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ON A DECOMPOSITION OF BANACH SPACES

BY

JAKUB DUDA (Rehovot and Praha)

Abstract. By using D. Preiss’ approach to a construction from a paper by J. Ma-
toušek and E. Matoušková, and some results of E. Matoušková, we prove that we can
decompose a separable Banach space with modulus of convexity of power type p as a
union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn
null. This improves an earlier unpublished result of E. Matoušková. As a corollary, in each
separable Banach space with modulus of convexity of power type p, there exists a closed
nonempty set A and a Borel non-Haar null set Q such that no point from Q has a nearest
point in A. Another corollary is that ℓ1 and L1 can be decomposed as unions of a ball
small set and an Aronszajn null set.

1. Introduction. The aim of this paper is to construct decompositions
of certain separable Banach spaces into a ball small set and an Aronszajn
null set. Let X be a separable Banach space. A set E ⊂ X is called porous if
there is c ∈ (0, 1) such that for every x ∈ E and every δ > 0 there is z ∈ X
such that 0 < ‖z−x‖ < δ and E∩B(z, c‖z−x‖) = ∅. D. Preiss and S. Tǐser
proved in [9] that every infinite-dimensional separable Banach space X may
be decomposed into two sets U and V such that U is of linear measure zero
on every line, and V is a countable union of closed porous sets. In particular,
the set U is negligible in the sense of Aronszajn (see the definition below).

D. Preiss and L. Zaj́ıček introduced in [10] the notion of a ball small set,
which is a subclass of σ-porous sets, and is related to Fréchet differentiability
in Hilbert spaces. J. Matoušek and E. Matoušková [6] used the notion of
ball smallness to construct an equivalent norm on a separable Hilbert space
which is Fréchet differentiable almost nowhere in the sense of Aronszajn.
This was achieved by decomposing the Hilbert space as a union of a ball
small set and an Aronszajn null set. Using an idea of D. Preiss (see [6])
and results of E. Matoušková from [8] we produce such a decomposition
for separable superreflexive spaces whose modulus of convexity is of some
power type (actually, we can even take a “symmetric ball small set” in the
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decomposition; see Remark 3.3). Application of Proposition 3.2 from [4]
yields a counterexample to a conjecture due to J. P. R. Christensen from [2]
in such spaces.

After finishing most of this manuscript (which is part of the author’s
Ph.D. thesis [3]), the author has learned that the following is implicit in
E. Matoušková’s unpublished manuscript [7]: every separable infinite-dimen-
sional superreflexive space with modulus of convexity of some power type
and with a basis allows a decomposition into a ball small set and an Aron-
szajn null set. Because [7] is not easily available, we include the full proof
which also includes Matoušková’s result.

Our approach has another interesting corollary: the spaces ℓ1 and L1 can
be decomposed as unions of a ball small set and an Aronszajn null set (see
Corollary 3.5). This indicates that such “paradoxical” decompositions are
also possible for non-reflexive spaces. Our decomposition results are related
to earlier results due to Preiss and Tǐser [9] in the following way: we replace
the notion of σ-porous sets by a (more restrictive) notion of ball small sets;
on the other hand, instead of being null on every line, the complements of
our sets in the decomposition are Aronszajn null.

2. Preliminaries. Let X be a real Banach space, x ∈ X, and r > 0. We
denote by B(x, r) the open ball with center x and radius r, and S(x, r) :=
B(x, r) \ B(x, r). For C ⊂ X and r > 0 we define B(C, r) :=

⋃
c∈C B(c, r).

If Y is a subspace of X, then X/Y denotes the quotient of X by Y ; it is
the set of equivalence classes x̂ = x + Y for x ∈ X (the canonical quotient
map q : X → X/Y is defined as q(x) = x̂ = x+Y ), which is a Banach space
endowed with the norm ‖x̂‖ = inf{‖x+ y‖ : y ∈ Y }.

We will need the modulus of convexity δX which is defined for ε ∈ (0, 2] as

δX(ε) = inf{1 − ‖x+ y‖/2: x, y ∈ SX , ‖x− y‖ ≥ ε}.

For more information about the modulus of convexity see [1]. We shall say
that δX is of power type p (for some p ≥ 2) provided there exists C > 0
such that δX(ε) ≥ Cεp for ε ∈ (0, 2]. Note that if X has modulus of con-
vexity of power type p, then X is superreflexive (and thus reflexive); see for
example [1].

Let X be a separable Banach space, and let A be a Borel subset of X.
The set A is called Haar null if there is a Borel probability measure µ on X
such that µ(x+ A) = 0 for every x ∈ X. Let B ⊂ X be Borel. We say that
B is Aronszajn null if for every sequence (xi)

∞
i=1 in X whose closed linear

span is X, there exist Borel sets Bi ⊂ X such that B =
⋃

iBi and for each
i ∈ N the intersection of Bi with any line in direction xi has one-dimensional
Lebesgue measure zero. Note that Aronszajn null sets are Haar null, but not
conversely. For more details about these notions see [1].
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The following notion was defined by D. Preiss and L. Zaj́ıček in [10]. Let
X be a normed linear space and A ⊂ X, r > 0. We say that A is r-ball
porous if for each x ∈ A and ε > 0 there exists y ∈ X such that ‖x− y‖ = r
and B(y, r − ε) ∩ A = ∅. We say that B ⊂ X is ball small if B =

⋃
nAn

where each An is rn-ball porous for some rn > 0. It is a very restrictive
porosity-like property. Ball-smallness depends on the equivalent norm (see
Example 2.5 in [4]). Note that if for each x ∈ A and ε > 0 there exists
y ∈ B(x, r + ε) with B(y, r) ∩A = ∅, then A is r-ball porous.

We shall need the following lemma from [6].

Lemma 2.1 ([6, Lemma 2.2]). Let X be a separable Banach space, let

A ⊂ X be a Borel set , and let Y be a closed subspace of X of finite codimen-

sion. Let n ∈ N be such that the intersection of A with any n-dimensional

affine subspace of X parallel to Y is of n-dimensional measure zero. Then

A is Aronszajn null.

The next lemma comes from [8].

Lemma 2.2 ([8, Lemma 2.3]). Let X,Y be separable infinite-dimensional

Banach spaces, and T : X → Y a continuous linear surjective mapping. Let

A ⊂ Y be Aronszajn null. Then T−1(A) is Aronszajn null.

Proposition 2.3. Let X be a Banach space and Y be a subspace of X.

(i) Let q : X → X/Y be the canonical quotient map. Then for each

x ∈ X and r > 0 we have

q−1(BX/Y (q(x), r)) = BX(x, r) + Y.

Thus, if A ⊂ X/Y is a ball small subset of X/Y , then q−1(A) is a

ball small subset of X.

(ii) If X has modulus of convexity of power type p, then so does X/Y .

Proof. To prove (i), take z ∈ q−1(BX/Y (q(x), r)). Then we have q(z) ∈
BX/Y (q(x), r), and so ‖q(z) − q(x)‖ < r. Thus there exists y ∈ Y such that
‖z − y − x‖X < r. Then z = z − y + y, where z − y ∈ B(x, r) and y ∈ Y .

For the other inclusion, consider z + y where z ∈ B(x, r) and y ∈ Y .
Then

‖q(x) − q(z + y)‖ = ‖q(x) − q(z)‖ ≤ ‖x− z‖ < r

and thus z + y ∈ q−1(BX/Y (q(x), r)). The rest follows easily.

For (ii), take x̃, z̃ ∈ X/Y with ‖x̃‖X/Y = ‖z̃‖X/Y = 1 and ‖x̃−z̃‖X/Y ≥ ε
for some ε ∈ (0, 2]. Pick x, z ∈ X with q(x) = x̃, q(z) = z̃. Because X is
reflexive, by weak compactness and weak lower semicontinuity of the norm
there exist yx, yz ∈ Y such that ‖x+yx‖X = 1, and ‖z+yz‖X = 1. It follows
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that ‖x+ yx − z − yz‖X ≥ ε. Now

1 −

∥∥∥∥
x̃+ z̃

2

∥∥∥∥
X/Y

≥ 1 −

∥∥∥∥
x+ z

2
+
yx + yz

2

∥∥∥∥
X

≥ Cεp,

since X has modulus of convexity of power type p. To conclude the proof,
we take the infimum over all such x̃, z̃ ∈ X/Y .

The following theorem can be found in e.g. [1, Theorem E.3(ii)].

Theorem 2.4 (Gurarii–Gurarii). Let E be a superreflexive space. Then

there are 1 < t < q < ∞ and a constant γ = γE > 0 such that every

normalized basic sequence {xn} in E satisfies

(2.1) γ−1
( ∑

|an|
q
)1/q

≤
∥∥∥

∑
anxn

∥∥∥ ≤ γ
( ∑

|an|
t
)1/t

for every choice of scalars {an} for which
∑
anxn converges.

Remark 2.5. Let E be a superreflexive space with a normalized basis
(fn)n and let (en)n be its dual basis (see [5]). Let γ = γE > 0 be the constant
from the previous theorem. Then it follows easily from (2.1) (applied to
(fn)n) that γ−1 ≤ ‖en‖E∗ ≤ γ. Set ẽn = en/‖en‖. Let γ1, t1, q1 be the
constants from Theorem 2.4 for E∗. Then (2.1) also holds for (en)n with
t1, q1, and γ2 = γ · γ1.

Let X be a Banach space. For each n-dimensional subspace Y of X fix
an isomorphism MY : Y → R

n (Rn is taken with the Euclidean norm) with
‖MY ‖ ≤ 1. This isomorphism induces a measure λY on Y which is the
image of the Lebesgue measure on R

n under M−1
Y . For each n-dimensional

affine subspace W ⊂ X parallel to Y , fix a vector oW ∈ W . We define
λW (C) = λY (C − oW ) for any Borel subset C of W .

Lemma 2.6. Suppose A ⊂ W is Borel. The induced measures have the

following properties:

(i) λW (A) = λW (A+ y) for any y ∈ Y ,
(ii) if Z is an n-dimensional affine subspace of X parallel to W , then

λW (A) = λZ(A− oW + oZ),

(iii) ηnλW (A) = λWη(ηA) for any η > 0,
(iv) λW (B(s, t) ∩W ) ≤ vtn for any s ∈W and t > 0, where

v = sup
n

voln(BRn(0, 1)) <∞.

An N -dimensional test cube U will be any set of the form

U =
{
x+

N∑

i=1

αiui : αi ∈ [0, 1]
}
,

where ui ∈ BX(0, 1), and ui’s are linearly independent.
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The following lemma gives us an estimate of the measure of sections of
balls by affine finite-dimensional subspaces; it is an analogue of Claim 4.6′

from [6] for spaces with modulus of convexity of power type p.

Lemma 2.7. Suppose that a Banach space X has modulus of convexity

of power type p. Then for each N ∈ N there exists β = β(p,N,X) > 0
such that whenever Z is an N -dimensional affine subspace of X, and x ∈ X
satisfies dist(x, Z) ≥ 1 − ̺ for 0 < ̺ < 1, then λZ(B(x, 1) ∩ Z) ≤ β̺N/p.

Proof. Without any loss of generality we can assume that x = 0. We
know that for some C > 0 we have δX(ε) ≥ Cεp for ε ∈ (0, 2], where δX is
the modulus of convexity for X. This implies the following:

(∗) If y, z ∈ BX and Cεp ≥ 1 − ‖(y + z)/2‖ for some ε ∈ (0, 2], then
‖y − z‖ < ε.

Suppose that ̺ < C ·2p. Take s, y ∈ B(x, 1)∩Z. Then (y+s)/2 ∈ B(x, 1)∩Z
and thus ‖(y + s)/2‖ > 1 − ̺. We have ̺ = Cεp for some ε ∈ (0, 2) and
by (∗) we obtain ‖y − s‖ < ε ≤ C1̺

1/p. Write Z = oZ + Y , where Y is an
N -dimensional linear subspace of X. We get

(B(x, 1) ∩ Z) − oZ ⊂ (B(s, C1̺
1/p) ∩ Z) − oZ .

This inclusion together with Lemma 2.6 implies that

λZ(B(x, 1) ∩ Z) ≤ λZ(B(s, C1̺
1/p) ∩ Z) ≤ C2̺

N/p,

where C2 = CN
1 v, s− oZ ∈ Y , and v = supn voln(BRn(0, 1)). Set β1 = C2.

When ̺ ≥ C · 2p, we can estimate λZ(B(x, 1) ∩ Z) by v · 2N . In this
case, set β2 = v · 2N (max(1, C · 2p))−N/p. To conclude the proof, define
β := max(β1, β2).

The following is an analogue of Proposition 3.2 from [6] for spaces with
modulus of convexity of power type p.

Proposition 2.8. Let X be an infinite-dimensional separable Banach

space with a basis and with modulus of convexity of power type p. Then

there exists an N ∈ N such that for each ε > 0 we can find r > 0, and a

countable C ⊂ X, such that

(A) for each x ∈ X and ψ, ξ > 0 there exist infinitely many cn, c̃n ∈ C
with

(i) ‖c̃n − (2x− cn)‖ < ξ,
(ii) ‖cn − cm‖ ≥ r − ψ, ‖c̃n − cm‖ ≥ r − ψ for n 6= m,
(iii) ‖c̃n − cn‖ = 2r,
(iv) ‖x− cn‖ ≤ r + ξ, ‖x− c̃n‖ ≤ r + ξ (and thus B(C, r + δ) = X

for any δ > 0),

(B) λaff(U)(U ∩B(C, r)) < ε for any N -dimensional test cube U .
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Remark 2.9. For X = ℓs with 1 < s < ∞, we can strengthen condi-
tion (ii) of Proposition 2.8(A) as follows:

(ii) ‖cn − cm‖ ≥ 21/sr, ‖c̃n − cm‖ ≥ 21/sr for n 6= m.

Proof of Proposition 2.8. Let (ek)k be the basis of X and let (fk)k be
the dual basis. For X = ℓs, take (ek)k to be the standard basis of ℓs and
(fk)k the standard basis of ℓs′ , where 1/s + 1/s′ = 1. We can suppose
that ‖fk‖ = 1. Let (xk)k be a dense finitely-supported sequence in X with
each point repeated infinitely many times. Construct sequences nk ∈ N and
sk ∈ SX so that

• max{max(suppxk), nk−1} < nk,
• ‖sk‖ = 〈fnk

, sk〉 = 1,
• |fnk

(sl)| ≤ 1/k for l < k.

This can be achieved using Remark 2.5, because for any x ∈ X we see
that fj(x) → 0 as j → ∞. For X = ℓs, just choose sk = enk

. Define
ck = xk+sk, c̃k = xk−sk. Note that 〈fnk

, ck〉 = 1, and put C1 = {ck : k ∈ N},

C̃1 = {ck : k ∈ N}, and finally C = C1 ∪ C̃1.

We will show that for K > 0 large enough the following holds:

(A′) for each x ∈ X and ψ, ξ > 0 there exist infinitely many cn, c̃n ∈ C
with

(i) ‖c̃n − (2x− cn)‖ < ξ,
(ii) ‖cn − cm‖ ≥ 1 − ψ, ‖c̃n − cm‖ ≥ 1 − ψ for m 6= n,
(iii) ‖c̃n − cn‖ = 2 for n ∈ N,
(iv) ‖x− cn‖ ≤ 1 + ξ, ‖x− c̃n‖ ≤ 1 + ξ (and thus B(C, 1 + δ) = X

for any δ > 0),

(B′) K−Nλaff{T}(T ∩B(C, r)) < ε for any T which is a K times enlarged
test cube U .

For X = ℓs, just modify (A) in an obvious way. Once this is established,
our proposition follows by taking r = 1/K and renaming (1/K)C as C.
Condition (A) follows easily from (A′): just apply (A′) to x/r, ψ/r, and ξ/r.
Condition (B) can be obtained from (B′). To see this, choose a test cube

U = {x+
∑N

i=1 αiui : αi ∈ [0, 1]} and define Y = span{ui} and V = x+ Y .
Take

T = KU =
{
Kx+

N∑

i=1

αiui : αi ∈ [0,K]
}

to be our enlarged test cube and define W = aff{T} = Kx + Y (thus
(1/K)W = V ). Then by Lemma 2.6(iii) we obtain

K−NλW (T ∩B(C, 1)) = λV (U ∩B(C/K, 1/K)).
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Pick N > pq, where q = q1 comes from Remark 2.5. We now prove (B′).
First, we only work with C1. ConsiderK > 1/N . Let U be a test cube and let

T be the K times enlarged copy of U (i.e. T = {x+
∑N

i=1 αiui : αi ∈ [0,K]}).
For j = 0, 1, . . . let

Ij = {k ∈ N : 1 − 2−j ≤ dist(T, ck) < 1 − 2−j−1}.

Take wk ∈ T such that ‖wk − ck‖ = dist(T, ck). If dist(ck, T ) < 1, then
k ∈ Ij for some j and we have

λaff(T )(T ∩B(ck, 1)) ≤ β2−Nj/p.

Hence

K−Nλaff{T}(B(C1, 1) ∩ T ) ≤
β

KN

∞∑

j=0

2−Nj/p|Ij |.

To estimate |Ij| note that for almost all k ∈ Ij the vector fnk
is “almost

orthogonal” to spanuj . Indeed, take η = 1/(NK 2j+2) and define

I ′j = {k ∈ Ij : |〈ui, fnk
〉| < η for all i = 1, . . . , N}.

Because ui’s are unit vectors, by Remark 2.5 we obtain

|{k : |〈ui, fnk
〉| ≥ η}| ≤

∑

k : |〈ui,fnk
〉|≥η

|〈ui, fnk
〉|q/ηq ≤ γq‖ui‖

q/ηq ≤ γqη−q.

Hence

|Ij \ I
′
j | ≤ Nγqη−q = γqN q+1Kq2q(j+2).

We need to bound |I ′j | so suppose that k ∈ I ′j . Then obviously

‖wk − ck‖ ≥ |〈fnk
, wk〉 − 〈fnk

, ck〉| = |〈fnk
, wk〉 − 1|

and from ‖wk − ck‖ < 1− 2−j−1 it follows that 〈fnk
, wk〉 > 2−j−1. Write wk

as x+
∑N

i=1 αiui where 0 ≤ αi ≤ K. We obtain

〈fnk
, x〉 ≥ 〈fnk

, wk〉 −NKη ≥ 2−j−2.

For k ∈ I ′j we have

γ−1
( ∞∑

i=nk

|〈fi, x〉|
q
)1/q

≤ γ−1
( ∞∑

i=1

|〈fi, x− xk〉|
q
)1/q

≤ ‖x− xk‖ ≤ ‖x− ck‖ + ‖sk‖ ≤ ‖x− wk‖ + ‖wk − ck‖ + 1 < 4NK,

because suppxk ⊂ [0, nk). Take the first l ∈ N so that (
∑∞

i=l |〈fi, x〉|
q)1/q ≤

4γNK, and then observe that

(4γNK)q ≥
∞∑

i=l

|〈fi, x〉|
q ≥

∑

k∈I′j : nk>l

〈fnk
, x〉q ≥ (|I ′j| − 1)2−q(j+2).
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From this we obtain |I ′j| ≤ γqN qKq2q(j+4)+1 for sufficiently large K. The
final estimate is

K−Nλaff{T}(B(C1, 1) ∩ T ) ≤
β

KN

∞∑

j=0

2−Nj/p|Ij |

≤
β

KN

( ∞∑

j=0

2−Nj/p|I ′j| +
∞∑

j=0

2−Nj/p|Ij \ I
′
j |

)
≤
C(N, p, q,X)

KN−q
.

Now take K large enough to make the last quantity less than ε/2.

The same argument as above works also for C̃1, provided we replace fnk

by −fnk
, ck by c̃k, and C1 by C̃1. Thus, altogether we obtain

K−Nλaff{T}(B(C, 1) ∩ T ) < ε.

To see that (A′) holds, fix ψ, ξ > 0 and x ∈ X. Select k ∈ N such that
2 ‖xk − x‖ < ξ and 1/k < ψ. By the choice of (xk)k there exists a sequence
(mj)j ⊂ N such that mj > k and xk = xmj

for each j ∈ N. We shall see
that the sequences (cmj

)j and (c̃mj
)j satisfy the conclusion of (A′). To see

that (iv) holds, note that ‖x − cmj
‖ ≤ ‖x − xmj

‖ + ‖smj
‖ ≤ 1 + ξ, and

similarly for c̃mj
. Notice that ‖c̃mj

− (2x − cmj
)‖ = 2 ‖xmj

− x‖ < ξ, and
this implies (i). To prove (ii), for i > j we get

‖cmi
− cmj

‖ ≥ ‖smi
− smj

‖ ≥ fnmi
(smi

− smj
) ≥ 1 − 1/mi ≥ 1 − ψ,

where the penultimate inequality follows from the construction of nk. Again
for i > j we get

‖c̃mi
− cmj

‖ ≥ ‖smi
+ smj

‖ ≥ fnmi
(smi

+ smj
) ≥ 1 − 1/mi ≥ 1 − ψ,

and an analogous argument works in the case i < j. Finally, (iii) follows from
‖c̃mi

− cmi
‖ = 2‖smi

‖. If X = ℓp, we get ‖cmi
− cmj

‖ ≥ ‖emi
− emj

‖ ≥ 21/p,

and ‖c̃mi
− cmj

‖ ≥ ‖emi
+ emj

‖ ≥ 21/p for i 6= j.

3. Spaces with power type modulus of convexity. We are now
ready to prove the main theorem:

Theorem 3.1. Let X be an infinite-dimensional separable Banach space

with modulus of convexity of power type p. Then there exists a Borel set

A ⊂ X which is ball small and whose complement is Aronszajn null.

Remark 3.2. It follows from results of Hanner (see e.g. [1]) that spaces
Lp and ℓp for 1 < p <∞ have modulus of convexity of power type max(2, p),
and thus they satisfy the assumptions of the above theorem.

Proof. Choose a subspace Y ⊂ X∗ with a basis; such a subspace exists
according to Theorem 1.a.5 from [5]. Then by reflexivity W = X/Y ∗ also
has a basis (see [5]). Proposition 2.3(ii) implies that X/Y ∗ has modulus of
convexity of power type p. Let D ⊂ W be an Aronszajn null set whose
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complement is ball small. It follows from Lemma 2.2 that q−1(D) is an
Aronszajn null subset of X, and Proposition 2.3(i) that q−1(W \ D) =
X \ q−1(D) is a ball small subset of X. Thus if we can construct a set D
which satisfies the conclusion of the theorem for W , then q−1(D) is the
desired set for X. These observations imply that we can suppose that our
space has a basis.

For each m ∈ N apply Proposition 2.8 with ε = 1/m obtaining rm > 0
and a set Cm. Define E =

⋂
mB(Cm, rm). To see that E is Aronszajn null, it

is enough to see that U ∩E has Lebesgue measure zero for any test cube U ,
as any N -dimensional affine subspace Z ⊂ X can be written as a countable
union of such cubes. If U is such a test cube, then λU (U∩B(Cm, rm)) ≤ 1/m
and thus λU (U ∩ E) = 0. Now application of Lemma 2.1 shows that E is
Aronszajn null.

We have to establish that A = X \ E =
⋃

m(X \ B(Cm, rm)) is ball
small. It suffices to observe that condition (A) of Proposition 2.8 implies
that X \B(Cm, rm) is rm-ball porous.

Remark 3.3. In fact, the set A from the previous theorem is ball small
in a very strong symmetric sense. It can be decomposed as A =

⋃
nAn,

where An = X \B(Cn, rn) and for each An we have (take r := rn):

(†) for each x ∈ An and α, β > 0 there exist countably many cj with

(i) ‖(2x− cj) − x‖ = ‖x− cj‖ ≤ r + α,
(ii) B(cj, r) ∩An = ∅, B(2x− cj, r − α) ∩An = ∅,
(iii) ‖cj − ck‖ ≥ r − β, ‖(2x− cj) − ck‖ ≥ r − β for j 6= k,
(iv) ‖(2x− cj) − cj‖ ≥ 2r − β.

To see this, choose ψ, ξ > 0 such that max(ψ, ψ + ξ) < β and ξ < α. Then
condition (A) of Proposition 2.8 yields countably many cj , c̃j. Condition (i)
follows from condition (iv) of Proposition 2.8. To prove (ii), note that it
follows immediately from the definition of An that B(cj, r) ∩An = ∅ for all
j ∈ N. Since ‖c̃j − (2x − cj)‖ < ξ < α it follows that B(2x − cj , r − α) ⊂
B(c̃j , r), and thus B(2x−cj , r−α)∩An = ∅. Now estimate (for any j, k ∈ N)

‖(2x− cj) − ck‖ ≥ ‖(2x− cj) − c̃j + c̃j − ck‖ ≥ r − ψ − ξ ≥ r − β,

and so conditions (iii) and (iv) hold. That concludes the proof of (†).
Note that (†) also implies that An is r-ball porous. To see this, take

x ∈ An and ε > 0. We can assume by shifting and rescaling that x = 0 and
r = 1. Take α := ε/2 and y := ck/‖ck‖, where (cj)j is the sequence from (†)
and k ∈ N is arbitrary. Assume that ‖z − y‖ < 1 − ε for some z ∈ X. Then

‖z − cj‖ ≤ ‖z − cj/‖cj‖ ‖ + ‖cj − cj/‖cj‖ ‖ < 1 − ε+ ε/2 = 1 − α.

Thus B(y, 1−ε) ⊂ B(cj , r) and so B(y, 1−ε)∩An = ∅. We have established
that An is r-ball porous.
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For X = ℓp with 1 < p < ∞, by Remark 2.9 it is easy to see that
condition (iii) from (†) can be replaced with

(iii) ‖cj − ck‖ ≥ 21/pr − β, ‖(2x− cj) − ck‖ ≥ 21/pr − β for j 6= k.

Corollary 3.4. Let X be an infinite-dimensional separable superreflex-

ive space. Then there exists an equivalent norm | · | on X such that (X, | · |)
has modulus of convexity of power type p for some p ≥ 2 and there exists

a ball small set A whose complement is Aronszajn null.

Proof. It is well known that for superreflexive spaces, there exists an
equivalent norm | · | such that (X, | · |) has modulus of convexity of power
type p for some p ≥ 2 (see e.g. [1, Theorem A.6]). Apply Theorem 3.1 to
(X, | · |).

We get the following decomposition for the spaces ℓ1 and L1:

Corollary 3.5. There exist Borel ball small subsets A ⊂ ℓ1 and B ⊂ L1

whose complements are Aronszajn null.

Proof. Let q : ℓ1 → ℓ2 be a linear quotient map (it exists by e.g. [5, p.
108]). Let ℓ2 = B ∪D, where B is ball small and D is Aronszajn null, and
let A := q−1(B). Then A is ball small by Proposition 2.3(i), and ℓ1 \ A is
Aronszajn null by Lemma 2.2.

Let Y ⊂ L1 be a closed complemented subspace of L1 isometric to ℓ1
(call the isometry T : Y → ℓ1); existence of such a space Y is well known.
Let P : L1 → Y be the projection onto Y . Then Proposition 2.3(i) and
Lemma 2.2 imply that B := P−1(T−1(A)) ⊂ L1 (where A ⊂ ℓ1 is as in
the previous paragraph) is a Borel ball small set with an Aronszajn null
complement.

The following proposition was proved in [4].

Proposition 3.6 ([4, Proposition 3.2]). Let X be a separable Banach

space and D ⊂ X be a Borel ball small set. Suppose that X \D is Aronszajn

null. Then there exists a nonempty closed set A and a Borel set Q which

is not Haar null such that the metric projection PA(x) is empty for each

x ∈ Q.

By combining Theorem 3.1 with Proposition 3.6, we obtain the following
corollary, which shows that Christensen’s conjecture [2] concerning almost-
everywhere existence of nearest points fails also in separable spaces with
modulus of convexity of power type p (for some p ≥ 2).

Corollary 3.7. Let X be an infinite-dimensional separable superreflex-

ive space such that X has modulus of convexity of power type p for some

p ≥ 2. Then there exists a nonempty closed set A and a Borel set Q which

is not Haar null such that PA(x) = ∅ for all x ∈ Q.
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[10] D. Preiss and L. Zaj́ıček, Stronger estimates of smallness of sets of Fréchet non-
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