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A BASIS OF Zm, II

BY

MIN TANG (Wuhu) and YONG-GAO CHEN (Nanjing)

Abstract. Given a set A ⊂ N let σA(n) denote the number of ordered pairs (a, a′) ∈
A×A such that a+a′ = n. Erdős and Turán conjectured that for any asymptotic basis A

of N, σA(n) is unbounded. We show that the analogue of the Erdős–Turán conjecture does
not hold in the abelian group (Zm, +), namely, for any natural number m, there exists a
set A ⊆ Zm such that A + A = Zm and σA(n) ≤ 5120 for all n ∈ Zm.

1. Introduction. Given a set A ⊂ N let σA(n) denote the number of
ordered pairs (a, a′) ∈ A × A such that a + a′ = n. The set A is called an
asymptotic basis of order two if there is n0 = n0(A) such that σA(n) ≥ 1 for
each positive integer n ≥ n0. In particular, we call A a basis if σA(n) ≥ 1 for
all positive integers n. The celebrated Erdős–Turán conjecture [3, 5] states
that if A is an asymptotic basis, then the representation function σA(n) must
be unbounded. In 1990, Ruzsa [12] found a basis A for which the number of
representations n = a + a′, a, a′ ∈ A, is bounded in the square mean, that
is,

∑

n≤N σA(N)2 = O(N).

While the above famous conjecture is still an unsolved problem, a nat-
ural related question which has been raised is: in which abelian groups or
semigroups is the analogue of this conjecture valid? Erdős [2] proved that
for the semigroup (N, ·) of positive integers under ordinary multiplication,
if A is a basis, then the representation function σA(n) is unbounded. Puš
[11] first established that the analogue of the Erdős–Turán conjecture fails
to hold in some abelian groups. Nathanson [8] constructed a family of arbi-
trarily sparse unique representation bases for Z, and in [10], he proved that
large classes of additive abelian semigroups fail to satisfy the Erdős–Turán
property in a spectacular way. Chen [1] constructed a unique representa-
tion basis whose growth is more than x1/2−ε for infinitely many positive
integers x. For related problems see [4], [6] and [9].
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Let G = {a1, . . . , am} be a finite abelian group. Using similar notations,
for A ⊆ G and n ∈ G, we define σA(n) = ♯{(ai, aj) ∈ A× A : ai + aj = n},
rA(n) = ♯{(ai, aj) ∈ A×A : ai + aj = n, i ≤ j}. Then we call A ⊆ G a basis

if σA(n) ≥ 1 for all n ∈ G, and a unique representation basis if rA(n) = 1
for all n ∈ G. In [13], by using Ruzsa’s method we proved that for every
large enough integer m, there exists a basis A of Zm such that σA(n) ≤ 768
for all n ∈ Zm. In this paper, the following result is proved.

Theorem. For any natural number m, there exists a set A ⊆ Zm such

that A+A = Zm and σA(n) ≤ 5120 for all n ∈ Zm.

Remark 1. The analogue of the theorem fails for elementary 2-groups.
In fact, if A is a basis of Z

N
2 having t elements, then t2 ≥ 2N , and since for

every a ∈ A one has a+a = 0, it follows that σA(0) ≥ t ≥ 2N/2, which tends
to infinity as N → ∞.

Remark 2. By a simple counting argument, we can show that there
does not exist a unique representation basis for any finite abelian group G,
except for |G| = 1 or |G| = 3.

Remark 3. Let

Φ(m) = min
A⊂Zm

max
n∈Zm

σA(n).

The theorem gives Φ(m) ≤ 5120 for all positive integers m, and Remark 2
gives Φ(m) ≥ 3 for m 6= 1, 3.

Remark 4. Let G be a countably infinite abelian group. For every pos-
itive integer h, define h ∗ G = {hg : g ∈ G}. In [10], Nathanson proved
that if G is a countably infinite abelian group such that 12 ∗ G is infinite,
and if f : G → N0 ∪ {∞} is a map such that the set Z0 = f−1(0) is finite,
then there exists an asymptotic basis A for G such that rA(x) = f(x) for
all x ∈ G. By Remark 2, we find that the story of the finite abelian group
is very different from that of the infinite abelian group in this respect.

2. Proofs. We start by recalling some notations used in [13]: let p be
an odd prime, Zp be the set of residue classes mod p and G = Z

2
p. Define

Qk = {(u, ku2) : u ∈ Zp} ⊂ G and let

ϕ : G→ Z, ϕ(a, b) = a+ 2pb,

where we identify the residues mod p with the integers 0 ≤ j ≤ p− 1.

Lemma 1 ([13, Lemma 3]). Let p > 5 be a prime for which
(

2

p

)

= −1,

and let B = Q3 ∪ Q4 ∪ Q6 and B′ = ϕ(B). Then σB′(n) ≤ 16 for all n.
Moreover , for every integer 0 ≤ n < 2p2, at least one of the six numbers

n− p, n, n+ p, n+ 2p2 − p, n+ 2p2, n+ 2p2 + p is in B′ +B′.
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Lemma 2 ([13, Lemma 4]). Let p > 5 be a prime for which
(

2

p

)

= −1,

and let B = Q3 ∪ Q4 ∪ Q6 and B′ = ϕ(B). Put V = B′ + {0, 2p2 − p, 2p2,
2p2 + p}. Then V ⊂ [0, 4p2), [4p2, 6p2) ⊆ V + V and σV (n) ≤ 256 for all n.

Lemma 3 ([7]). For arbitrary natural numbers m and d (≥ 2) and real

z > 1, let Bm(z, d) = lim inf{c : for every x ≥ c the interval (x, zx) contains

at least m primes ≡ a (modd) for every integer a satisfying (a, d) = 1}.
Then B1(3.15, 8) ≤ 24.

Proof of the Theorem. We may assume m > 5120, since for smaller m
the assertion is trivially true.

When m > 5120,
√

m/2 > 24, by Lemma 3, we can choose a prime p > 5
for which

(

2

p

)

= −1 such that
√

m/2 < p < 3.15
√

m/2.

Let B′ and V be the sets of Lemma 2 corresponding to the selected p. For
the given positive integer m (> 5120), we consider the canonical map

ψ : Z → Zm, n 7→ n.

Let A = ψ(V ). By the definition, we have A ⊆ Zm. Thus A + A ⊆ Zm.
On the other hand, by Lemma 2, [4p2, 6p2) ⊆ V + V and m < 2p2. Thus
Zm ⊆ A+A. Hence, A+A = Zm.

For any n ∈ [0,m− 1], consider the equation

(1) u+ v = n, u, v ∈ A.

Let u = ψ(u) and v = ψ(v) with u, v ∈ V . Then

(2) u+ v ≡ n (modm), u, v ∈ V.

Clearly, the number of solutions of (1) does not exceed that for (2).
Since V ⊂ [0, 4p2) and 0 ≤ u+ v < 8p2 < 39.69m, we have

{u+ v : u, v ∈ V and u+ v ≡ n (modm)} ⊆ {n, n+m, . . . , n+ 39m}.

Let k0, k1, k2, k3, k4 be five integers such that k0 = −1 and

n+ k1m < 2p2 − p ≤ n+ (k1 + 1)m,

n+ k2m < 4p2 − 2p ≤ n+ (k2 + 1)m,

n+ k3m < 6p2 − p ≤ n+ (k3 + 1)m,

n+ k4m < 8p2 ≤ n+ (k4 + 1)m.

Then k0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ 39.
Since p < 3.15

√

m/2 and m > 5120 we have

ki+1 − (ki + 1) <
2p2 + p

m
< 10, i = 0, 1, 2, 3.

Hence ki+1 − ki ≤ 10, i = 0, 1, 2, 3.
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Case 1: u + v = n + im, k0 + 1 ≤ i ≤ k1. As n + im < 2p2 − p and
B′ +B′ ⊆ [0, 4p2 − 2p), there is only one posibility: u, v ∈ B′. By Lemma 1,
we have

∑

k0+1≤i≤k1

σV (n+ im) ≤ 16(k1 − k0) ≤ 160.

In case k1 = k0, this inequality also holds.

Case 2: u + v = n + im, k1 + 1 ≤ i ≤ k2. As n + im < 4p2 − 2p and
B′+B′ ⊆ [0, 4p2−2p), there are at most seven possibilities: (1) u, v ∈ B′; (2)
u ∈ B′, v ∈ B′+2p2−p; (3) u ∈ B′, v ∈ B′+2p2; (4) u ∈ B′, v ∈ B′+2p2+p;
(5) u ∈ B′ + 2p2 − p, v ∈ B′; (6) u ∈ B′ + 2p2, v ∈ B′; (7) u ∈ B′ + 2p2 + p,
v ∈ B′. Thus

∑

k1+1≤i≤k2

σV (n+ im) ≤ 7 · 16(k2 − k1) ≤ 1120.

In case k2 = k1, this inequality also holds.

Case 3: u + v = n + im, k2 + 1 ≤ i ≤ k3. As n + im ≥ 4p2 − 2p and
B′ +B′ ⊆ [0, 4p2 − 2p), the case u, v ∈ B′ cannot hold. Thus

∑

k2+1≤i≤k3

σV (n+ im) ≤ 15 · 16(k2 − k1) ≤ 2400.

In case k3 = k2, this inequality also holds.

Case 4: u + v = n + im, k3 + 1 ≤ i ≤ k4. As n + im ≥ 6p2 − p and
B′ +B′ ⊆ [0, 4p2 − 2p), the following seven cases cannot hold: (1) u, v ∈ B′;
(2) u ∈ B′, v ∈ B′ + 2p2 − p; (3) u ∈ B′, v ∈ B′ + 2p2; (4) u ∈ B′,
v ∈ B′ + 2p2 + p; (5) u ∈ B′ + 2p2 − p, v ∈ B′; (6) u ∈ B′ + 2p2, v ∈ B′;
(7) u ∈ B′ + 2p2 + p, v ∈ B′. Thus

∑

k3+1≤i≤k4

σV (n+ im) ≤ 9 · 16(k2 − k1) ≤ 1440.

In case k4 = k3, this inequality also holds.

Hence, for all n ∈ Zm (m > 5120), we have

σA(n) ≤
∑

k0+1≤i≤k4

σV (n+ im) ≤ 160 + 1120 + 2400 + 1440 = 5120.

Therefore, for any natural number m, there exists a set A ⊆ Zm such
that A+A = Zm and σA(n) ≤ 5120 for all n ∈ Zm.

This completes the proof of the Theorem.
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[11] V. Puš, On multiplicative bases in abelian groups, Czechoslovak Math. J. 41 (1991),

282–287.
[12] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145–151.
[13] M. Tang and Y. G. Chen, A basis of Zm, Colloq. Math. 104 (2006), 99–103.

Department of Mathematics
Anhui Normal University
Wuhu 241000, China
E-mail: tmzzz2000@163.com

Department of Mathematics
Nanjing Normal University

Nanjing 210097, China
E-mail: ygchen@njnu.edu.cn

Received 26 August 2005;

revised 8 September 2006 (4655)


