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A FREE GROUP OF PIECEWISE LINEAR TRANSFORMATIONS

BY

GRZEGORZ TOMKOWICZ (Bytom)

Abstract. We prove the following conjecture of J. Mycielski: There exists a free non-
abelian group of piecewise linear, orientation and area preserving transformations which
acts on the punctured disk {(x, y) ∈ R2 : 0 < x2 + y2 < 1} without fixed points.

1. Introduction. In the theory of paradoxical decompositions which
goes back to Hausdorff, Banach and Tarski, and von Neumann (see the
survey of M. Laczkovich [2] and also [5]) the following conjecture was open
until recently:

(I) The punctured disk D = {(x, y) ∈ R2 : 0 < x2 + y2 < 1} has a
paradoxical decomposition relative to the group SL2(R).

Likewise we have the more demanding conjecture:

(II) There exists a partition of D into three sets A,B,C such that the
six sets A,B,C,A∪B,B ∪C,C ∪A are equivalent to each other by
finite decomposition relative to the group SL2(R).

Recall that sets A,B ⊂ X are equivalent by finite decomposition (or
equidecomposable) relative to a group G acting on X if there exist finite
partitions {Ai}ki=1 and {Bi}ki=1 of A and B respectively and g1, . . . , gk ∈ G
such that gi(Ai) = Bi for each 1 ≤ i ≤ k. The set E ⊂ X is paradoxical
relative to G if E contains disjoint subsets A and B and each of them is
equidecomposable to E relative to G.

Conjecture (I) was proved by M. Laczkovich [1]. (II) presents additional
difficulties, and it will be proved in the present paper. In fact it is known
(see [4] and Corollary 4.12 in [5]) that with the use of the Axiom of Choice,
affirmative answers to (I), (II) and many similar conjectures follow from the
following theorem:

Theorem 1.1. There exists a free nonabelian group F of permutations
acting on the punctured disk D = {(x, y) ∈ R2 : 0 < x2 + y2 ≤ r2} such that
if f ∈ F \ {e} and x ∈ D then f(x) 6= x, and for every f ∈ F there exists a

2010 Mathematics Subject Classification: Primary 03E05, 20E05, 51M05; Secondary
20G20.
Key words and phrases: free group, Hausdorff–Banach–Tarski paradox, paradoxical set.

DOI: 10.4064/cm125-2-1 [141] c© Instytut Matematyczny PAN, 2011



142 G. TOMKOWICZ

finite partition D = D1 ∪ · · · ∪Dn, where the sets Di belong to the Boolean
algebra generated by sets open in D, and there exist ϕ1, . . . , ϕn ∈ SL2(R)
such that f�Di = ϕi�Di for i = 1, . . . , n.

J. Mycielski [3] proved a similar theorem for the hyperbolic plane and
in [4] he conjectured the above one and outlined a possible approach to the
proof. In the present paper we will show that indeed his approach can be
realized. Our proof does not use the Axiom of Choice. Let us also mention
that the proof of conjecture (I) in [1] is based on the fact that the action of
SL2(R) on R2 \ {(0, 0)} is locally commutative. However this fact does not
suffice to prove conjecture (II).

2. Preliminaries. In this section we recall the material from Mycielski
[4] that is relevant to our proof. All unexplained terminology can be found
in [4].

In what follows, unless otherwise stated, linear transformations are rep-
resented by a matrix relative to the standard basis.

Lemma 2.1. If A ∈ SL2(R) and tr(A) 6= 2, then A(x) 6= x for all
x ∈ R2 \ {(0, 0)}.

Proof. It is enough to observe that tr(A) 6= 2 implies det(A − I) 6= 0.
Then apply this to the equation Ax = x to obtain x = (0, 0).

Lemma 2.2. For any ϕ ∈ SL2(R) there exists a rotation ρϕ ∈ SO2(R)
such that

D \ ϕ(D) = ρϕ(D \ ϕ−1(D)).

Proof. This follows since the ellipses ϕ−1(D) and ϕ(D) are congruent.
Applying Lemma 2.2 for all ϕ ∈ SL2(R) we can define a piecewise linear

transformation ϕ̂ : D → D such that

ϕ̂(x) =
{
ϕ(x) if x ∈ D ∩ ϕ−1(D),
ρϕ(x) if x ∈ D \ ϕ−1(D).

Let κ0 > 1 be a real number such that D ⊂ ρ1ϕ(D) ∪ ρ2ϕ(D) ∪ ρ3ϕ(D)
for some rotations ρ1, ρ2, ρ3 ∈ SO2(R) and ϕ represented by the matrix

A0 =
(
κ0 0
0 1/κ0

)
.

We observe that there exist three orthonormal, oriented bases with the same
orientation as the standard basis, such that if ϕ1, ϕ2, ϕ3 ∈ SL2(R) are rep-
resented by a matrix

A =
(
κ 0
0 1/κ

)
relative to these bases, where 1 < κ < κ0, then the composition ϕ̂1ϕ̂2ϕ̂3 has
the following property:
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(P) For every x ∈ D, ϕ̂1ϕ̂2ϕ̂3(x) = fgh(x), where

(f, g, h) ∈ {ϕ1, ρ} × {ϕ2, ρ} × {ϕ3, ρ} \ {(ρ, ρ, ρ)}
and ρ is the counter-clockwise rotation through π/2.

Remark 2.3. Clearly, if each of the three bases defined above is rotated
counter-clockwise by the same angle, then the transformations ϕ4, ϕ5, ϕ6 ∈
SL2(R) represented by the matrix A relative to these bases are such that
the map ϕ̂4ϕ̂5ϕ̂6 also has the property (P ).

Finally, the above implies that Theorem 1.1 reduces to the following
statement:

Theorem 2.4. There exist triples (ϕ1, ϕ2, ϕ3), (ϕ4, ϕ5, ϕ6) ∈ (SL2(R))3

and a real number κ with 1 < κ < κ0 such that the pair of transformations
ϕ̂1ϕ̂2ϕ̂3, ϕ̂4ϕ̂5ϕ̂6 : D → D generate a free group as required in Theorem 1.1.

Remark 2.5. In the standard basis, each ϕi has a matrix of the form
S−1
ϕi

ASϕi , where Sϕi is an orthogonal matrix.

3. Proof of Theorem 2.4. Choose ϕ1, . . . , ϕ6 ∈ SL2(R) represented
by the matrix A =

(
κ 0
0 1/κ

)
in some six, pairwise different, orthonormal bases

B1, . . . ,B6 with the same orientation as the standard basis. Assume also that
ϕ̂1ϕ̂2ϕ̂3 and ϕ̂4ϕ̂5ϕ̂6 have the property (P ). Further let D be the punctured
disk and R be the matrix corresponding to the rotation ρ, defined in the
property (P ). Denote by Ψ the set consisting of the elements ϕ̂1ϕ̂2ϕ̂3, ϕ̂4ϕ̂5ϕ̂6

and their inverses.

Lemma 3.1. Let w be a nontrivial, irreducible composition of l elements
from Ψ . Then there exists a finite partition {Di}ki=1 of D such that the sets
Di belong to the Boolean algebra generated by sets open in D and w restricted
to any Di has matrix of the form P1X1 . . .PnXnPn+1, where n ≤ 3l, Pi

is an orthogonal matrix and Xi ∈ {A,A−1} for i = 1, . . . , n. Moreover for
each i ≤ n+ 1, either

(i) Pi = Rk1S−1
ϕr

for r ≤ 6 and k1 ∈ {0, 1, 2, 3}, or
(ii) Pi = SϕrR

k1S−1
ϕs

for r, s ≤ 6 and k1 ∈ {0, 1, 2, 3}, or
(iii) Pi = SϕrR

k1 for r ≤ 6 and k1 ∈ {0, 1, 2, 3},
where Pi satisfies (i) (resp. (iii)) if and only if i = 1 (resp. i = n+ 1).

Proof. By the property (P ), for any x ∈ D and any w, w(x) equals the
value of some composition of elements from Ψ .

The order of the elements in the composition determines the shape of the
matrices Pi and also the form of the partition {Di}ki=1.

Let S be the set of all entries of the matrices Sϕ1 , . . . ,Sϕ6 (see Re-
mark 2.5).
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Lemma 3.2. Let P1X1 . . .PnXn be a matrix such that Xi ∈ {A,A−1}
and Pi is an orthogonal matrix with entries from S for 1 ≤ i ≤ n and
n = 1, 2, . . . . Then each entry of P1X1 . . .PnXn is a function of the form

Q(κ) = a−nκ
−n + · · ·+ a−1κ

−1 + a0 + a1κ+ · · ·+ anκ
n,

where ai ∈ Q(S), the field generated by the set S.
Moreover:

(i) If Xn = A then P1X1 . . .PnXn is of the form

P1X1 . . .PnA =

(
a

(1)
−nκ

−(n−2) + · · ·+ a
(1)
n κn a

(2)
−nκ

−n + · · ·+ a
(2)
n κn−2

a
(3)
−nκ

−(n−2) + · · ·+ a
(3)
n κn a

(4)
−nκ

−n + · · ·+ a
(4)
n κn−2

)
.

(ii) If Xn = A−1 then P1X1 . . .PnXn is of the form

P1X1 . . .PnA−1 =

(
b
(1)
−nκ

−n + · · ·+ b
(1)
n κn−2 b

(2)
−nκ

−(n−2) + · · ·+ b
(2)
n κn

b
(3)
−nκ

−n + · · ·+ b
(3)
n κn−2 b

(4)
−nκ

−(n−2) + · · ·+ b
(4)
n κn

)
.

Proof. By induction on the number of factors PiXi. We observe that the
highest term of each entry of P1X1 . . .PnXnPn+1 has the form anκ

n and the
lowest a−nκ−n. Then multiplying the matrix by A (resp. A−1) is multiplying
the first column by κ (resp. 1/κ) and the second by 1/κ (resp. κ).

Lemma 3.3. Let P̂1, . . . , P̂n be some orthogonal matrices such that each
of them can be expressed by the conditions (i)–(iii) of Lemma 3.1. If the rota-
tion angles αi of Sϕi, i = 1, . . . , 6, are such that αi−αj /∈ {kπ/2 : k ∈ Z} and
αi /∈ {kπ/2 : k ∈ Z} for any i 6= j, then no entry of P̂1X̂1 . . . P̂nX̂n, where
X̂i ∈ {A,A−1}, is a constant function in κ, for any positive integer n ≥ 2.

Proof. We consider two cases.

Case 1: P̂i 6= SϕrR
2S−1

ϕr
for any r ≤ 6 and any 1 ≤ i ≤ n. In this case

the assumptions of the lemma imply that P̂i represents a rotation through
an angle 6= kπ/2 for k ∈ Z. Then it is enough to observe by Lemma 3.2 that,
for any n ≥ 2, each of the coefficients in the highest terms of P̂1X̂1 . . . P̂nX̂n

is a product of some entries of P̂1, . . . , P̂n and thus it is not zero.

Case 2: P̂i = SϕrR
2S−1

ϕr
for some r ≤ 6 and some 1 < i < n. Let j be

the minimal number such that P̂j is of the above form. Suppose X̂j−1 = A
and observe that in this case X̂j = A and by Lemma 3.2 we can express
P̂1X̂1 . . . P̂j−1X̂j−1 as(

a
(1)
−(j−1)κ

−(j−3) + · · ·+ a
(1)
j−1κ

j−1 a
(2)
−(j−1)κ

−(j−1) + · · ·+ a
(2)
j−1κ

j−3

a
(3)
−(j−1)κ

−(j−3) + · · ·+ a
(3)
j−1κ

j−1 a
(4)
−(j−1)κ

−(j−1) + · · ·+ a
(4)
j−1κ

j−3

)
.

Since the matrix SϕrR
2S−1

ϕr
corresponds to rotation through π, multiplica-

tion of P̂1X̂1 . . . P̂j−1X̂j−1 by it changes the sign of the coefficients in the
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highest and the lowest terms of all the entries of P̂1X̂1 . . . P̂j−1X̂j−1. Thus
finally

P̂1X̂1 . . . P̂jX̂j =

 a
(1)
−jκ

−(j−4) + · · ·+ a
(1)
j κj a

(2)
−jκ

−j + · · ·+ a
(2)
j κj−4

a
(3)
−jκ

−(j−4) + · · ·+ a
(3)
j κj a

(4)
−jκ

−j + · · ·+ a
(4)
j κj−4

 ,

where the coefficients in the highest terms in the first column and in the
lowest terms in the second column are not zero. Clearly we can extend this
reasoning to the case P̂j = P̂j+1 = P̂j+p = SϕrR

2S−1
ϕr

, where j + p ≤ n.
It remains to observe that if P̂j+p 6= SϕrR

2S−1
ϕr

for some j + p ≤ n then
by Lemma 3.2 we obtain Case 1 for the matrix P̂1X̂1 . . . P̂j+pX̂j+p. The
same reasoning can be applied, mutatis mutandis, to the situation when
X̂j−1 = A−1.

Now we can conclude the proof of Theorem 2.4. Let ϕ1, . . . , ϕ6, ϕ̂1ϕ̂2ϕ̂3

and ϕ̂4ϕ̂5ϕ̂6 be the transformations, A, R be the matrices and D be the
set as at the beginning of Section 3. For all positive integers n, the matrices
P1, . . . ,Pn satisfy the assumptions of Lemma 3.3. Let w be a nontrivial,
irreducible composition of elements from Ψ , and P1X1 . . .PnXnPn+1 be a
matrix corresponding to w, restricted to some Di ⊂ D, as in Lemma 3.1.

First we show that for any positive integer n,

(∗) tr(P1X1 . . .PnXnPn+1) = tr(P̂1X̂1 . . . P̂jX̂j),

for some integer j such that 1 ≤ j ≤ n, where P̂i is described by one of the
conditions (i)–(iii), and X̂i ∈ {A,A−1} for 1 ≤ i ≤ j.

We have two cases:

Case 1: P1 6= P−1
n+1. By Lemma 3.1 we can write Pn+1P1 = SϕrR

k1S−1
ϕs

for some r, s ≤ 6 and some k1 ∈ {0, 1, 2, 3}. Since similar matrices have equal
traces,

tr(P1X1 . . .PnXnPn+1) = tr(P̂X1 . . .PnXn), where P̂ = SϕrR
k1S−1

ϕs
.

Case 2: P1 = P−1
n+1. By Lemma 3.1 we obtain P1 = Rk1S−1

ϕr
for some

r ≤ 6 and some k1 ∈ {0, 1, 2, 3}, and then P−1
n+1 = SϕrR

−k1 . Since the
bases Bi are pairwise different, we apply the property (P ) to deduce that
X1 = X−1

n . Thus

tr(P1X1 . . .PnXnPn+1) = tr(P−1
n+1X

−1
n P2X2 . . .PnXnPn+1)

= tr(XnPn+1P−1
n+1X

−1
n P2X2 . . .Pn−1Xn−1Pn)

= tr(P2X2 . . .Pn−1Xn−1Pn).

We can repeat this operation if necessary, to obtain finally

tr(P1X1 . . .PnXnPn+1) = tr(P1+jX1+j . . .Pn−jXn−jPn+1−j),
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where j is the number of the above cancelations and P1+j 6= P−1
n+1−j (such

a j exists since w is nontrivial and irreducible).
Thus Case 2 is reduced to Case 1.
Further, we observe that, by Lemmas 3.2 and 3.3, the condition

tr(P̂1X̂1 . . . P̂nX̂n) = 2 leads to a nonconstant polynomial in κ. Since each of
the above polynomials has only finitely many roots and there are only count-
ably many expressions of the form P̂1X̂1 . . . P̂nX̂n, where n is any positive
integer, we conclude that the set K = {κ ∈ R : tr(P̂1X̂1 . . . P̂nX̂n) = 2,
n ∈ N, P̂i are of the form (i)–(iii), X̂i ∈ {A,A−1} for each 1 ≤ i ≤ n}
is countable. Thus we can choose some κ1 ∈ R such that κ1 /∈ K and
1 < κ1 < κ0.

By the properties (P ) and (∗) we have tr(P1X1 . . .PnXnPn+1) 6= 2 for
this κ1, any positive integer n and any Pi,Xj , j < n + 1, i ≤ n + 1. To
conclude the proof it is enough to use Lemmas 2.1 and 3.1.

Corollary 3.4. If the entries of the matrices Pi from P1X1 . . .
. . .PnXnPn+1 are nonzero algebraic numbers and κ0 is a real number, oc-
curring in the property (P ), then one can use as κ1, in the above proof, all
transcendental numbers κ such that 1 < κ < κ0.
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