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CORRELATION ASYMPTOTICS FROM LARGE DEVIATIONS IN
DYNAMICAL SYSTEMS WITH INFINITE MEASURE

BY

SÉBASTIEN GOUËZEL (Rennes)

Abstract. We extend a result of Doney [Probab. Theory Related Fields 107 (1997)]
on renewal sequences with infinite mean to renewal sequences of operators. As a con-
sequence, we get precise asymptotics for the transfer operator and for correlations in
dynamical systems preserving an infinite measure (including intermittent maps with an
arbitrarily neutral fixed point).

1. Introduction. Statistical properties of dynamical systems with
enough hyperbolicity can often be related to renewal theory. Indeed, if the
successive returns to a suitable reference set are sufficiently chaotic, one
may expect that they are close to being independent, and then the proba-
bility to return exactly at time n behaves like a renewal sequence. This idea,
already implicit in Young [You99], has been explicitly developed by Sarig
and Gouëzel in [Sar02, Gou04a]. On the technical level, since there is no
real independence, one should replace the renewal sequences from probabil-
ity theory by renewal sequences of operators, but once this is done, many
results or arguments from probability theory can be adapted to yield very
precise estimates for dynamical systems preserving a probability measure.

Ideas originating in renewal theory have a long history in dynamical sys-
tems preserving an infinite measure (see for instance [Sch76, Bow79, Aar86]).
Recently, operator renewal theory was extended to this setting by Melbourne
and Terhesiu in [MT10]. They were able to adapt (and considerably refine)
estimates of Garsia and Lamperti [GL62] on renewal sequences with infinite
mean, to obtain precise asymptotics on the iterates of transfer operators for
systems having an invariant measure which is “infinite, but not too much”.

More specifically, assume that T : X → X preserves a measure µ, and
that there is a set Y of finite measure such that the first return time ϕ
to Y satisfies µ(ϕ > n) ∼ n−β`(n) for some β > 0 and some slowly
varying function ` (i.e., ` is a measurable function such that `(λx)/`(x)
tends to 1 as x → +∞, for all λ > 0). If β > 1, then the measure µ
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is finite, while it is infinite for β < 1. Under suitable assumptions, for
β ∈ (1/2, 1), [MT10] obtains precise asymptotics for the transfer opera-
tor L, of the form n1−β`(n)1Y Ln1Y → dβP , where Pv = (

	
v)1Y and dβ is

a suitable constant (similar asymptotics holds for β = 1, with an additional
logarithm). In particular, this implies estimates on the correlations, of the
form

	
u · v ◦ Tn ∼ nβ−1`(n)−1dβ

	
u ·

	
v whenever u and v are nice enough

functions supported on Y with non-zero integral. Compared to previous re-
sults (see for instance [Aar97]), the main novelty of these results is that
they hold for each n, while classical arguments give the same asymptotics
on average.

The restriction β ∈ (1/2, 1] in their argument is not merely a techni-
cal detail: for β ≤ 1/2, even in the probabilistic situation, the result be-
comes false without additional assumptions, as is explained in [GL62]. More
recently, [Don97] developed a different approach to handle also the case
β ∈ (0, 1/2] (under stronger assumptions). This approach, in contrast to
the analytic one of [GL62], is really probabilistic in nature. Our goal in this
article is to adapt it to renewal sequences of operators.

1.1. Doney’s result. Let us first explain the result of Doney we will
generalize later on. Consider a sequence of independent identically dis-
tributed random variables Z1, Z2, . . . taking values in N∗, with P (Zi > n) ∼
n−β`(n) for some β ∈ (0, 1) and some slowly varying function `. We consider
the sums (Z1 + · · ·+Zk)k>0, and let Tn be the probability that one of those
sums is equal to n.

Theorem 1.1 ([Don97, Theorem B]). Assume additionally P (Zi = n) ≤
Cn−β−1`(n), and that Zi does not take its values in a smaller lattice aZ+ b,
a > 1. Then

n1−β`(n)Tn → dβ, where dβ =
1
π

sinβπ.

The idea of Doney to prove this result is the following. Let Sk = Z1 + · · ·
+Zk. Under our assumptions, Sk/ak converges in distribution to a stable law
W of index β, where ak is such that k`(ak) ∼ aβk . A heuristic computation
gives

P(Sk = n) ∼ P(W ∈ [(n− 1)/ak, n/ak]) ∼
1
ak
ψ(n/ak),

where ψ is the density of W . The local limit theorem (based on simple
Fourier computations) justifies this statement whenever n/ak remains
bounded. Summing over k, this gives for any K ≥ 1 good asymptotics on∑

k:n/ak≤K

P(Sk = n).
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Since Tn =
∑

k P(Sk = n), it remains to estimate P(Sk = n) for n/ak →∞
to conclude. This is the main result of Doney:

Theorem 1.2. Under the previous assumptions, for k ∈ N and n ≥ ak,

P(Sk = n) ≤ Ckn−β−1`(n).

To get Sk = n, it is possible that one Zi is larger than n/2 while the
other Zj for j ≤ k are all smaller than n/2 and add up to n − Zi. This
has a probability � n−β−1`(n) if P(Z1 = n) ∼ Cn−β−1`(n). Summing over
the k possible values of i, we deduce that kn−β−1`(n) is a lower bound
for P(Sk = n). Hence, Doney’s estimate is sharp. The main point of the
proof is to show that the configurations we just described give a dominant
contribution to P(Sk = n), i.e., it is very unlikely to get Sk = n unless at
least one of the Zi is already at least n/2.

This is in essence a large deviations estimate. The proof of Doney is
written in very probabilistic terms (relying in particular on a careful change
of probability measure), but it can be reformulated in a more analytic way
that is more suitable to an extension to dynamical situations. This reformu-
lation has another advantage: there is a mistake in Doney’s computation (in
the first displayed equation following (2.31) in [Don97], the first inequality
is in the wrong direction). The analytic formulation of the argument (see
Section 5) turns out to be significantly simpler than the way it is written in
[Don97], and avoids this mistake.

By summing over k the estimates for P(Sk = n) coming from the local
limit theorem and the large deviations estimate of Theorem 1.2, Theorem 1.1
follows.

1.2. Main result for renewal sequences of operators. Let D =
{z ∈ C : |z| < 1} and D = {z ∈ C : |z| ≤ 1}.

Definition 1.3. Let (Rn)n≥1 be a sequence of operators on a Banach
space B, with

∑
‖Rn‖ < +∞. They form an aperiodic renewal sequence of

operators if R(z) =
∑
Rnz

n, defined for z ∈ D, satisfies:

(1) For z ∈ D− {1}, the spectral radius of R(z) is < 1.
(2) The operator R(1) has a simple eigenvalue at 1, and the rest of its

spectrum is contained in a disk of radius < 1.
(3) Let P be the eigenprojection of R(1) for the eigenvalue 1, and let rn

be such that PRnP = rnP . We assume that rn ≥ 0.

When B is C and Rn is multiplication by a non-negative number rn, then
the second assumption means that

∑
rn = 1, while the first one is equivalent

to the fact that the corresponding probability measure is not carried by a
smaller lattice aZ + b, a > 1. This is exactly the setting of Subsection 1.1.
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In the scalar case of Subsection 1.1, Tn is the probability that a re-
newal event takes place at time n. The analogue of this quantity in the
non-commutative setting is given by the formula T0 = I and, for n ≥ 1,

(1.1) Tn =
∞∑
k=1

∑
j1+···+jk=n

Rj1 · · ·Rjk .

For |z| < 1, the operator T (z) =
∑∞

n=0 Tnz
n is well defined and satisfies

T (z) = (I − R(z))−1. This renewal equation is of fundamental importance
to understand the asymptotics of Tn, since several functional analytic tools
can be brought into play.

Our main theorem is the following.

Theorem 1.4. Let Rn be an aperiodic renewal sequence of operators.
Assume that, for some β ∈ (0, 1) and some slowly varying function `, we
have

∑
j>n rj ∼ n−β`(n). Assume also that

(1.2) ‖Rn‖ ≤ Cn−β−1`(n).

Then

n1−β`(n)Tn → dβP

for dβ = 1
π sinβπ.

For β ∈ (1/2, 1), the theorem is true without the assumption (1.2): this
is essentially [GL62, Theorem 1.1] in the scalar case and [MT10, Theorem
2.1] in the operator case. However, the assumption (1.2) becomes necessary
for β ∈ (0, 1/2]. In the scalar case, this is [Don97, Theorem B].

The strategy of the proof is the same as Doney’s, which we described in
Subsection 1.1. More specifically, let Tn(k) be the coefficient of zn in R(z)k.
For k ≥ 1, one has T0(k) = 0 and Tn(k) =

∑
j1+···+jk=nRj1 · · ·Rjk for n ≥ 1.

By definition, Tn =
∑

k Tn(k). We will get precise asymptotics for Tn(k) in
the whole range of n and k, and add them up to get the asymptotics of Tn.

As above, let ak be a sequence with k`(ak) ∼ aβk . The behavior of Tn(k) is
different for bounded n/ak and for n/ak tending to infinity. The asymptotics
in those two regimes are described in the following statements. To describe
them, we will use the fully asymmetric stable law of index β, i.e., the real
random variable whose characteristic function is given by

(1.3) gβ(t) = e−Γ (1−β) cos(βπ/2)|t|β(1−i sgn(t) tan(βπ/2)).

Its density ψ is continuous, supported on [0,∞), and decays at infinity like
C/xβ+1. In particular, this random variable has a moment of every order
< β, but no moment of order β.
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Proposition 1.5. Let K > 0. Uniformly in k → ∞ and n ∈ [0,Kak],
one has

Tn(k) =
1
ak

(ψ(n/ak)P + o(1)),

where ψ is the density of the fully asymmetric stable law of index β.

This local limit theorem is completely classical (see for instance [AD01]
or [Don97]). The main estimate is the following.

Theorem 1.6. When n ≥ ak, we have

‖Tn(k)‖ ≤ Ckn−β−1`(n).

This is the analogue in the non-commutative setting of Theorem 1.2.
Summing the estimates given by these two results, Theorem 1.4 readily
follows as in [Don97].

1.3. Applications to dynamical systems. Applications of results
such as Theorem 1.4 to different classes of dynamical systems are described
in [MT10]. For the sake of simplicity, we will only describe one such example,
the Pomeau–Manneville map, and refer the reader to [MT10] for other ones.
For α > 0, define a map T = Tα on [0, 1] by

T (x) =
{
x(1 + 2αxα) for 0 ≤ x ≤ 1/2,
2x− 1 for 1/2 < x ≤ 1.

This map has a unique (up to scaling) absolutely continuous invariant mea-
sure µ. It is finite for α < 1, infinite for α ≥ 1. Fix some α > 1. Let
Y = (1/2, 1), and let ϕ be the first return time from Y to itself. We normal-
ize the invariant measure µ so that µ(Y ) = 1. Then µ(ϕ = n) ∼ cn−β−1 for
β = 1/α ≤ 1.

Let L be the transfer operator of T , i.e., the adjoint (with respect to µ)
of the composition with T . Denoting by Rn the first return transfer operator
to Y at time n, i.e., Rnu = 1Y Ln(1{ϕ=n}u), then

1Y Ln1Y =
∞∑
k=1

∑
j1+···+jk=n

Rj1 · · ·Rjk .

This follows by splitting a trajectory from Y to Y according to its successive
returns in Y . This is exactly the same formula as in (1.1). Hence, Tn =
1Y Ln1Y .

In order to apply Theorem 1.4, we should check that (Rn) is an aperiodic
renewal sequence of operators. When Rn acts on the space B of Lipschitz
functions on Y , it satisfies ‖Rn‖ ≤ Cn−β−1. Moreover, denoting by LY the
transfer operator of the induced map on Y , we have R(z) =

∑
Rnz

n =
LY (zϕ·). It easily follows that R(1) has a simple eigenvalue at 1 (the corre-
sponding eigenprojector being given by Pu = (

	
Y u) · 1Y ), while the spec-
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tral radius of R(z) for z ∈ D − {1} is strictly less than 1. In particular,
PRnP = µ(ϕ = n)P , so rn = µ(ϕ = n) ∼ cn−β−1.

We have checked all the assumptions of Theorem 1.4. Applying this
theorem, we get the following.

Proposition 1.7. Let u be a Lipschitz function supported on Y . Then
n1−β1Y Ln(u) converges to c

	
Y u, uniformly on Y , for some constant c in-

dependent of u. In particular, if v is an integrable function supported on Y ,

n1−β
�
u · v ◦ Tn → c

�
u ·

�
v.

This result is due to Thaler [Tha00] for α = 1, to Melbourne and Terhesiu
[MT10] for α ∈ (1, 2), and is new for α ≥ 2. As in [MT10], it can be extended
to functions that are not supported in Y , and to other classes of maps (for
instance, non-markovian ones, thanks to [Zwe98]).

The paper is organized as follows. In Section 2, we prove Proposition 1.5,
and derive Theorem 1.4 from this proposition and the large deviations es-
timate, Theorem 1.6. The rest of the paper is devoted to the proof of The-
orem 1.6. In Section 3, we describe the overall strategy, state two crucial
estimates (in Lemmas 3.1 and 3.2), and deduce the theorem from those esti-
mates. Finally, the last two sections are devoted to the proofs, respectively,
of Lemmas 3.1 and 3.2. It is only in those two sections that our arguments
deviate significantly from Doney’s.

2. Deriving the main theorem from the large deviations es-
timate. In this section, we assume the crucial large deviations estimate,
Theorem 1.6, and show how to derive our main theorem from it. The proofs
are classical (they are the same as Doney’s); we give some details for the
convenience of the reader.

For z close to 1, the operator R(z) is close to R(1). Since R(1) has an
isolated eigenvalue at 1, it follows from standard perturbation theory that
R(z) has a unique eigenvalue λ(z) close to 1, while the rest of its spectrum
is contained in a disk of radius uniformly less than 1. More specifically, we
may write

R(z) = λ(z)P (z) +Q(z),

where P (z) is a one-dimensional projection, P (z)Q(z) = Q(z)P (z) = 0 and
‖Q(z)n‖ ≤ Cρn for some ρ < 1.

We will need the asymptotics of λ(eit) for t close to 0, due to Aaronson
and Denker [AD01] (see also [MT10, Lemma 3.1]): if t > 0, then

λ(eit) = e−cβt
β`(1/t)(1+o(1)),
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where

cβ = −i
∞�

0

eiσσ−β dσ = Γ (1− β)(cos(βπ/2)− i sin(βπ/2)).

A similar formula holds for t < 0, but with cβ replaced by its complex
conjugate. In particular, for all t ∈ R,

(2.1) λ(eit/ak)k → gβ(t),

where gβ is the characteristic function of the totally asymmetric stable law
of parameter β (defined in (1.3)). Moreover, it follows from Potter bounds
[BGT87, Theorem 1.5.6] that there exist C, c > 0 such that, for any t close
enough to 0 and any k ∈ N,

(2.2) |λ(eit/ak)k| ≤ Ce−c|t|β/2 .

Proof of Proposition 1.5. We want to estimate Tn(k). The integral for-
mula for Fourier coefficients gives

Tn(k) =
π�

−π
R(eit)ke−int dt/2π.

Outside a small neighborhood of z = 1, ‖R(z)k‖ decays exponentially fast,
giving a negligible contribution to Tn(k). Therefore, we may restrict the
integral to an interval [−δ, δ] (in which λ, P and Q are well defined). Writing
u = t/ak, we get

(2.3) akTn(k) =
1

2π

δak�

−δak

R(eiu/ak)ke−i(n/ak)u du+O(ρk).

We have
‖R(eiu/ak)k‖ ≤ C|λ(eiu/ak)|k ≤ Ce−c|u|β/2 ,

by (2.2). This function is independent of k and integrable.
This shows that, uniformly in k and n, the integral in (2.3) satisfies

the assumptions of the Lebesgue dominated convergence theorem. Together
with pointwise convergence, this easily implies the proposition. To write it
formally, it is more convenient to argue by contradiction. Assume therefore
that, for some sequences kj →∞ and nj ∈ [0,Kakj ],

(2.4) akjTnj (kj)− ψ(nj/akj )P 9 0.

We can assume that nj/akj converges to a number x ∈ [0,K].
When k tends to infinity, R(eiu/ak)k converges simply to gβ(u)P by (2.1).

Since nj/akj converges to x, it follows from the dominated convergence
theorem that the integral (2.3) converges to P multiplied by the inverse
Fourier transform of gβ at x, i.e., ψ(x). Since ψ is continuous, for large
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enough j, akjTnj (kj)−ψ(nj/akj )P is arbitrarily small. This contradicts (2.4),
and concludes the proof of the proposition.

Proof of Theorem 1.4 using Proposition 1.5 and Theorem 1.6. We want
to estimate Tn =

∑
k Tn(k). Fix some K ≥ 1, and decompose Tn as

Tn =
∑

k:n<Kak

Tn(k) +
∑

k:n≥Kak

Tn(k) =: T (1)
n + T (2)

n .

If n is large, the ks appearing in the first sum are large enough so that
Proposition 1.5 applies and gives

(2.5) Tn(k) =
1
ak
ψ(n/ak)P ± ε/ak

for any fixed ε > 0 (where ±c means a term in the interval [−c, c]).
Since ak is regularly varying of index 1/β > 1, Karamata’s Theorem

[BGT87, Proposition 1.5.10] gives
∑∞

k=N 1/ak ∼ cN/aN . Hence, the error
terms ε/ak in (2.5) add up to at most εN/aN , where N is such that n =
KaN . Since N`(aN ) ∼ aβN , this is at most

Cεaβ−1
N `(aN )−1 ≤ C(K)εnβ−1`(n)−1.

Hence, the error term in T
(1)
n is oK(nβ−1`(n)−1).

Let us now study the dominating term in T
(1)
n . Define a measure µn on

[0,K] as the sum of Dirac masses at n/ak for n/ak < K, so that∑
k:n<Kak

1
ak
ψ(n/ak) = n−1

�
xψ(x) dµn.

Define A(x) = xβ/`(x), so that k ∼ A(ak). For any fixed 0 < x < y < K we
have

µn([x, y]) =
∑

x≤n/ak≤y

1 ∼
∑

k∈[A(n/y),A(n/x)]

1 ∼ A(n/x)−A(n/y)

=
(n/x)β

`(n/x)
− (n/y)β

`(n/y)
∼ nβ`(n)−1 · (1/xβ − 1/yβ)

= nβ`(n)−1 · ν([x, y]),

where ν is the measure with density βx−β−1 on (0,K]. This shows that
n−β`(n)µn converges weakly to ν on (0,K]. There is no problem at 0 since
everything can be controlled uniformly as in the estimate of the error term.
We obtain ∑

k:n<Kak

1
ak
ψ(n/ak) ∼ nβ−1`(n)−1

�
xψ(x) dν.
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Therefore,

(2.6) n1−β`(n)T (1)
n = βP

K�

0

ψ(x)x−β dx+ oK(1).

We now turn to T (2)
n . We bound it directly using Theorem 1.6, by∑

k:n≥Kak

Ckn−1−β`(n) ∼ Cn−1−β`(n)
∑

k≤A(n/K)

k ≤ Cn−1−β`(n)A(n/K)2

≤ Cn−1+βK−2β`(n)−1 · `(n)2

`(n/K)2
.

By Potter bounds, `(n)/`(n/K) ≤ CKβ/2, yielding

‖T (2)
n ‖ ≤ Cn−1+β`(n)−1 ·K−β.

Together with (2.6), this yields

n1−β`(n)Tn = βP

K�

0

ψ(x)x−β dx+ oK(1) +O(K−β).

Choosing first K large enough so that K−β and
	∞
K ψ(x)x−β dx are small,

and then n large enough so that the term oK(1) is small, we obtain the
convergence of n1−β`(n)Tn to cP , for c = β

	∞
0 x−βψ(x) dx, which is equal

to dβ (see for instance [Zol86, Theorem 2.6.3]).

Remark 2.1. In the proof of Theorem 1.4, we have relied on the local
limit theorem to estimate each individual term Tn(k) in T (1)

n , as in [Don97].
However, it is also possible to give a direct proof for this term, bypassing
the local limit theorem, more in the spirit of [GL62] and [MT10]. Indeed,
using the integral formula for Fourier coefficients, one gets

T (1)
n =

1
2π

π�

−π
e−int

∑
k>A(n/K)

R(eit)k dt

=
1

2π

π�

−π
e−intR(eit)A(n/K)(I −R(eit))−1 dt.

Using as in the proof of Proposition 1.5 a reduction to a neighborhood of
t = 0, the change of variables u = nt and the Lebesgue dominated conver-
gence theorem, one obtains good asymptotics for this term. The main point
of the computation is that R(eit)A(n/K) is small if t is not very close to 0,
making everything uniformly integrable. If one tries to use the analogous
formula for Tn, i.e.,

Tn =
1

2π

π�

−π
e−int(I −R(eit))−1 dt,
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as in [GL62] and [MT10], one loses the uniform integrability, and the con-
tribution far away from 0 becomes more complicated to control. This is why
we need to resort to a different technique to handle T (2)

n .

3. Large deviations: the strategy. In this section, we describe
Doney’s strategy to prove Theorem 1.6. Consider some k ≥ 3 (since the
theorem is trivial for any fixed k, we can assume without loss of gener-
ality that k is as large as we like), and n ≥ ak. We write n = wak for
some w ≥ 1. Introduce a truncation level ζ = wγak/2 ∈ [ak/2, n/2], where
γ ∈ (0, 1) is close enough to 1 (how close will be specified below). We ex-
pand Tn(k) =

∑
j1+···+jk=nRj1 · · ·Rjk , and we will estimate separately the

contributions of different (j1, . . . , jk), depending on the size of the different
indices.

More precisely, the set J = {(j1, . . . , jk) : j1 + · · ·+jk = n} is partitioned
into four disjoint subsets as follows: J = J3 ∪ J2 ∪ J1 ∪ J0 where

J3 = {(j) ∈ J : ∃p, jp ≥ n/2},
J2 = {(j) ∈ J : ∀p, jp < n/2 and ∃u < v with ju, jv ≥ ζ},
J1 = {(j) ∈ J : ∀p, jp < n/2 and ∃!u with ju ≥ ζ},
J0 = {(j) ∈ J : ∀p, jp < ζ}.

We will show that the sums

Σi =
∑

(j)∈Ji

Rj1 · · ·Rjk

satisfy an inequality ‖Σi‖ ≤ Ckn−β−1`(n) for i = 0, . . . , 3. This will con-
clude the proof.

To compute these norms, we will use specific estimates for the indices
which are relatively large (i.e., ≥ ζ), but we will also need to control
the terms with small indices. For them, in the scalar case, it suffices to
use the trivial fact that a probability measure has mass 1, implying that∑

j P(Sk = j) = 1 for all k. The analogue of this fact in the non-commutative
setting reads ‖R(z)k‖A ≤ C, where C is a constant independent of k and
we write ‖

∑
Fpz

p‖A =
∑
‖Fp‖. It turns out that this crucial a priori esti-

mate is highly non-trivial in our situation. The next lemma gives a slightly
strengthened version of this estimate.

For any s ∈ N ∪ {∞}, we define a truncated series R(s)(z) =
∑

j<sRjz
j

(for s =∞, this is simply R(z)).

Lemma 3.1. There exists a constant C such that, for all k ∈ N and all
s ∈ [ak/2,∞],

‖R(s)(z)k‖A ≤ C.
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Let us stress that we do not know if this lemma holds for every renewal
sequence of operators in the sense of Definition 1.3 (even for s = ∞, i.e.,
the non-truncated series): we really need the full strength of the assumption
‖Rn‖ ≤ Cn−β−1`(n) to prove this estimate. It is the most complicated step
of the proof in the operator situation (while it is completely trivial in the
scalar case). The introduction of the truncation level s is merely for technical
reasons in the argument below. The proof of this lemma is given in Section 4.

Let us introduce a convenient notation for the coefficient of zj in a power
series: we write cj(

∑
Fpz

p) = Fj . By the very definition of the set J0, the
sum over J0 is simply cn(R(ζ)(z)k). The hardest part of Doney’s argument
is an estimate of this term. Let us formulate the main estimate we will need
in this direction.

Lemma 3.2. There exists a constant C such that, for all k ∈ N and all
s ∈ [ak/2,∞], for all n ∈ N,

‖cn(R(s)(z)k)‖ ≤ Ce−n/s/ak.

This lemma is proved in Section 5.
Assuming those two results, we will now prove Theorem 1.6. The argu-

ments here are similar to those of Doney, with an important difference: since
we are dealing with (non-commutative) products of operators, we have to
keep track of the indices where summands are large.

Bounding Σ3. When (j1, . . . , jk) ∈ J3 and k ≥ 3, there is at most one
index u where ju ≥ n/2. We can thus decompose J3 according to the value
of u, to obtain

Σ3 =
k∑

u=1

cn

(
R(z)u−1

( ∞∑
j=n/2

Rjz
j
)
R(z)k−u

)
.

Therefore,

‖Σ3‖ ≤
k∑

u=1

∑
p+q≤n/2

‖cp(R(z)u−1)‖ ‖cq(R(z)k−u)‖ sup
j≥n/2

‖Rj‖

≤
k∑

u=1

‖R(z)u−1‖A‖R(z)k−u‖ACn−1−β`(n).

By Lemma 3.1, this is bounded by Ckn−1−β`(n), as desired.

Bounding Σ2. For (j1, . . . , jk) ∈ Σ2, we can consider the first index u
such that ju ≥ ζ, and the first index v > u such that jv ≥ ζ. This gives a
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partition of Σ2. Hence, Σ2 is equal to the sum over u < v of

cn

(
R(ζ)(z)u−1

( n/2−1∑
i=ζ

Riz
i
)
R(ζ)(z)v−u−1

( n/2−1∑
j=ζ

Rjz
j
)
R(n/2)(z)k−v

)
.

We expand the product as for Σ3, to get a bound

‖R(ζ)(z)u−1‖A ·sup
i≥ζ
‖Ri‖·‖R(ζ)(z)v−u−1‖A ·

∥∥∥ n/2−1∑
j=ζ

Rjz
j
∥∥∥
A
·‖R(n/2)(z)k−v‖A.

Thanks to the a priori bounds given by Lemma 3.1, this is bounded by
Cζ−β−1`(ζ) · ζ−β`(ζ). After a summation over u and v, we get

‖Σ2‖ ≤ Ck2ζ−2β−1`(ζ)2.

Since k ∼ aβk/`(ak) and ζ/ak = wγ/2, n/ζ = 2w1−γ , this can be written as

‖Σ2‖ ≤ Ck ·
aβk
`(ak)

`(ζ)
ζβ
· `(ζ)
ζβ+1

nβ+1

`(n)
· n−β−1`(n)

≤ Ck · w−βγ±ε · w(1−γ)(β+1)±ε · n−β−1`(n),

thanks to Potter bounds. If βγ > (1− γ)(β+ 1) (i.e., γ > (1 +β)/(1 + 2β)),
the exponent of w can be made negative by choosing ε small enough. This
gives a bound Ckn−β−1`(n) as desired.

Bounding Σ1. In Σ1, there is a unique index u such that j = ju > ζ. We
can therefore decompose Σ1 according to the value of u, to obtain

Σ1 =
k∑

u=1

cn

(
R(ζ)(z)u−1

( n/2−1∑
j=ζ

Rjz
j
)
R(ζ)(z)k−u

)
.

Expanding the product, we obtain

(3.1) ‖Σ1‖ ≤
k∑

u=1

∑
p+j+q=n

‖cp(R(ζ)(z)u−1)‖ ‖Rj‖ ‖cq(R(ζ)(z)k−u)‖,

where the index j has to belong to [ζ, n/2).
If w ≤ k, we need to treat separately the case where u is too close to 1

or k, i.e., u ≤ k/w or k+ 1−u ≤ k/w. For such a u, the corresponding term
in the sum is at most∑

p,q

‖cp(R(ζ)(z)u−1)‖ ‖cq(R(ζ)(z)k−u)‖ sup
j≥ζ
‖Rj‖

≤ ‖R(ζ)(z)u−1‖A‖R(ζ)(z)k−u‖Aζ−β−1`(ζ).

By Lemma 3.1, the A-norms are bounded. Since there are at most 2k/w
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such terms, their overall contribution is bounded by

Ckw−1ζ−β−1`(ζ) = Ckw−1 · `(ζ)
ζβ+1

nβ+1

`(n)
· n−β−1`(n)

≤ Ckw−1w(1−γ)(β+1)±ε · n−β−1`(n),

since n/ζ = w1−γ/2. If γ is close enough to 1 (i.e., γ > β/(1 + β)), the
exponent of w in this term is negative, hence this contribution is bounded
by Ckn−β−1`(n) as desired.

Assume now that u ∈ [k/w, k + 1 − k/w]. In (3.1), p + j + q = n and
j < n/2, hence p ≥ n/4 or q ≥ n/4. We will handle the part of the sum
where p ≥ n/4, the other one is similar. We have∑

p+j+q=n
p≥n/4

‖cp(R(ζ)(z)u−1)‖ ‖Rj‖ ‖cq(R(ζ)(z)k−u)‖

≤
(

sup
p≥n/4

‖cp(R(ζ)(z)u−1)‖
)
·
∥∥∥ n/2−1∑

j=ζ

Rjz
j
∥∥∥
A
· ‖R(ζ)(z)k−u‖A.

By Lemma 3.2, supp≥n/4 ‖cp(R(ζ)(z)u−1)‖ ≤ Ce−n/(4ζ)/au−1. Moreover, we

have ‖
∑n/2−1

j=ζ Rjz
j‖A ≤ Cζ−β`(ζ), and the last A-norm is bounded by

Lemma 3.1. Therefore, since 1/au−1 ≤ C/au, this term is bounded by

Ce−n/(4ζ)ζ−β`(ζ)/au.

Since u ≥ k/w and ai is a regularly varying function of i of index 1/β, we
have au ≥ Cak/w

1/β+ε. Since ak = n/w and n/ζ = 2w1−γ , we finally get a
bound of the form

Ce−w
1−γ/2wC

′
n−β−1`(n)

for some constant C ′. Since γ < 1, this is bounded by Cn−β−1`(n). Summing
over the at most k possible values of u, we get the result.

Bounding Σ0. This is easier, since Σ0 = cn(R(ζ)(z)k). By Lemma 3.2, it
is bounded by Ce−n/ζ/ak = Ce−2w1−γ

/ak, to be compared with the desired
upper bound

kn−β−1`(n) ∼
aβk
`(ak)

· (wak)−β−1`(wak) = w−β−1±ε/ak.

The result follows.

4. Proof of the a priori estimates. The statement of Lemma 3.1
deals with functions

∑
j≥0 Fjz

j defined on the whole unit disk. However,
in the proof, it will be important to work with series

∑
j∈Z Fjz

j defined
only on S1 (to be able to introduce partitions of unity). We will write
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‖
∑
Fjz

j‖A =
∑
‖Fj‖ both in the unilateral and bilateral contexts. When

convenient, we will use the variable t ∈ R/2πZ instead of z.
For ε > 0, let ∆ε(t) = min(0, 1 − |t|/ε) be the piecewise affine function

that vanishes outside of [−ε, ε] and takes the value 1 at 1. We will use such
functions to construct partitions of unity on S1.

Lemma 4.1. If ‖Fn‖ ≤ |n|−1−β`(|n|) and
∑

n∈Z Fn = 0, then∥∥∥∆ε ·
∑

Fne
int
∥∥∥
A
≤ Cεβ`(ε−1),

where C only depends on β and `.

Proof. Define a real function G by G(x) = sin2(x/2)/x2. An easy com-
putation (see, e.g., [Kah70, p. 9]) shows that the Fourier coefficients of ∆ε

are given by

cn(∆ε) =
2
π
εG(εn).

It is easy to check that G is C∞, with |G′(x)| ≤ C min(|x|, 1/x2). Therefore,

|G(x)−G(y)| ≤ C|x− y|min(|x|+ |y|, 1/|x|2 + 1/|y|2).

We have

∆ε ·
∑

Fne
int =

(∑
ck(∆ε)eikt

)
·
(∑

Fn(eint − 1)
)

=
∑
n,k

Fn(ck−n(∆ε)− ck(∆ε))eikt.

To conclude, it is therefore sufficient to bound∑
n,k

`(|n|)
|n|β+1

ε|G(ε(k − n))−G(εk)| =
∑

|n|≤1/ε, |k|≤2/ε

+
∑

|n|≤1/ε, |k|>2/ε

+
∑

|n|>1/ε, k

= Σ1 +Σ2 +Σ3.

For Σ1, we bound |G(ε(k − n))−G(εk)| by Cε2|n|(|k|+ |n|). This yields

Σ1 ≤ C
∑
|n|≤1/ε

`(|n|)
|n|β+1

ε3|n|
( ∑
|k|≤2/ε

|k|+ |n|
)

≤ C
∑
|n|≤1/ε

`(|n|)
|n|β+1

ε3|n|/ε2 ≤ Cεβ`(ε−1).

For Σ2, we bound |G(ε(k − n))−G(εk)| by Cε−1|n|(1/|k − n|2 + 1/|k|2) ≤
Cε−1|n|/k2 (since |k − n| ≥ |k|/2). We obtain

Σ2 ≤ C
∑
|n|≤1/ε

`(|n|)
|n|β+1

( ∑
|k|>2/ε

|n|/k2
)
≤ Cε

∑
|n|≤1/ε

`(|n|)
|n|β

≤ Cεβ`(ε−1).
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Finally,

Σ3 ≤ C
∑
|n|>1/ε

`(|n|)
|n|β+1

· 2ε
∑
k

|G(εk)| ≤ C
∑
|n|>1/ε

`(|n|)
|n|β+1

‖∆ε‖A ≤ Cεβ`(ε−1),

since ‖∆ε‖A is bounded independently of ε: as the Fourier coefficients of ∆ε

are non-negative, this norm is simply equal to ∆ε(0) = 1.

We can now prove Lemma 3.1 for non-truncated series (i.e., s =∞):

Lemma 4.2. There exists a constant C such that, for all k ∈ N,

‖R(z)k‖A ≤ C.

Proof. In this proof, we will denote by OL,β(B) the set of power series∑
n∈Z Fnz

n such that Fn is an operator on the Banach space B with ‖Fn‖ ≤
C|n|−β−1`(|n|). The norm in OL,β(B) is then the best such C. This is a
Banach algebra, i.e., it is stable under multiplication. Moreover, a crucial fact
about this space is the following Wiener lemma: the spectrum of

∑
Fnz

n ∈
OL,β(B) is the union of the spectra of all the operators

∑
Fnz

n for z ∈ S1

(see for instance [Gou04b, paragraphe 2.2.4]). In particular, if
∑
Fnz

n is an
invertible operator for each z ∈ S1, then its pointwise inverse still belongs to
OL,β(B). Similarly, we will write OL,β(C) for C-valued power series with the
same condition on the modulus of the Taylor coefficients (this is a special
instance of the previous space, with B = C).

Given δ > 0 small enough, we define for z close to 1 the spectral projector

P (z) =
1

2iπ

�

|u−1|=δ

(uI −R(z))−1 du

associated to the eigenvalue λ(z) close to 1 of R(z). Therefore, we can write
R(z) = λ(z)P (z) + Q(z), where the spectrum of Q(z) is included in a disk
of radius < 1.

We will first give the proof assuming that P (z) is well defined for every
z ∈ S1 and that it is close to P (1). In this case, since R belongs to the Banach
algebra OL,β(B), this is also the case of P (this follows from the integral
formula for P and the Wiener property of OL,β(B)). Consider ξ ∈ B∗ and
η ∈ B such that 〈ξ, P (1)η〉 6= 0. We obtain λ(z) = 〈ξ,R(z)P (z)η〉/〈ξ, P (z)η〉
for z ∈ S1. Therefore, λ ∈ OL,β(C) again by the Wiener lemma.

For every z, the spectrum of Q(z) (as an operator acting on B) is con-
tained in a disk of radius < 1. The Banach algebra A also has the Wiener
property. Therefore, the spectrum of Q (as an element of the Banach al-
gebra A) is also contained in a disk of radius < 1. Hence, ‖Qk‖A decays
exponentially fast in k. Since Rk = λkP + Qk, it suffices to prove that
‖λk‖A is bounded independently of k to conclude.
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The idea of the proof is to use a clever partition of unity, and estimate
the A-norm of λk on each piece of the partition of unity. Let us write Vε =
2∆2ε−∆ε: this function is equal to 1 on [−ε, ε], vanishes outside of [−2ε, 2ε]
and is affine in between. Let also ∆ε,x(y) = ∆ε(x−y) and Vε,x(y) = Vε(y−x).

Consider a fixed integer k. Let bk be an even integer such that bk ∼ ak,
i.e., k`(bk) ∼ bβk , and let εk = 2π/bk. Let xj = jεk for −bk/2 ≤ j < bk/2, so
that

∑
j ∆εk,xj = 1 on R/2πZ. Moreover, Vεk,xj is equal to 1 on the support

of ∆εk,xj . Therefore, we have

λ(z)k =
∑
j

λ(z)k∆εk,xj =
∑
j

(
λ(xj) + (λ(z)− λ(xj))Vεk,xj (z)

)k
∆εk,xj .

As ‖∆εk,xj‖A ≤ 1 and A is a Banach algebra, we obtain

‖λ(z)k‖A ≤
∑
j

(
|λ(xj)|+ ‖(λ(z)− λ(xj))Vεk,xj (z)‖A

)k
.

By Lemma 4.1, since λ ∈ OL,β(C), we have ‖(λ(z) − λ(xj))Vεk,xj (z)‖A ≤
Cεβk`(ε

−1
k ) ≤ C/k. Hence,

‖λ(z)k‖A ≤
∑
j

(|λ(xj)|+ C/k)k.

Since |λ(xj)| is bounded from below,

|λ(xj)|+C/k ≤ |λ(xj)|(1+C ′/k) = |λ(2πj/bk)|(1+C ′/k) ≤ e−C|j|β/2/k ·eC′/k

by (2.2). When j is large enough, say |j| > M , we get |λ(xj)| + C/k ≤
e−C

′′|j|β/2/k, while for |j| ≤ M we simply have the trivial bound 1 + C/k.
This gives

‖λ(z)k‖A ≤
∑
|j|≤M

(1 + C/k)k +
∑
|j|>M

(e−C
′′|j|β/2/k)k.

Since this quantity is bounded independently of k, this proves the lemma
under the assumption that the eigenvalue λ(z) is everywhere well defined.

The general case reduces to the previous one using partitions of unity, as
follows. We first define a function R̃(z) which coincides with R(z) for z close
to 1, such that R̃(z) is everywhere close to R(1) (therefore, it has a unique
eigenvalue λ̃(z) close to 1). We can also make sure that |λ̃(z)| < 1 for z 6= 1.
This construction is easily made using smooth partitions of unity (see for
instance Step 3 of the proof of Theorem 2.2.5 in [Gou04b]). In particular, R̃
still belongs to the Banach algebra OL,β(B). The previous argument applies
to R̃ to show that ‖R̃(z)k‖A is uniformly bounded. Let us also define another
function R̄(z), which coincides with R(z) outside of a small neighborhood
of 1, and such that the spectrum of R̄(z) is contained for every z in a disk
of radius < 1. By the Wiener property, ‖R̄(z)k‖A decays exponentially fast.
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Finally, let us consider a smooth partition of unity ϕ + ψ = 1 such that
R = R̃ on the support of ϕ and R = R̄ on the support of ψ. This gives
Rk = ϕ · R̃k + ψ · R̄k. Since the A-norm of all those terms is uniformly
bounded, we get the same estimate for Rk.

Proof of Lemma 3.1. We will use the following general fact in Banach
algebras: if f and g are two elements of a Banach algebra and C0 ≥ 1 is
such that ‖fk‖ ≤ C0 for all k, then

(4.1) ‖(f + g)k‖ ≤ C0(1 + C0‖g‖)k.
To prove this estimate, let us develop the product in (f + g)k and consider
one of the resulting terms h1 · · ·hk with hi ∈ {f, g}. The number of blocks
of consecutive fs is bounded by j + 1 where j is the number of g factors.
Therefore, the norm of h1 · · ·hk is at most Cj+1

0 ‖g‖j (since each block of
consecutive fs gives a contribution at most C0 by assumption). Summing
over all possible terms, we obtain

‖(f + g)k‖ ≤
k∑
j=0

(
k

j

)
C0 · (C0‖g‖)j = C0(1 + C0‖g‖)k.

This proves (4.1).
In our case, we apply this estimate in the Banach algebra A to f = R

(by Lemma 4.2, its powers indeed have uniformly bounded norm) and g =
−
∑∞

n=sRnz
n, whose norm is bounded by C

∑∞
n=s n

−β−1`(n) ≤ Cs−β`(s),
which is bounded by C/k when s ≥ ak/2. Therefore, we get, from (4.1),

‖R(s)(z)k‖A ≤ C(1 + C/k)k ≤ C ′.

5. Proof of truncated series bounds. In this section, we prove
Lemma 3.2. Let us first note that the result is trivial for fixed k, since
cn(R(s)(z)k) vanishes for n ≥ ks, while e−n/s/ak is bounded from below by
e−k/ak for n ≤ ks. Therefore, it is sufficient to prove the result for large k.

We should estimate the coefficient of zn in R(s)(z)k, which can be written
as

1
2π

�

|z|=1

R(s)(z)kz−n−1 dz.

The truncated series R(s)(z) is a polynomial, and is therefore holomorphic
in the whole complex plane. By holomorphy, for any ρ > 0, the last equation
is equal to

1
2π

�

|z|=eρ
R(s)(z)kz−n−1 dz =

e−ρn

2π

�

|z|=1

R(s)(zeρ)kz−n−1 dz.

We should choose ρ so that the integral can be well estimated. Doney chooses



210 S. GOUËZEL

ρ in an implicit way and then has to study its asymptotics. It seems much
simpler to directly choose ρ = 1/s. Then the term e−ρn gives the desired
asymptotics e−n/s. To conclude, it is sufficient to prove that

(5.1)
�

|z|=1

‖R(s)(zeρ)k‖|dz| ≤ C/ak.

We first estimate R(s)(zeρ)−R(z) for |z| = 1:

‖R(s)(zeρ)−R(z)‖ =
∥∥∥ s−1∑
j=1

zjRj(eρj − 1)−
∑
j≥s

zjRj

∥∥∥
≤ C

s−1∑
j=1

j−β−1`(j)ρjeρj + C
∞∑
j=s

j−β−1`(j)

≤ Cs1−β`(s)ρeρs + Cs−β`(s).

Since ρ = 1/s with s ≥ ak/2, this is bounded by

Cs−β`(s) ≤ Ca−βk `(ak) ≤ C/k.
This tends to 0 as k →∞. For t in a small neighborhood of 0 (say |t| ≤ δ)
and large enough k, we deduce that R(s)(eiteρ) has a unique eigenvalue
µ(t, ρ) close to 1, and moreover

‖R(s)(eiteρ)k‖ ≤ C|µ(t, ρ)|k, |µ(t, ρ)− λ(t)| ≤ C/k.
For t outside of this neighborhood, the spectral radius of the operators R(eit)
is uniformly less than 1. By continuity, we deduce that ‖R(s)(eiteρ)k‖ decays
exponentially in k, uniformly for |t| ≥ δ.

We use these estimates to bound the integral (5.1), which can also be
written as

π�

−π
‖R(s)(eiteρ)k‖ dt.

The contribution of the set |t| ≥ δ is exponentially small in k, and therefore
smaller than C/ak.

Since |λ(t)| ≤ 1, we have |µ(t, ρ)| ≤ 1 + C/k, hence ‖R(s)(eiteρ)k‖ ≤ C.
As a consequence, the contribution of the set {t : |t| ≤ C1/ak} is bounded
by CC1/ak for any C1 > 0.

Finally, for |t| ∈ [C1/ak, δ], we have

|µ(t, ρ)| ≤ |λ(t)|+ C/k ≤ 1− c|t|β`(1/|t|) + C/k.

Moreover, if C1 is large, |t|β`(1/|t|) ≥ (C1/ak)β`(ak/C1) is much larger than
(1/ak)β`(ak) ∼ 1/k. Therefore, in the last equation, the second term is
dominated by the first one if C1 is large enough, and we get

|µ(t, ρ)| ≤ 1− c′|t|β`(1/|t|).
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Hence,
�

|t|∈[C1/ak,δ]

‖R(s)(eiteρ)k‖ dt ≤ C
δ�

C1/ak

(1− c′tβ`(1/t))k dt

≤ C
δ�

C1/ak

e−c
′ktβ`(1/t) dt.

Writing u = tak and using the asymptotics k ∼ aβk/`(ak) and Potter bounds,
we find that this is at most

C

δ/ak�

C1

e−c
′uβ/2 du

ak
.

This is bounded by C/ak as desired.
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