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ON A DECOMPOSITION OF BANACH SPACES

BY

JAKUB DUDA (Rehovot and Praha)

Abstract. By using D. Preiss’ approach to a construction from a paper by J. Ma-
tousek and E. Matouskova, and some results of E. Matouskovd, we prove that we can
decompose a separable Banach space with modulus of convexity of power type p as a
union of a ball small set (in a rather strong symmetric sense) and a set which is Aronszajn
null. This improves an earlier unpublished result of E. Matouskova. As a corollary, in each
separable Banach space with modulus of convexity of power type p, there exists a closed
nonempty set A and a Borel non-Haar null set @) such that no point from @ has a nearest
point in A. Another corollary is that ¢; and L; can be decomposed as unions of a ball
small set and an Aronszajn null set.

1. Introduction. The aim of this paper is to construct decompositions
of certain separable Banach spaces into a ball small set and an Aronszajn
null set. Let X be a separable Banach space. A set E C X is called porous if
there is ¢ € (0,1) such that for every x € E and every § > 0 there is z € X
such that 0 < ||z—z| < d and ENB(z,¢||z—x||) = 0. D. Preiss and S. Tiser
proved in [9] that every infinite-dimensional separable Banach space X may
be decomposed into two sets U and V' such that U is of linear measure zero
on every line, and V is a countable union of closed porous sets. In particular,
the set U is negligible in the sense of Aronszajn (see the definition below).

D. Preiss and L. Zajicek introduced in [10] the notion of a ball small set,
which is a subclass of o-porous sets, and is related to Fréchet differentiability
in Hilbert spaces. J. Matousek and E. Matouskova [6] used the notion of
ball smallness to construct an equivalent norm on a separable Hilbert space
which is Fréchet differentiable almost nowhere in the sense of Aronszajn.
This was achieved by decomposing the Hilbert space as a union of a ball
small set and an Aronszajn null set. Using an idea of D. Preiss (see [6])
and results of E. Matouskova from [8] we produce such a decomposition
for separable superreflexive spaces whose modulus of convexity is of some
power type (actually, we can even take a “symmetric ball small set” in the
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decomposition; see Remark 3.3). Application of Proposition 3.2 from [4]
yields a counterexample to a conjecture due to J. P. R. Christensen from [2]
in such spaces.

After finishing most of this manuscript (which is part of the author’s
Ph.D. thesis [3]), the author has learned that the following is implicit in
E. Matouskové’s unpublished manuscript [7]: every separable infinite-dimen-
sional superreflexive space with modulus of convexity of some power type
and with a basis allows a decomposition into a ball small set and an Aron-
szajn null set. Because [7] is not easily available, we include the full proof
which also includes Matouskova’s result.

Our approach has another interesting corollary: the spaces ¢; and L can
be decomposed as unions of a ball small set and an Aronszajn null set (see
Corollary 3.5). This indicates that such “paradoxical” decompositions are
also possible for non-reflexive spaces. Our decomposition results are related
to earlier results due to Preiss and Tiser [9] in the following way: we replace
the notion of o-porous sets by a (more restrictive) notion of ball small sets;
on the other hand, instead of being null on every line, the complements of
our sets in the decomposition are Aronszajn null.

2. Preliminaries. Let X be a real Banach space, z € X, and r > 0. We
denote by B(x,r) the open ball with center x and radius r, and S(z,r) :=
B(x,r)\ B(x,r). For C C X and 7 > 0 we define B(C,r) := .. B(c, 7).
If Y is a subspace of X, then X/Y denotes the quotient of X by Y it is
the set of equivalence classes & = x + Y for # € X (the canonical quotient
map q: X — X/Y is defined as ¢(x) = & = 2 +Y"), which is a Banach space
endowed with the norm ||Z|| = inf{||z + y||: y € Y}.

We will need the modulus of converity §x which is defined for € € (0, 2] as

dx(e) =inf{l — ||z + y||/2: z,y € Sx, ||z —y| > e}

For more information about the modulus of convexity see [1]. We shall say
that dx is of power type p (for some p > 2) provided there exists C' > 0
such that dx(g) > CeP for € € (0,2]. Note that if X has modulus of con-
vexity of power type p, then X is superreflexive (and thus reflexive); see for
example [1].

Let X be a separable Banach space, and let A be a Borel subset of X.
The set A is called Haar null if there is a Borel probability measure p on X
such that p(z + A) =0 for every z € X. Let B C X be Borel. We say that
B is Aronszajn null if for every sequence (z;)5°; in X whose closed linear
span is X, there exist Borel sets B; C X such that B = |J, B; and for each
1 € N the intersection of B; with any line in direction x; has one-dimensional
Lebesgue measure zero. Note that Aronszajn null sets are Haar null, but not
conversely. For more details about these notions see [1].
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The following notion was defined by D. Preiss and L. Zajicek in [10]. Let
X be a normed linear space and A C X, r > 0. We say that A is r-ball
porous if for each © € A and € > 0 there exists y € X such that ||z —y|| =7
and B(y,r —e) N A = 0. We say that B C X is ball small if B = |, An
where each A, is rp-ball porous for some r, > 0. It is a very restrictive
porosity-like property. Ball-smallness depends on the equivalent norm (see
Example 2.5 in [4]). Note that if for each z € A and € > 0 there exists
y € B(z,r 4 ¢) with B(y,r) N A =0, then A is r-ball porous.

We shall need the following lemma from [6].

LEMMA 2.1 ([6, Lemma 2.2]). Let X be a separable Banach space, let
A C X be a Borel set, and let Y be a closed subspace of X of finite codimen-
sion. Let n € N be such that the intersection of A with any n-dimensional
affine subspace of X parallel to'Y is of n-dimensional measure zero. Then
A is Aronszajn null.

The next lemma comes from [8].

LEMMA 2.2 ([8, Lemma 2.3]). Let X,Y be separable infinite-dimensional
Banach spaces, and T: X —'Y a continuous linear surjective mapping. Let
A CY be Aronszajn null. Then T~1(A) is Aronszajn null.

PROPOSITION 2.3. Let X be a Banach space and Y be a subspace of X.

(i) Let g: X — X/Y be the canonical quotient map. Then for each
z € X andr >0 we have

¢ ' (Bx/y(q(z), 7)) = Bx(z,1) + Y.

Thus, if A C X/Y is a ball small subset of X/Y, then ¢~ *(A) is a
ball small subset of X .
(ii) If X has modulus of convexity of power type p, then so does X/Y .

Proof. To prove (i), take z € ¢~*(Bx,y(q(z),r)). Then we have ¢(z) €
Bx,y(q(z),r), and so [|q(z) — q(x)|| < r. Thus there exists y € Y such that
lz—y—z||x <r. Then z =z — y + y, where z —y € B(x,r) and y € Y.

For the other inclusion, consider z + y where z € B(z,r) and y € Y.
Then

la(z) = q(z + )l = llg(z) — a2 <[l = 2] <7

and thus z +y € ¢~ (By,y(q(x),7)). The rest follows easily.

For (11), take .EE, ze X/Y with Hf”)(/y = ||E||X/Y =1 and Hi—gHX/y > €
for some ¢ € (0,2]. Pick z,z € X with ¢(z) = 7, ¢(2) = z. Because X is
reflexive, by weak compactness and weak lower semicontinuity of the norm
there exist y,,y, € Y such that [z +y,[|x =1, and [z +y.|x = 1. It follows
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that ||z + yz — 2 — y:||x > . Now
T+z

; $+Z+yx+yz

1—
2 2

> CeP,
X

Xy
since X has modulus of convexity of power type p. To conclude the proof,
we take the infimum over all such 7,z € X/Y . u

The following theorem can be found in e.g. [1, Theorem E.3(ii)].

THEOREM 2.4 (Gurarii-Gurarii). Let E be a superreflexive space. Then
there are 1 < t < q¢ < oo and a constant v = vyg > 0 such that every

normalized basic sequence {x,} in E satisfies
1/t
< 7( > !anlt)

en (S let) " < [

for every choice of scalars {an} for which Y apzy, converges.

REMARK 2.5. Let E be a superreflexive space with a normalized basis
(fn)n and let (e,), be its dual basis (see [5]). Let ¥ = yg > 0 be the constant
from the previous theorem. Then it follows easily from (2.1) (applied to
(fn)n) that 47' < len||p= < 7. Set & = en/len]l. Let y1,t1,q1 be the
constants from Theorem 2.4 for E*. Then (2.1) also holds for (e,), with
t1,q1, and v =y - 71.

Let X be a Banach space. For each n-dimensional subspace Y of X fix
an isomorphism My : Y — R™ (R" is taken with the Euclidean norm) with
||My || < 1. This isomorphism induces a measure Ay on Y which is the
image of the Lebesgue measure on R" under M, L For each n-dimensional
affine subspace W C X parallel to Y, fix a vector oy € W. We define
Aw (C) = Ay (C — ow) for any Borel subset C' of W.

LEMMA 2.6. Suppose A C W is Borel. The induced measures have the
following properties:

(i) Aw(4) = \w(A+y) for ang y € Y,
(ii) if Z is an n-dimensional affine subspace of X parallel to W, then

Aw(A) = )\2<A — ow + Oz),

(iii) n"Aw(A) = Awy(nA) for any n >0,
(iv) Aw(B(s,t) N W) < vt™ for any s € W and t > 0, where

v = sup vol,(Bgrn(0,1)) < oco.
n

An N-dimensional test cube U will be any set of the form
N
U= {a:+ Zaiui: a; € [0, 1]},
i=1

where u; € Bx(0,1), and u;’s are linearly independent.
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The following lemma gives us an estimate of the measure of sections of
balls by affine finite-dimensional subspaces; it is an analogue of Claim 4.6
from [6] for spaces with modulus of convexity of power type p.

LEMMA 2.7. Suppose that a Banach space X has modulus of convezity
of power type p. Then for each N € N there exists § = [(p, N, X) > 0
such that whenever Z is an N -dimensional affine subspace of X, and v € X
satisfies dist(z, Z) > 1 — o for 0 < o < 1, then A\z(B(z,1)N Z) < Bo™V/P.

Proof. Without any loss of generality we can assume that x = 0. We
know that for some C' > 0 we have dx(¢) > CeP for € € (0, 2], where dx is
the modulus of convexity for X. This implies the following;:

(x) If y,z € Bx and CeP? > 1 — ||(y + 2)/2|| for some € € (0,2], then
ly =zl <e.

Suppose that o < C-2P. Take s,y € B(z,1)NZ. Then (y+s)/2 € B(z,1)NZ
and thus [[(y + s)/2| > 1 — 0. We have ¢ = CeP for some ¢ € (0,2) and
by (¥) we obtain ||y — s|| < & < C10'/P. Write Z = 0z + Y, where Y is an
N-dimensional linear subspace of X. We get

(B(z,1) N Z) — 0z C (B(s,C10"P) N Z) — 0.
This inclusion together with Lemma 2.6 implies that
Az(B(2,1) N Z) < Az(B(s,C10'") N Z) < Co™?,
where Cy = CNv, s — 0z € Y, and v = sup,, vol,(Bgn(0,1)). Set 31 = Cs.
When ¢ > C - 2P, we can estimate Az (B(z,1) N Z) by v - 2V. In this
case, set (o = v - 2V (max(1,C - 2p))_N/p. To conclude the proof, define

B = max(f, 32). =

The following is an analogue of Proposition 3.2 from [6] for spaces with
modulus of convexity of power type p.

PROPOSITION 2.8. Let X be an infinite-dimensional separable Banach
space with a basis and with modulus of convexity of power type p. Then
there exists an N € N such that for each € > 0 we can find r > 0, and a
countable C' C X, such that

(A) for each x € X and 1,£ > 0 there exist infinitely many cp, ¢, € C
with
(1) llen = (22 —cn)| <&,
(i) [len = emll =7 =1, [[6n — eml| = 7 — 1) for n #m,
(iii) ||én — cnl| = 2r,
(iv) le —cnll <r+& |2 —3ll <r+€ (and thus B(Cyr +6) = X
for any § > 0),

(B) Aag@)(UNB(C,r)) < ¢ for any N-dimensional test cube U.
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REMARK 2.9. For X = /; with 1 < s < 0o, we can strengthen condi-
tion (ii) of Proposition 2.8(A) as follows:

(ii) llen — emll > 25, |G, — eml| > 2V/5r for n # m.

Proof of Proposition 2.8. Let (e)r be the basis of X and let (fx)i be
the dual basis. For X = /;, take (eg)r to be the standard basis of ¢, and
(fx)r the standard basis of ¢y, where 1/s + 1/s’ = 1. We can suppose
that || fx|| = 1. Let (z)r be a dense finitely-supported sequence in X with
each point repeated infinitely many times. Construct sequences n; € N and
s € Sx so that

e max{max(supp xx), ng_1} < ng,

o skl = (foo sk) =1,
o |fn.(s1)] <1/k forl < k.

This can be achieved using Remark 2.5, because for any x € X we see
that fj(x) — 0 as j — oo. For X = /;, just choose s; = ey,. Define
Ck = Tp+5k, Cr = x)—Sk. Note that <fnk,ck> 1,and put C = {c;: k € N},
Cl = {Ck ke N} and finally C' = Cy U Cl

We will show that for K > 0 large enough the following holds:

(A7) for each x € X and ,& > 0 there exist infinitely many ¢, ¢, € C
with
(i) flen = (22 —ca)| <&,
(i) len —emll 2 1=, [Ién — emll = 1 — ¢ for m # n,
(iii) ||en — cnl] =2 for n € N,
(iv) |lz—cnll <14E, ||z — ¢l < 14€ (and thus B(C,1+6) = X
for any 6 > 0),
(B") KN\ (TNB(C,r)) < & for any T which is a K times enlarged
test cube U.

For X = /,, just modify (A) in an obvious way. Once this is established,
our proposition follows by taking r = 1/K and renaming (1/K)C as C.
Condition (A) follows easily from (A’): just apply (A’) to z/r, ¢/r, and /7.
Condition (B) can be obtained from (B’). To see this, choose a test cube
U={z+XN aui: a; €[0,1]} and define Y = span{u;} and V =z + Y.
Take

N
T=KU= {Kﬂ:+2aiui: a; € [O,K]}
=1

to be our enlarged test cube and define W = aff{T} = Kz + Y (thus
(1/K)W = V). Then by Lemma 2.6(iii) we obtain

K Y\ (TN B(C,1)) = \v(UNB(C/K,1/K)).
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Pick N > pq, where ¢ = ¢ comes from Remark 2.5. We now prove (B').
First, we only work with C;. Consider K > 1/N. Let U be a test cube and let
T be the K times enlarged copy of U (i.e. T = {:174—2?;1 auit o; € [0, K1}).
For j =0,1,... let

I[;={keN:1-27 <dist(T,c;) <1-2771}.

Take wy € T such that ||wg — ci|| = dist(T, cx). If dist(cx,T) < 1, then
k € I; for some j and we have

Ay (T N B(ep, 1)) < p27 /P,
Hence

- B = ._Nj
K™ Aty (B(C1L 1) NT) < o5 > 27V,
§=0

To estimate |I;| note that for almost all k € I; the vector fp, is “almost
orthogonal” to spanu;. Indeed, take n = 1/(NK 2972) and define

I ={k € I;: [(uj, fn,)| <mforalli=1,... N}
Because w;’s are unit vectors, by Remark 2.5 we obtain
[k i fadl =} < D0 (i )|/ < Al /0 < A0~
k:|<ui7fnk>|2n
Hence
115\ I} < Nyty~9 = 4N 9200F2),
We need to bound |I}| so suppose that k € I}. Then obviously
Hwk - Ck” > |<fnkvwk> - <fnk’ck>| = |<fnkvwk> - 1|

and from |Jwy, — cx|| < 1 —27771 it follows that (f,,, ,wg) > 27771, Write wy,
as r + Efil o;u; where 0 < a; < K. We obtain

<fnk7x> 2 <fnk7/wk> - NKT] Z 2_j_2-

For k € I]’- we have

(X ) < (B e - )

i=ng
< lo =zl < llo = crll + [[skll <l — well + [wp — ekl +1 < 4ANK,

because supp 3 C [0,ny,). Take the first I € N so that (352, |(f;, z)]9)1/9 <
4vN K, and then observe that

WNEY =D [(fo )7 > Y (fn2)? > (1] - 1)2790+2),

1=l ke[; i >l
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From this we obtain |I}| < FIN K290+ for sufficiently large K. The
final estimate is

K™ Xy (B(C1, 1) Kﬂzrm/p![ |

ﬁ - —Nj / —Nj ! O(N7p7Q7X)
< (Lo + Y ) < A0
i=0 =0

Now take K large enough to make the last quantity less than /2.
The same argument as above works also for C1, provided we replace f,,
by — fn,, ck by ¢k, and Cy by Cy. Thus, altogether we obtain

K_N)\aﬁ:{T}(B(C, 1) N T) <e.

To see that (A’) holds, fix ¥, > 0 and z € X. Select k € N such that
2|z, — z|| < £ and 1/k < 4. By the choice of (xy)) there exists a sequence
(m;); C N such that m; > k and z = x,; for each j € N. We shall see
that the sequences (c,;); and (¢, ); satisfy the conclusion of (A’). To see
that (iv) holds, note that |2 — cpm,|| < |2 — Zpm, || + [[sm, || < 14 &, and
similarly for ¢,,,. Notice that |[c;n, — (22 — cm,)|| = 2||zm; — | < &, and
this implies (i). To prove (ii), for i > j we get

Hcmi - ij” > Hsz - Sij > fTLmi(Smi - Smj) >1- 1/mi >1-1,
where the penultimate inequality follows from the construction of ng. Again
for i > j we get

”Emz - ij” > Hsz + Sij > fTLmi(Smi =+ Smj) >1- 1/mi >1- 1#;
and an analogous argument works in the case i < j. Finally, (iii) follows from
||Emz - szH = 2”57”1” It X = Epv we get Hcmz - ij” > ”emz - emj” > 21/p’
and ||, — cij > |lem,; + eij > 21/P for 4 #j. m

3. Spaces with power type modulus of convexity. We are now
ready to prove the main theorem:

THEOREM 3.1. Let X be an infinite-dimensional separable Banach space
with modulus of convexity of power type p. Then there exists a Borel set
A C X which is ball small and whose complement is Aronszajn null.

REMARK 3.2. It follows from results of Hanner (see e.g. [1]) that spaces
L, and ¢, for 1 < p < oo have modulus of convexity of power type max(2, p),
and thus they satisfy the assumptions of the above theorem.

Proof. Choose a subspace Y C X* with a basis; such a subspace exists
according to Theorem 1.a.5 from [5]. Then by reflexivity W = X/Y™ also
has a basis (see [5]). Proposition 2.3(ii) implies that X/Y™ has modulus of
convexity of power type p. Let D C W be an Aronszajn null set whose
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complement is ball small. It follows from Lemma 2.2 that ¢~!(D) is an
Aronszajn null subset of X, and Proposition 2.3(i) that ¢~ (W \ D) =
X \ ¢71(D) is a ball small subset of X. Thus if we can construct a set D
which satisfies the conclusion of the theorem for W, then ¢~!(D) is the
desired set for X. These observations imply that we can suppose that our
space has a basis.

For each m € N apply Proposition 2.8 with ¢ = 1/m obtaining r,, > 0
and a set Cy,. Define E =), B(Cp, 7). To see that E is Aronszajn null, it
is enough to see that U N E has Lebesgue measure zero for any test cube U,
as any N-dimensional affine subspace Z C X can be written as a countable
union of such cubes. If U is such a test cube, then Ay (UNB(Chy, r1m)) < 1/m
and thus Ay (U N E) = 0. Now application of Lemma 2.1 shows that E is
Aronszajn null.

We have to establish that A = X \ E = J,,(X \ B(Cp, 7)) is ball
small. It suffices to observe that condition (A) of Proposition 2.8 implies
that X \ B(Cy,,rm) is rm-ball porous. =

REMARK 3.3. In fact, the set A from the previous theorem is ball small

in a very strong symmetric sense. It can be decomposed as A = (J,, An,
where A, = X \ B(C),r,) and for each A,, we have (take r :=ry,):

(1) for each z € A,, and «, 5 > 0 there exist countably many ¢; with
(i) 122 = ¢j) — 2] = [lz — ¢l <7 +a,
(ii) B(cj,r)NA, =0, B2x —¢j,r —a)N A, =0,
(iil) |lej — ekl > r—B6,|(2x —¢j) — x| > — B for j # k,
(iv) [[22 = ¢j) —¢jl| = 2r = 5.
To see this, choose 1,£ > 0 such that max(¢,9 4+ ) < f and £ < a. Then
condition (A) of Proposition 2.8 yields countably many c¢;,¢;. Condition (i)
follows from condition (iv) of Proposition 2.8. To prove (ii), note that it
follows immediately from the definition of A,, that B(c;j,r) N A, = 0 for all
J € N. Since ||¢; — (22 — ¢j)|| < € < a it follows that B(2z — ¢j,r — «) C
B(cj,r), and thus B(2z—c;j,r—a)NA, = 0. Now estimate (for any j, k € N)
12z = ¢j) =l 2 [|(2x —¢j) =¢j + ¢ -l 2r = ===,
and so conditions (iii) and (iv) hold. That concludes the proof of (f).
Note that (1) also implies that A, is r-ball porous. To see this, take
x € A, and € > 0. We can assume by shifting and rescaling that x = 0 and
r = 1. Take o := €/2 and y := ¢}, /||ck||, where (c;); is the sequence from ()
and k € N is arbitrary. Assume that ||z — y|| <1 — ¢ for some z € X. Then
e = cll < llz = ei/llesll I+ lles = es/lesll | < 1~ +e/2=1-a.

Thus B(y,1—¢) C B(cj,r) and so B(y,1—¢)NA, = 0. We have established
that A,, is r-ball porous.
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For X = /¢, with 1 < p < oo, by Remark 2.9 it is easy to see that
condition (iii) from (f) can be replaced with

(ili) |lej — ekl = 2l/pyp — 3, |(2z —¢;) — ekl > 21/Pyr — 3 for j#k.

COROLLARY 3.4. Let X be an infinite-dimensional separable superreflex-
ive space. Then there exists an equivalent norm |- | on X such that (X,]|-])
has modulus of convexity of power type p for some p > 2 and there exists
a ball small set A whose complement is Aronszajn null.

Proof. 1t is well known that for superreflexive spaces, there exists an
equivalent norm | - | such that (X, |- |) has modulus of convexity of power
type p for some p > 2 (see e.g. [1, Theorem A.6]). Apply Theorem 3.1 to
(X, [-]). =

We get the following decomposition for the spaces ¢; and Lq:

COROLLARY 3.5. There exist Borel ball small subsets A C £1 and B C Ly
whose complements are Aronszajn null.

Proof. Let q : {1 — {9 be a linear quotient map (it exists by e.g. [5, p.
108]). Let ¢ = B U D, where B is ball small and D is Aronszajn null, and
let A := ¢ '(B). Then A is ball small by Proposition 2.3(i), and ¢; \ A is
Aronszajn null by Lemma 2.2.

Let Y C Lq be a closed complemented subspace of L isometric to ¢;
(call the isometry T': Y — £1); existence of such a space Y is well known.
Let P : L1 — Y be the projection onto Y. Then Proposition 2.3(i) and
Lemma 2.2 imply that B := P~ }(TY(A)) C L (where A C {; is as in
the previous paragraph) is a Borel ball small set with an Aronszajn null
complement. =

The following proposition was proved in [4].

PROPOSITION 3.6 ([4, Proposition 3.2]). Let X be a separable Banach
space and D C X be a Borel ball small set. Suppose that X \ D is Aronszajn
null. Then there exists a nonempty closed set A and a Borel set Q) which
is not Haar null such that the metric projection Pa(x) is empty for each

T € Q.

By combining Theorem 3.1 with Proposition 3.6, we obtain the following
corollary, which shows that Christensen’s conjecture [2] concerning almost-
everywhere existence of nearest points fails also in separable spaces with
modulus of convexity of power type p (for some p > 2).

COROLLARY 3.7. Let X be an infinite-dimensional separable superreflex-
we space such that X has modulus of convexity of power type p for some
p > 2. Then there exists a nonempty closed set A and a Borel set (Q which
is not Haar null such that Pa(z) =0 for all x € Q.
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