for
all i. The monoid M is half-factorial (or an HFM ) if for every x ∈ M•

and factorization of the form (∗), we have t = k (we note that the cur-
rent authors have recently shown in [7] that for a fixed b > 2, if HΓ =
{m ∈ N | gcd(m, b) 6= 1} ∪ {1}, then HΓ is not factorial but half-
factorial).

If x ∈ M•, then the set of lengths of x is

L(x) = {k ∈ N | x = a1 · · · ak where ai ∈ A(M)}.
If L(x) = {n1, . . . , nt} with the ni’s listed in increasing order, then set
∆(x) = {ni − ni−1 | 2 ≤ i ≤ t} and

∆(M) =
⋃

x∈M•

∆(x).

If ∆(M) 6= ∅, then, by [11, Lemma 3], min∆(M) = gcd∆(M). The elasticity

of an element x ∈ M•, denoted ̺(x), is given by the ratio of sup(L(x)) to
inf(L(x)). The elasticity of M is then defined as

̺(M) = sup{̺(x) | x ∈ M•}.
A survey of known results concerning elasticity in integral domains and
monoids can be found in [3] and [14]. We say that M has accepted elasticity

if there exists x ∈ M• such that ̺(x) = ̺(M). Any finitely generated com-
mutative cancellative monoid has accepted elasticity (see [2, Theorem 7]).
In turn, so also do block monoids over finite abelian groups and hence Krull
domains with finite divisor class groups. We say that M is fully elastic if
for all q ∈ Q ∩ [1, ̺(M)] (or [1,∞) if the elasticity is infinite) there exists
an x ∈ M• such that ̺(x) = q. The notion of full elasticity was introduced
in [9], where it is shown that block monoids over certain finite abelian groups
are fully elastic, but non-cyclic numerical monoids are not. Moreover, recent
work in [6] and [10] shows that rings of algebraic integers, as well as certain
rings of integer-valued polynomials, are also fully elastic.

Among our results, we find necessary and sufficient conditions for an
ACM to have finite elasticity. When the elasticity of M(a, b) is finite, we
then determine a formula for ̺(M(a, b)). The elasticity formula leads to
necessary and sufficient conditions for an ACM to be half-factorial. While
factorial ACMs are quite scarce, we are able to produce an infinite fam-
ily of half-factorial ACMs. If M(a, b) is not half-factorial, we show that
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min∆(M(a, b)) = 1. We examine full and accepted elasticity in ACMs,
and obtain the somewhat surprising result that an ACM may not have ac-
cepted elasticity. We show that if M(a, b) does not have finite elasticity, then
M(a, b) is not fully elastic, but the ACM M(pk, pkb) where gcd(p, b) = 1 and
k = ordb(p) is fully elastic.

2. Finite elasticity, half-factoriality and min∆(M(a, n)). We will
open with some basic results concerning the structure of ACMs.

Lemma 2.1. Suppose that M(a, b) is an ACM with a 6= b. Then

(1) either a = b + 1 or a < b, and

(2) if gcd(a, b) = 1, then a = 1 or a = b + 1.

Proof. For (1), if b + 1 < a then a − b 6∈ M(a, b) but a − b ≡ a (mod b).
For (2), assume that a 6= b + 1. Since M(a, b) is an ACM, a2 ≡ a (mod b).
Thus b | a(a − 1). If gcd(a, b) = 1, then b | a − 1 and b < a, contradict-
ing (1).

Since M(1, b) = M(b+1, b) for all b ≥ 2, in the remainder of our work we
will assume that all ACMs are written in the form M(a, b) with 1 ≤ a ≤ b.
We recall briefly a key definition. A commutative cancelative monoid S is a
Krull monoid if there exists a free Abelian monoid D and a homomorphism
∂ : S → D such that

(1) x | y in S if and only if ∂(x) | ∂(y) in D, and
(2) every β ∈ D is the greatest common divisor of some set of elements

in ∂(S).

The basis elements of D are called the prime divisors of S and the quo-
tient D/∂(S) is called the divisor class group of S, denoted by C(S). More
information on Krull monoids can be found in [8] and [14].

Proposition 2.2. Suppose that M(a, b) is an ACM.

(1) M(a, b) is a Krull monoid if and only if a = 1.
(2) If M(a, b) is a Krull monoid , then every divisor class of C(M(a, b))

= (Zb)
× contains a prime divisor.

(3) If a = 1, then ̺(M(1, b)) = D(Z×

b )/2.
(4) If a = 1, then M(1, b) is half-factorial if and only if b = 1, 2, 3, 4,

or 6.
(5) If a = 1, and M(1, b) is not half-factorial , then min∆(M(1, b)) = 1.

Proof. Assertion (1) follows directly from [17, Theorem 1], and (2) from
[16, Beispiel 2].
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For (3), by (1) and (2), M(1, b) is a Krull monoid with divisor class
group (Zb)

× with a prime in each divisor class. The result now follows from
[4, Proposition 3].

For (4), since M(1, b) is again a Krull and each divisor class of C(M(1, b))
contains a prime divisor, we see that M(1, b) is half-factorial if and only if
|C(M(1, b))| ≤ 2 [18, Theorem 2(ii)]. This clearly requires that b = 1, 2, 3, 4
or 6.

Assertion (5) follows directly from [8, Lemma 3.2 and Proposition 5.3].

A general criterion for the finite elasticity of a congruence monoid can
be found in [13, Theorem 7.8]. We give in Theorem 2.3 a simple condition
which not only forces ̺(M(a, b)) to be infinite, but also has implications
with respect to full elasticity.

Theorem 2.3. Let M(a, b) be an ACM such that gcd(a, b) is not a prime

power. Then there exists some B ∈ N such that every z ∈ M(a, b) has

a factorization of length at most B. Consequently , ̺(M(a, b)) = ∞ and

M(a, b) is not fully elastic.

Proof. Let q = gcd(a, b), a = qa1, b = qb1, where a1, b1 ∈ N and
gcd(a1, b1) = 1. Then a = qa1 ≡ 1 (mod b1) and M(a, b) = {x ∈ qN | x ≡ 1
(mod b1)} ∪ {1}.

Now let q = pn1

1 · · · pnk

k with distinct primes p1, . . . , pk, k ≥ 2, n1, . . . , nk

≥ 1, and let t ∈ N be such that pnit
i ≡ 1 (mod b1) for all i (e.g., t = ϕ(b1)).

We assert that B = 4t − 1 meets our requirements.
Indeed, let z ∈ M(a, b), z = pm1

1 · · · pmk

k y, where mi ≥ ni, y ∈ N,
gcd(q, y) = 1 and z ≡ 1 (mod b1). If mi < 2nit for at least one i, then
z has a factorization of length less than 2t. Thus assume that mi ≥ 2nit
for all i, and set mi = nitl + m′

i with l ∈ N and nit ≤ m′

i < 2nit. Then

z = z1z2z3, where z1 = pn1

1 p
n2t(l−1)
2 · · · pnkt(l−1)

k , z2 = p
n1t(l−1)
1 pn2t

2 · · · pnkt
k

and z3 = p
m′

1

1 · · · pm′

k

k y. Clearly, z1, z2, z3 ∈ M(a, b), z1 and z2 have factoriza-
tions of length at most t, and z3 has a factorization of length less than 2t.
Thus z has a factorization of length at most 4t− 1. The final two assertions
of the theorem now follow directly.

In Theorem 2.4, we give a formula for ̺(M(a, b)) when its elasticity is
finite. Using this, we not only recover the general finiteness condition when
applied to an ACM, but also characterize which ACMs are HFMs. Our work
will require an important tool in studying elasticity. Let M be an atomic
monoid. A function f : M → R0 is a semi-length function on M if

(1) f(xy) = f(x) + f(y) for all x, y in M , and
(2) f(x) = 0 if and only if x is a unit of M .

Given an atomic monoid M which is not factorial with semi-length func-
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tion f , Anderson and Anderson [1] have shown that

(†) ̺(M) ≤ sup{f(x) | x ∈ A(M) and x not prime}
inf{f(x) | x ∈ A(M) and x not prime} .

Theorem 2.4. Let M(a, b) be an ACM.

(1) If gcd(a, b) = pk for p a prime and k a natural number then

̺(M(a, b)) =
n + k − 1

k

where n is the smallest positive integer such that pn ∈ M(a, b).
(2) The elasticity of M(a, b) is finite if and only if

(i) a = 1 in which case ̺(M(a, b)) = D(Z×

n )/2, or

(ii) gcd(a, b) = pk for p a prime and k a natural number.

(3) The M(a, b) is half-factorial if and only if

(i) a = 1 and b = 1, 2, 3, 4 or 6, or

(ii) a divides b and a = p where p is a prime.

(4) Suppose gcd(a, b) = pk for p a prime. Then ̺(M(a, b)) < 2 if and

only if a = pk. Moreover , the following conditions are equivalent :

(i) ̺(M(a, b)) = 1.
(ii) a = p.
(iii) ̺(M(a, b)) < 3/2.

Proof. (1) Suppose the ACM M(a, b) has gcd(a, b) = pk for p a prime and
k a natural number. Therefore, it can be written in the form pk(c+dN0)∪{1}
where c and d are natural numbers such that d > c > 1, gcd(c, d) = 1 and
gcd(p, d) = 1. If x represents the equivalence class of an integer in Zd, then

notice that p, c, and pk are all elements of (Zd)
×. Further, as a ≡ a2 (mod b),

a ≡ a2 (modd), which implies that 1 ≡ a (modd). It follows that if w is an
integer, then w ∈ M(a, b) if and only if w has p-adic value at least k and
w ≡ 1 (modd).

Claim. There exists m ∈ N such that pm ∈ M(a, b).

Proof. Let x be the order of pk in (Zd)
×. It follows that pkx = (pk)x ≡ 1

(modd) and therefore is also an element of M(a, b).

Now let n be the smallest integer in N such that pn ∈ M(a, b) (note
that n ≥ k). Suppose m is an element of M(a, b) which has p-adic value at
least n + k (i.e. m = pn+kz for some integer z). However, m = (pn)(pkz),
which is the product of two elements which have p-adic value at least k
and are congruent to 1 modulo d; therefore, m is not an atom. All atoms
must therefore have p-adic value at most n + k − 1 and at least k (as all
elements of M(a, b) are divisible by pk and therefore have p-adic value at
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least k). Thus the map f : M(a, b) → R0 which sends an element to its p-adic
value is a semi-length function with both sup{f(x) | x ∈ A(M(a, b))} < ∞
and inf{f(x) | x ∈ A(M(a, b))} > 0. It follows from (†) that ̺(M(a, b)) ≤
(k + n − 1)/k.

Now observe that by Dirichlet’s theorem there exists a prime q in p1−k

and a prime r in p−k. It follows that pn+k−1q is an atom in M(a, b), as is
any element of M(a, b) with p-adic value n + k − 1. In particular, pkqnr is
an atom. Now let tc = (pkqnr)c(k+n−1)+1. Observe that as tc can be written
as the product of c(k + n − 1) + 1 atoms with p-adic value k, it has p-adic
value ck2 + cnk − ck + k and can be written as the product of at most
c(k + n − 1) + 1 atoms. In addition, as the product of ck or fewer atoms
must have p-adic value at most

ck(k + n − 1) = ck2 + cnk − ck < ck2 + cnk − ck + k,

tc cannot be expressed as the product of ck or fewer atoms. However,

tc = (pk+n−1q)ck(pkqnck+cn2
−nc+n−ckrc(k+n−1)+1)

and therefore can be written as the product of ck + 1 atoms. This implies
that ̺(tc) = (c(k + n− 1) + 1)/(ck + 1), which approaches (k + n− 1)/k as
c approaches infinity. This implies that the elasticity of M(a, b) is equal to
(k + n − 1)/k.

Assertion (2) follows directly from Lemma 2.1 and Theorem 2.3 and
part (1) above.

(3) If the ACM is Krull, then we have a = 1 and (i) follows from
Proposition 2.2(4). If the ACM is not Krull, then from Theorem 2.3 we
have gcd(a, b) = pk, with p a prime. Again, from part (1) the elasticity is
̺(M(a, b)) = (n + k − 1)/k and ̺(M(a, b)) = 1 + (n − 1)/k = 1. Thus, we
need n = 1, meaning that p ∈ M(a, b) and thus a = p, completing the proof.

(4) We prove the first assertion. (⇒) If (n + k − 1)/k < 2, then n < k+1
and hence n = k. By the definition of n, a = pn = pk. (⇐) If a = pk, then
n = k and ̺(M(a, b)) = (2k − 1)/k < 2.

For the second assertion, (i) and (ii) are equivalent by part (3). Clearly
(i)⇒(iii). Given (iii), the first part of the theorem implies that a = pk

for some k. If k ≥ 2 then the formula in part (1) clearly implies that
̺(M(a, b)) ≥ 3/2. Hence, k = 1 and (ii) holds.

Example 2.5. (1) Suppose M(pk, pkb1) is an ACM for some prime p
and b1 with gcd(p, b1) = 1. We necessarily have b1 | pk − 1 and since n = k,
Theorem 2.4(1) implies that ̺(M(pk, pkb1)) = (2k − 1)/k < 2. Notice that
if p ≡ 1 (mod b1), then pr ∈ M(pk, pkb1) for all r ≥ k. Setting x = (pk)2k−1,
we find that x = (pk)2k−1 = (p2k−1)k are irreducible factorizations of x
of length 2k − 1 and k. Hence, if p ≡ 1 (mod b1), then the elasticity of
M(pk, pkb1) is accepted.
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(2) Consider M(4, 6). Since 42 ≡ 4 (mod6), M(4, 6) is an ACM. Again
applying Theorem 2.4, we have n = 2 and k = 1, and hence ̺(4 + 6N0) = 2.
In general, notice that if gcd(a, b) = pk and M(a, b) is an ACM where pk

does not exactly divide a, then ̺(M(a, b)) ≥ 2.
(3) Let p be an odd prime. Then p2 ≡ p (mod2p) and hence M(p, 2p) is

an ACM. Since p+2pN0 is not Krull, it is not factorial, but by Theorem 2.4
it is half-factorial.

Example 2.6. We revisit Example 2.5(2) and show that the ACM
M(4, 6) with elasticity 2 does not have accepted elasticity. We believe that
this is the simplest example known of an atomic monoid with rational elas-
ticity such that the elasticity is not accepted (other examples can be found
in [5, Example 3.4] and [15, Proposition 3.8]). Moreover, this example indi-
cates that the sequencing argument used in the proof of Theorem 2.4(1) is
unavoidable.

We observe that the atoms of the monoid M(4, 6) fall into two types:
(A) atoms of the form 2r where r is an odd number congruent to 2 (mod3)
(to be called “A-type”), and (B) atoms of the form 4s where s is a product
of odd primes all of which are congruent to 1 (mod3) (to be called “B-type”;
if s had a factor r1 ≡ 2 (mod3), it would be expressible as r1r2 with r2 ≡ 2
(mod3) as well; then 4s = (2r12r2)).

Now we suppose that there exists an element m in M(4, 6) with elasticity
two. Letting j be the minimum number of atoms in a decomposition of m
and letting k be the maximum number of atoms, it follows that the 2-adic
value of m is at least k and at most 2j; as k/j = 2 it follows that k = 2j,
which is therefore the 2-adic value of m.

Therefore, the decomposition of m into j atoms requires m to be written
as a product of j atoms of type B (the only possible way for the product of
j atoms to have 2-adic value 2j) so m cannot have any odd factors congruent
to 2 (mod3). However, the decomposition of m into k atoms requires m to
be written as a product of k atoms of type A (the only possible way for
the product of k atoms to have 2-adic value k) so m must be a multiple
of an atom of type A, and therefore must be a multiple of an odd number
congruent to 2 (mod3), producing a contradiction. Therefore, no element of
elasticity two can exist in M(4, 6).

We close this section by computing min∆(M(a, b)) when M(a, b) is not
half-factorial.

Theorem 2.7. Suppose the ACM M(a, b) is not half-factorial. Then

min∆(M(a, b)) = 1.

Proof. If gcd(a, b) = 1, then the result follows from Lemma 2.1 and
Proposition 2.2(5). If a = b, then we consider two cases.
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(i) Suppose a = pk for p a prime. If k ≥ 2, then pk and pk+1 are both
atoms and (pk)k+1 = (pk+1)k implies that a product of k irreducibles can
be factored as a product of k + 1. Hence, min∆(M(a, b)) = 1. This leaves
the option that a = p, which by Theorem 2.4(3) implies that M(a, b) is
half-factorial.

(ii) Suppose a is not a power of a prime. Then a = pα1

1 · · · pαk

k where k ≥ 2
and each pi is a distinct prime. We see that both y1 = (pα1

1 )2(pα2

2 ) · · · (pαk

k )
and y2 = (pα1

1 )(pα2

2 )2 · · · (pαk

k )2 are irreducible in M(a, b). Thus y1y2 =

(p3α1

1 ) · · · (p3αk

k ) = a3, and a product of two irreducibles can be factored
as a product of three, completing the argument for the case a = b.

To complete the argument, we consider the cases where gcd(a, b) 6= 1
and a 6= b. First assume gcd(b, a) = m 6= 1 or a and that a ∤ b. Let a =
mj and b = mc. First observe that given a prime p where pe ‖ b we have
a ≡ 0 or 1 (mod pe) (else a 6≡ a2 (modpe), which yields a2 6≡ a (mod b),
a contradiction). We have gcd(c, m)=1 because otherwise we deduce in a
similar manner that a 6≡ a2. Moreover, since gcd(b, a) = m it follows that
gcd(j, c) = 1. Hence, a ≡ 0 (modm) and a ≡ 1 (mod c). We will need the
following three important facts:

(1) By Lemma 2.1(1), j < c (since mj < mc). If j ≡ 1 (mod c), then
j = 1, a contradiction. Hence j 6≡ 1 (mod c).

(2) We also have m 6≡ 1 (mod c), since otherwise a ≡ mj ≡ j 6≡ 1
(mod c), another contradiction.

(3) Thus ordc(m) > 1 and ordc(j) > 1.

Again we consider two cases.
(a) m is prime. By Dirichlet’s theorem, pick a prime number u with

u ≡ m−1 (mod c). We have um ∈ M(a, b) because um ≡ 1 (mod c) and
um ≡ 0 (modm). Set g = ordc(u) = ordc(m) > 1. Note that um is an atom
because u is prime and m2 ∤ um. For the same reason, ug+1m is also an atom.
Since mg is also an atom, we have (mu)g+1 = (mg)(ug+1m). The left side
contains g+1 atoms and the right side contains 2 atoms. Since the difference
of these two lengths is g − 1, if g = 2, then min∆(M(a, b)) = 1. We assume
for the remainder of the proof that g > 2. Again using Dirichlet’s theorem,
there exists a prime q ≡ u2 (mod c). Observe that qm2 is an atom because
qm2 ≡ (um)2 (mod b). Also qug−1m ≡ um (mod c) is an atom because
an element of M(a, b) needs to be divisible by m. Thus (pug−1m)(mg) =
(pm2)(um)g−1. The left side has length 2 and the right side has length g.
The difference between these factorizations is g − 2 so the modulus of fac-
torization must divide g−2. But g−2 is relatively prime to g−1. Therefore
min∆(M(a, b)) = 1.

(b) m is composite. Write m = p1 · · · pt and j = q1 · · · qw for not nec-
essarily distinct primes pi and qj . By Dirichlet’s theorem, pick distinct new
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primes r1, . . . , rt, s1, . . . , sw with ri ≡ pi (mod c) and sj ≡ qj (mod c). Let

(‡)

x1 = ap1r2 · · · rts1 · · · sw,

x2 = ar1p2 · · · rts1 · · · sw,
...

xt = ar1r2 · · · rt−1pts1 · · · sw,

y1 = ar1r2 · · · rtq1s2 · · · sw,

y2 = ar1r2 · · · rts1q2 · · · sw,
...

yw = ar1r2 · · · rts1s2 · · · sw−1qw,

z = ar1r2 · · · rts1s2 · · · sw.

Clearly each xi, yj and z is congruent to amj = a2 modulo mc = b, and
hence in M(a, b). Moreover, by construction, each xi, yj and z is exactly
divisible by m, and hence an atom of M(a, b). Finally,

t∏

i=1

xi ·
w∏

j=1

yj = zt+w−1 · a · a

and t + w irreducibles factor as t + w + 1. Thus min∆(M(a, b)) = 1.
Our remaining cases yield a|b and a 6= b, so suppose that gcd(a, b) = a.

If a is prime, then M(a, b) is half-factorial by Theorem 2.4(3). If a is not
prime, we are in case (b) above with w = 0, completing the argument.

3. ACMs and full elasticity. Using the next two results, we will
determine exactly which ACMs of the form M(pk, pkb1) are fully elastic.

Lemma 3.1. Let p be a prime number and b1 > 1 a positive integer with

gcd(p, b1) = 1. If k = ordb1(p), then M(pk, pkb1) is fully elastic.

Proof. The elasticity of M(pk, pkb1) is (2k − 1)/k by Theorem 2.4(1).
By Dirichlet’s theorem, choose a prime q 6= p such that qp ≡ 1 (mod b1). For
each pair of positive integers e and f let

c(e, f) = (pk)e(p2k−1q)kf .

As c(e, f) has p-adic value k(e+f(2k−1)), it can be written as the product of
at most e+f(2k−1) atoms because each non-unit element of the monoid—
in particular, the atoms—has p-adic value at least k. This can be done by
writing c(e, f) = (pk)e+f(2k−1)−1(pkqkf ) (the last term is an atom because it
has p-adic value k and qkf ≡ 1 (mod b1)). Further, any factorization of c(e, f)
must contain at least e+fk atoms. To see this, note that pk is the only atom
which is a power of p, and a factorization of c(e, f) into atoms can contain at
most kf atoms with larger p-adic value; if they all have p-adic value 2k − 1
(which is the largest p-adic value) the remaining part has p-adic value ke
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and therefore must be written as (pk)e. Since c(e, f) = (pk)e(p2k−1q)kf is a
factorization into e + kf atoms, it follows that

̺(c(e, f)) = (e + f(2k − 1))/(e + kf).

Now suppose a/b is a rational number with 1 < a/b < ̺(M) = (2k − 1)/k.
Rewriting a/b as a(k − 1)/b(k − 1), it follows that if f = a − b and e =
b(2k − 1) − ak (which are both positive integers as 1 < a/b < (2k − 1)/k),
then

a/b = (e + f(2k − 1))/(e + kf) = ̺(c(e, f)).

Hence, M(pk, pkb1) is fully elastic.

Lemma 3.2. Let p be a prime number and b1 > 1 a positive integer with

gcd(p, b1) = 1. If k = t · ordb1(p) for t > 1, then M(pk, pkb1) is not fully

elastic.

Proof. Let s = k + ordb1(p). Since pordb1
(p) ∈ 1 + b1N0 and ordb1(p) < k,

both pk and ps are atoms of M(pk, pkb1). The elasticity of M is clearly
at least equal to s/k (as exemplified by the element psk). We show that
M(pk, pkb1) has no element with elasticity (ks2 + 1)/(ks2).

Assume the contrary. Let A be an element in M(pk, pkb1) with ̺(A) =
(ks2 + 1)/ks2. As A can be written as the product of at least ks + 1 atoms
(in fact, at least ks2 + 1 atoms) and all such atoms have p-adic value at
least k, it has p-adic value at least k2s+ k; call its p-adic value vp(A). Let n
be the largest multiple of k less than or equal to vp(A)−k; therefore, we can

write A in the form (pk)n/kB for some positive integer B (which is in the
monoid as it is congruent to 1 modulo b1 and has p-adic value at least k).
This means that we can write A as the product of at least n/k + 1 atoms
(i.e., of at least vp(A)/k − 1 atoms).

However, we can now let m be the largest multiple of s less than or
equal to vp(A)− k; therefore, we can write A in the form (ps)m/sC for some
positive integer C (which is in the monoid as it is congruent to 1 modulo b1

and has p-adic value at least k). As C has p-adic value at most k + s (which
is less than 3k because s is at most 2k − 1), it can be factored into three
or fewer atoms; this means that A can also be written as the product of a
number of atoms which has at most m/s + 3 atomic factors (i.e. less than
vp(A)/s + 3 such factors).

We note that our hypotheses imply that k ≥ 2, s ≥ 3 (as s > k) and
k − s ≤ −1. Therefore, the elasticity of the element A, because we can
express A both as a product of at least vp(A)/k− 1 atoms and as a product
of at most vp(A)/s + 3 atoms, is at least

(vp(A)/k − 1)/(vp(A)/s + 3) = (s/k)(vp(A) − k)/(vp(A) + 3s).
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Because vp(A) ≥ k2s + k, and the function on [k2s + k,∞) sending t to
(t − k)/(t + 3s) is increasing, we obtain the inequality

(1) (s/k)(vp(A) − k)/(vp(A) + 3s) ≥ (s/k)(k2s + k − k)/(k2s + k + 3s)

= (s/k)(k2s)/(k2s + k + 3s) = ks2/(k2s + k + 3s).

For the values of k and s under consideration, we will show that

(2) k2s + k + 3s ≤ ks2 − 1

except when (k, s) = (2, 3) or (k, s) = (3, 4). Then (2) combined with (1)
yields

ks2/(k2s + k + 3s) ≥ ks2/(ks2 − 1) > (ks2 + 1)/ks2,

which completes the proof for all but these two exceptional cases. Since both
sides of (2) are integers, (2) is equivalent to

(3) k2s + k + 3s < ks2.

We verify (3) by showing

(4) ks(s − k) > k + 3s.

To see this, if s − k ≥ 2, we note that since s ≥ 3 and k ≥ 2, the left hand
side of (4) is at least 2ks = (1/2)ks + (3/2)ks ≥ (3/2)k + 3s > k + 3s as
desired.

However, if s − k < 2 then because k < s, we have s − k = 1 so (4)
is equivalent to ks > k + 3s, which implies k2 + k > 4k + 3 and hence
k2 − 3k − 3 > 0. The latter inequality holds for k > 3/2 + (1/2)

√
21, which

is less than four; therefore (as k ≥ 2) the only cases where it fails are
(k, s) = (2, 3) or (k, s) = (3, 4).

In these two cases, we recall that A can in fact be written as the product
of ks2 + 1 atoms, each of p-adic value at least k, so vp(A) ≥ k2s2 + k.

This means that the elasticity of the element A is at least

(vp(A)/k − 1)/(vp(A)/s + 3) ≥ ((k2s2 + k)/k − 1)/((k2s2 + k)/s + 3).

In the case where k = 2 and s = 3, we note k2s2 + k = 38, so the elasticity
of A is at least (38/2 − 1)/(38/3 + 3) > 18/16 > 19/18 = (ks2 + 1)/ks2.

In the case where k = 3 and s = 4, we note that k2s2 + k = 147, so
the elasticity of A is at least (147/3 − 1)/(147/4 + 3) > 48/40 > 49/48 =
(ks2 + 1)/ks2.

In every possible case, we therefore see that the elasticity of A is greater
than (ks2 + 1)/ks2, which contradicts the presumption that the elasticity
of A is equal to (ks2 + 1)/ks2, and therefore our monoid has no element of
this elasticity.

With the last two lemmas, we have established the following.
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Corollary 3.3. Let p be a prime number , b1 > 1 a positive integer with

gcd(p, b1) = 1 and k = t · ordb1(p) for some t ≥ 1. The following statements

are equivalent :

(1) M(pk, pkb1) is fully elastic.

(2) t = 1.
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